The Annals of Probability
1986, Vol. 14, No. 1, 86-118

NORMAL AND STABLE CONVERGENCE OF INTEGRAL
FUNCTIONS OF THE EMPIRICAL DISTRIBUTION FUNCTION

By MIKLOs CsORGS,' SANDOR CsORGS, LAJos HORVATH,
and DAvID M. MasoN?

Carleton University, Szeged University, Szeged University, and °
University of Delaware

We prove general invariance principles for integral functions of the em-
pirical process. As corollaries we derive probabilistic proofs of the sufficiency
criteria for a distribution to belong to the domain of attraction of the normal
and stable laws with index 0 < a < 2. In the process we obtain equivalent
statements of these criteria in terms of the tail behaviour of the underlying
quantile function. We also give a representation of any stable random variable
with index 0 < a < 2in terms of a linear combination of two independent and
identically distributed Poisson integrals. The role of a fixed number of
extreme terms is exactly determined.

0. Introduction. Let U,,..., U, denote n independent uniform (0, 1) random
variables (rv) and let G, denote the right-continuous empirical distribution
function based on these rv. Also let F denote an arbitrary right-continuous
distribution function with left-continuous inverse distribution or quantile func-
tion Q.

In this paper we will study invariance theorems for several integral functionals
of G,. For example, we will consider the integral functionals

I,(s) = [(Gu(w) ~ u) d@(u),

T(s) = [(Gy(u) = u) dQ(u),

defined for 0 < s < 1. (These functionals play a central role in our unified weak
and strong approximation theory for empirical total time on test, mean residual
life, empirical Lorenz and Goldie concentration processes which are of interest in
reliability, and economic concentration theories. The reader is referred to M.
Csorgd, S. Csorgd, Horvath, and Mason (CsCsHM, 1985).)

The functionals I, and oJ, are well defined, that is finite as long as

(0.1) f_°°°°|x| dF(x) = fo "1Q(u)|du < oo.

In particular, (0.1) holds whenever F satisfies the normal convergence criterion or

Received February 1984; revised August 1984.

'Research partially supported by a NSERC Canada Grant at Carleton University, Ottawa.

?Research partially supported by a University of Delaware Foundation Grant.

AMS 1980 subject classifications. Primary 60F17, 60F05; secondary 60E07

Key words and phrases. Integral functionals, empirical distribution function, normal convergence
criteria, stable convergence criteria, quantiles, Poisson integrals.

86

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Probability. STOR ®

WWw.jstor.org



NORMAL AND STABLE CONVERGENCE 87

is in the domain of attraction of a stable law with index 1 < a < 2. We refer to
Rényi (1970) for proofs of these facts, and to the appendix for the statements of
the normal convergence criterion and the necessary and sufficient conditions for a
distribution to be in the domain of attraction of a stable law.

Our invariance theorems will be stated and proved using a weak approxima-
tion approach on an appropriate probability space constructed in the next
section, where all the necessary notions are defined as well.

We will show in Section 2 that whenever F satisfies the normal convergence
criterion, then on our probability space the difference between normalized ver-
sions of I, and similar functionals of a sequence of Brownian bridges converges
uniformly on [0,1] in probability to zero. This result may be viewed as a
functional generalization of the sufficiency part of the classical Feller—
Lévy-Hindin result concerning when a distribution F' belongs to the domain of
attraction of a normal law. Indeed, when setting s = 1, we obtain as a conse-
quence a probabilistic proof of the sufficiency of the normal convergence criterion.

In Section 3 we prove that when @ < 0 (respectively @ > 0) and F is in the
domain of attraction of a stable law with index 1 < a < 2, then an appropriately
time transformed and normalized version of I, (respectively that of <J,) converges
uniformly on [0, «0) on the same constructed probability space as above to an
integral function of a standard Poisson process N" (respectively to N®), where
N® and N® are independent processes. When F is in the domain of attraction
of a stable law with index 0 < a < 1, we obtain analogous results for integral
functionals of G, that are similar to I, and J,. These results lead to a
probabilistic proof of the sufficiency of the classical criteria for a distribution to
be in the domain of attraction of a stable law of index 0 < & < 2. We also
identify the characteristic function of the obtained stable limit and give a general
representation of all stable laws with index 0 < a < 2 as a linear combination of
_ two integrals of independent Poisson processes. Finally, in Section 4 we investi-
- gate the effect of deleting a fixed number of upper and a fixed number of lower
extreme values from the sum of variables in the domain of attraction of a stable
law of index 0 < a < 2. We determine the limiting distribution of these truncated
sums. The similar problem when a finite number of extremes determined by
ordering the moduli of the terms in the sum is removed has been treated
extensively in the literature.

In the process of proving these above mentioned results we derive alternative
statements of the classic normal convergence and stable convergence criteria in
terms of the tail behaviour of the quantile function @ of F. These criteria have so
far been stated in terms of the tail behaviour of F only. The present quantile
versions of the criteria should be of independent interest.

We will use the following convention concerning the integral sign: When
— o0 < a < b < w and ! is a left-continuous and r is a right-continuous function
then

fabrdl=‘/[.a,b)r;il and fbldr=‘/(.a‘b]ldr,

a

whenever these integrals make sense as Lebesgue—Stieltjes integrals. In this case
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the usual integration by parts formula
[Prdi+ [‘1dr = 1(b)r(b) - (a)r(a)

is valid. If / or r are not finite at least one of the endpoints or at least one of the
endpoints themselves are not finite, then the corresponding integrals are meant
as improper integrals.

1. Preliminaries. Construction of the probability space upon which the
theorems in this paper are valid. Let {W®(¢); 0 < ¢ < oo} and {W®(¢);
0 < t < o} be two independent Wiener processes defined on the same probabil-
ity space (2, &, P). By means of W® and the Komlés, Major, and Tusnady
(KMT) technique we construct a sequence of independent exponential rv with

mean 1, say YV, Y{,..., and in the same way by means of W® we construct a
sequence of independent exponential rv with mean 1, say Y{®, Y/, ... . The thus
constructed two sequences of i.i.d. rv Y, Y®,... and Y?, Y ®,... also live on

(2, «, P) and, since W and W® are independent processes, they are also
independent as sequences by construction.

Fori=1,2,..., and m = 1,2,..., we write
. m .
S = ZY}(”,

J=1

and set S{V = S{? =0. We introduce two standard left-continuous Poisson
processes N® and N® with time domain [0, c0), defined for i= 1,2 and
0 <s < o0 by
0
NO(s):= Y I(8P <),
j=1
and observe that N® and N® are independent processes on (£, o, P) by

construction.

For each integer n > 2, let
y® for j=1,...,[n/2],
Y(n)=1¢ .
Y%, ; forj=[n/2]+1,...,n+1

Forn>2and m=1,...,n + 1 we write
m
S.(n) = X Y(n),
j=1

and from now on, for the sake of notational simplicity, we will write S,, = S,(n)
and Y; = Y(n) and set S, = 0.
For each integer n > 2 we define the stochastic process

WO(s) for0 <s < [n/2],

W (s) = W‘”([%]) i w<2>(n f1- [g]) — WO(n+1-s)

for[n/2] <s<n+1.
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Elementary calculations show that for each choice of 0 < s < ¢t < n + 1 we have
EW,(s)=0, EW,(s)W,(t)=s. Thus W, is a standard Wiener process on
[0, n + 1].

For each n > 2, we construct n Uniform (0, 1) order statistics as follows:

U, ,=8,/S,+, fork=1,...,n.

It is well known that (U, ,, U, ,,...,U, ,) have the same joint distribution as
the order statistics of n independent Uniform (0,1) rv. Let (Uj,...,U,) denote a
random permutation of (U, ,,...,U, ,) chosen with probability 1/n!. It is easily
checked that (U,,...,U,) have the same joint distribution as n independent
Uniform (0,1) rv. Let G, denote the empirical distribution function based on
these U,, ..., U, rv, defined by

Gy(s)= L I(U;<s)/n, 0<s<1,
i=1

and let a, be the corresponding empirical process defined by
‘an(s)== n?(G,(s)—s), 0<s<l.

Finally, we introduce a sequence of Brownian bridges {B,}, defined for each
n > 2 by

{Bu(5); 0 <s <1} =n""*W,(ns) —sW,(n); 0 <s <1},
and for each n > 3 a truncated version of B, given by

E(s):{Bﬂ(S) fOI']./ngs<1_1/n’
! 0 elsewhere.

We observe, that all the stochastic processes and rv just constructed live on
the initial probability space on which W® and W® are defined. In the sequel,
whenever we refer by name or symbol to any of these processes or ro, it will be
understood that we are talking about the specially constructed versions just
given. In particular, we note that the here given empirical process a, agrees in
distribution with the classical uniform empirical process only for each n > 2.
Nevertheless, when approximating our present «, by the above introduced
sequence of Brownian bridges {B,}, the results of CsCsHM (1986) for example,
concerning the classical uniform empirical process defined in terms of any
sequence of independent Uniform (0, 1) rv hold true also on our present probabil-
ity space for our present a, and B,. In this paper, we will be using only one of
the many asymptotic properties of the above construction, stated as Theorem 1.1
below. For further details on the wide ranging ramifications and applications of
this construction we refer to CsCsHM (1986).

‘Let & denote a class of left-continuous functions defined on (0,1) such that
each I € % can be written as [ = [, — [,, where /; and [, are nondecreasing
left-continuous functions defined on (0, 1). Also, let L denote a strictly positive
nonincreasing function defined on (0, ;] slowly varying at zero. We define also the
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followiﬁg function on (0, ;]: for § € (0, 3] set

(1.1) N(8) = sup sup sl/Q{UI(s ) +18(s)|+10(1 = s)|+]1,(1 = s) |} /L(s).

L 0<s<8

We have, in terms of our «, and B, as above,

THEOREM 1.1 (Corollary 3.2 of CsCsHM, 1986). Whenever £ and L are
such that

(1.2) limN(8) =0
510
then, as n — oo,

L(1/n)=o0p(1).

(1.3) sup
le¥

Olz(s) da(s) —fO‘Z(s) dB,(s

2. Uniform convergence of integral functionals of the empirical process
to an integral functional of a Brownian bridge. Towards stating the main
result of this section, let F be a nondegenerate right-continuous distribution
function with @ as its left-continuous quantile function defined by

2.1) Q(s) =inf{x: F(x)>s}, 0<s<1,

Q(0)=Q(0+), Q(1)=(1-).
We define the following two functions on (0, ;]: For any 0 < s < § let (cf. the
appendix)

S¥(s) = f/(u Ao - uv) dQ(u) dQ(v),

and choose any 0 < y < ! such that 0 < S(y) < oo (this is possible since F is
assumed to be nondegenerate) and set

S(y) fory<s<jy,
S,(s) for0<s<y.

(2.2) L(s) = {

THEOREM 2.1. Whenever F is a nondegenerate distribution function that
satisfies the normal convergence criterion [cf. (A.1) and (A.2) of the appendix],
then, as n — oo,

(2.3) A,:= sup

O<t<l1

[auls) d(s) - [B(s) d@(s)|[La/m)= 0400,

where L is as in (2.2).

JPROOF. Observe that integration by parts gives for each 0 < ¢ < 1 [cf. the
introduction]

[enl(s) d@(s) = = ['Q(s) day(s) + @()a(0),
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which is equal to
[u(s) day(s),
0

where
I(s) = (Q(t) — Q(s))I(s < t).

Similarly, we have foreach1/n<t<1-1/n
t— 1 —
[B.(s)dQ(s) = [ L(s) dB,(s).
0 0

Hence we have

/011,(3) dan(S) - /Olzt(s) dB,(s) /L(1/n),

Let &= {I,: 0 <t <1}. We observe that each [,(-) is a nonincreasing left-
continuous function defined on (0, 1). Also, by applying some elementary bounds

based on monotonicity of @, we have for each fixed 0 < 8 < ;

N(8) = sup supasl/2{|lt(8)l+llt(1—8)|}/L(S)

0<t<10<s<

<4 SUP681/2{IQ(S)|+IQ(1 - s)[}/L(s).

0<s<

A = sup

n
0<t<1

(2.4)

Proposition A.2 in the appendix implies that L is slowly varying at zero, and
N(8) of (2.4) converges to zero as 8 | 0. Hence by Theorem 1.1 we have
(2.5) A,=o0p(1), n- co.
Thus the proof of the theorem is complete. O

COROLLARY 2.1 (Lemma 3.2 of CsCsHM, 1985). Whenever F is a distribution
function that has a finite second moment
¢ ¢
[au(s) dQ(s) = ['B,(s) dQ(s)
0 0

(2.6) D,:= sup = 0p(1)

0<t<l1

asn — oo.

Proor. We will assume that F is nondegenerate, otherwise D, of (2.6) is
identically equal to zero. Since F is a nondegenerate distribution function which
has a finite second moment, L%(1/n) [cf. (2.2)] converges, as n — o, to

0< folfol(” no- uo) dQ(u) dQ(v)

— 00

= /_wwx2dF(x) - (foo chF(.x))2 =02 < o0,

the variance o2 of F, and since F trivially satisfies the normal convergence
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criterion, we have immediately from Theorem 2.1 that
t t—
(27) sup | ['a,(s) dQ(s) - ['B(s) dQ(s)| = 04(1).
0<t<l1

The latter in turn implies that in order to complete the proof of (2.6) it is enough
to show that

(2.8) DW= sup / B,(s) dQ(s)|= 0p(1),
0<t<l/n
and
(2.9) D®:=  sup ft B () dQ(s)|=0p(1), n- .
1-1/n<t<11V1-1/

The proofs of (2.8) and. (2.9) follow by arguments based on the
Birnbaum-Marshall inequality. For details we refer to CsCsHM (1985). This
completes the proof of Corollary 2.1. O

Corollary 2.1 has wide ranging applications [cf. e.g., CsCsHM, 1985]. The
reason for giving its above short proof is to underline the fact that, unlike in our
quoted original proof, here only the Gaussian D{" and D tail rv have to be
estimated, due to Theorem 2.1.

Our next corollary will illustrate the role of the, at zero, slowly varying
function L in Theorem 2.1. It is an easy sufficiency proof of the normal
convergence criterion based on the latter theorem.

COROLLARY 2.2. Let X, X,,... denote a sequence of i.i.d. rv with non-
degenerate distribution function F. Whenever F satisfies the normal convergence
criterion, there exist constants A, and C, such that

(2.10) An( f X, - C,,) - ,N(0,1).

i=1

Proor. Let @ denote the quantile function of F. It is well known that

nw( Y X,/n - u) =9n1/2( S QU)/n - #)
i=1 . i=1

(2.11)
= = [la(s) dQ(s),

where p denotes the mean of F. Theorem 2.1 implies that, as n — oo,

[t a0(s) = [1 "B (5) d)] 1.0/ = o0t

(2.12)

Since

[, "Bs) d@ts)/L1/m)
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is a N(0,1) rv, (2.11) and (2.12) imply (2.10) with A, = 1/(n'/2L(1/n)) and
C, = np.

For an alternative probabilistic proof of the normal convergence criterion we
refer to Root and Rubin (1973), where they consider the general nonidentically
distributed case and base their proof on the Skorohod embedding.

3. Stable laws and integral functionals of Poisson processes. Let
Y, Y4V, ... and Y®, Ys?,... be the two independent sequences of independent
exponential rv constructed in Section 1. Let {N(s); 0 < s < o0} (i = 1,2) be
the two independent standard left-continuous Poisson processes of the same
section. For each integer n > 2 let U, ,,...,U, , be the Uniform (0,1) order
statistics as constructed in Section 1. Let G‘” be the left-continuous empirical
distribution function

n
GP(u) =Y I(U, ,<u)/n, O<u<l,
i=1
and for technical reasons we introduce also
(2)(")_21(1 n+1 tn<u)/n O<ucx<l.

Fori=1,2let
I{(s) = {nG,‘,”(s/n) for0 < s < n,
" 0 for s > n.

Let J#; denote the class of all quantile functions € defined on [0, 1) as in (2.1),
such that

(K.1) Q=>0,

(K.2) Q1 — u) = u"Y°L(u) for some 0 < a < 2 and function L
which is slowly varying near zero, i.e., for any ¢ > 0,

(3.1) limL(tu)/L(u) = 1.
ul0
Also, let ¥, denote the class of all quantile functions @, defined on [0, 1) as in
(2.1), such that (K.1) is satisfied, i.e., @ > 0, but instead of (K.2) we have

(K.3) Q1 — u) = o(u"*L(u)) for some 0 < a < 2 and function
L which is slowly varying near zero.

For any @Q € )| U X, we write
(3:2) H(u) = -Q(1 —u),
and set
dp o, n(s) = n""*dH(s/n)/L(1/n).
Note that H is right-continuous.
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When 1 < a < 2, we write for i = 1,2
ft(I‘,(,i)(s) —5)dp, .(s) f0<t<n,
0

ro(n) ift>n,

r(e) =

MOt = [(NO(s) = ) dpo,ols)  fort=0,
0

MO(t) = a—l/t(N(i)(s) —s)s™1"Vads fort> 0.
0
Let also
Ul‘fZ, = Yl(i)/sn+1 fori=1,2 and n > 2,

where S, ., = S, (n) is as in Section 1.
When a = 1, we write for ;.= 1,2

0 it0 < ¢ < nU,
; t (i) o) — : (i)
TO(t) = fnU{%(I‘n (s) —s)du, .(s) ifnUP <t<n,
I(n) if ¢>n,
| [0 (NO(s) = s)dy, o(s) i £> nUG,
MO,(t) = { D0t |
0 if0 < t < U,
and
Lo (NO(s) = s)s2ds it > Y{®,
mo(n) = {

0 if0<t< Y™
Finally, when 0 < a < 1, we write for i = 1,2
t .
' I(9(s)dp, .(s) if0<t<n,
roey e | |
I(n) ift > n,
MO () = f '‘NO(s) dp, (s) fort=0,
0
and :
MO(¢t) = a‘lftN("(s)s‘l‘l/“ds for ¢ > 0.
0 .
We have

' THEOREM 3.1. Whenever Q € XX, then with 0 < a < 2 and L as in condi-
tion (K.2)

(3.3) sup |T{0(t) — M(t)|=0p(1) asn—> o0 fori=1,2.

0<t<oo
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Whenever @ € X,, then with 0 < a < 2 and L as in condition (K.3)
sup |T9(¢)|=o0p(1) asn— oo fori=1,2.

0<t<oo

Proor. First we consider the first statement in Theorem 3.1. For any
0 < T < o0 we have .
sup |T0,(8) — MO(¢)]

0<t<oo

(3.4) < OSlthTIM,if’a(t) - MP(t) |+ ,Sup ll“,if)a(t) = M(1)]

+ sup |T{0(¢) - I‘(”,,(T)|+ sup |M(t) - MU(T))|.
T<t<oo T<t<oo
Lemmas 3.3, 3.4, and 3.5 given below imply that the right side of the inequality of
(3.4) is equal to

0p(1) + Op(1)(TP~/* + 0(1))

for some 0 < B < 1/a, where the Op(1) terms does not depend on T. Since T can
be chosen arbitrarily large and 8 — 1/a < 0, the said lemmas imply (3.3).

In order to complete the proof of the first statement of Theorem 3.1, we will
now establish the aforementioned lemmas together with Lemmas 3.1 and 3.2,
preliminary to them.

LEMMA 3.1. Assume Q € X|. For every 0 < T, < T, < o0, 0<a <2, and
— o0 < B < o0, where B+ 1/a

(35) [ i () = (5 £8) /(1 /)

s

uniformly in s and t in [T}, T,] as n = oo, and T, can be chosen to be zero if
B—1/a> 0.

ProoF. Integrating by parts, the left-hand side expression of (3.5) is equal to
(3.6) n“l/"H(u/n)uB/L(l/n)K - ,B/tuﬁ‘ln‘l/“H(u/n) du/L(1/n).
S

We will use the fact that for every 0 < Tl <T, < o0and —oo <y < oo [cf. item
4 on pages 21 to 22 of de Haan (1970)]

(3.7) sup |u'L(u/n)/L(1/n) —u’|=0(1), n - oo,
Ty<u<T,
where T can be chosen to be zero if y > 0.
Applymg (3.7) we get
sup |uf e+ n’l/"‘uBH(u/n)/L(l/n)|

Ty,<u<T,

= sup |uf"V*—uP"VL(u/n)/L(1/n)|= o(1),

Ty<u<T,

(3.8)
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and forevery 0 <e< |8 —1/a|/2and T, <s<t< T,

ftuﬁ“n“/"H(u/n) du/L(1/n) +ftuﬁ‘1‘1/"‘ dul

(3.9) < (/tuﬂ‘l““/“’_edu) sup |u®— u'L(u/n)/L(1/n)| .

s Ti<us<T,
= |T2B—(l/a)—s _ Tf?—(l/a)—e Io(l)_
Now (3.8) and (3.9) imply (3.5).

LEMMA 3.2. Assume Q€ X,. For each 0 <a <2, 0<B<1/a, and
0<T< o

(3.10) lim fnsﬁd,u&’ W(8)=a 'TE V2 /(1 /a — B).

n—->oo VYT

ProoF. On applying integration by parts, the left-hand side of expression
(3.10) is equal to the sum of

(3.11) lim {T#~V*L(T/n)/L(1/n) + H(1)nf~V/2/L(1/n))
and
1
/ H(u)uﬁ‘lduL
. 170 T/n (T/n) B—1/a
(3.12) —nan:an" v T#~Y°L(T/n) L(1/n) '

Hence by (3.1) and the assumption that 8 — 1/a < 0, the expression of (3.11) is
equal to T#~1/% and by the same two conditions

(313) [ L@ du/((T/n)" "V L(T/m) > 1/(1/a = B)

[cf. Remark 1.2.1 on pages 18-19 of de Haan (1970)]. Consequently, on account of
(3.1) and (3.13), expression (3.12) equals B8T#~1/* /(1 /a — B). This also completes
the proof of Lemma 3.2.

LEMMA 3.3. Assume @ € X\. Foreach 0 < a <2 and 0 < T < o0

(3.14) sup |M(¢) — MO(¢)| = 0p(1), n- o,
T

0<t<

fori=1,2.

Proor. We will only supply a proof for the case when 1 < a < 2. The proofs
for the other two cases of «a =1 and 0 < a < 1 are almost the same. First we
observe that the left side of (3.14) is less than or equal to the sum of

(3.15) sup fta_lN(i)(s)sﬁl_l/"‘ds —ftNm(S)d.ua,n(S)
0 0

0<t<T
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and

(3.16) sup fta“s‘l/“ds - /tsdp.a,n(s) .
0<t<T!Y0 0
Now by setting 8 = 1 in Lemma 3.1, we see that expression (3.16) converges to
zero. As to (3.15), we note that almost surely the Poisson processes N (i = 1,2)
have at most a finite number of jumps in [0, T'] at distinct points. Let 0 < b, <
- <b,<T be the jump points of N® in [0,T), and set b,,,, =T and
b, = 0. Then expression (3.15) is equal to

Z N(l)( ){ —1//+1At “1-1/a g _ fj+lAtd”a,n(s)} ,
b

b<t

sup
0<t=T

which by Lemma 3.1 also converges to zero almost surely. Hence we have also
(3.14).

LEMMA 3.4. Assume Q@ € X,. Foreach0 <a<2and 0 < T < o
(3.17) sup [T(8) = M(8)| = 0p(1),  n— oo,
T

O<t<

fori=1,2.

ProoOF. Let, fori=1,2,
m, = first integer £ > 0 such that S{ < T and S§!), > T,
where S{ (i = 1,2), k =0,1,..., are as in Section 1.
It is easily seen that m; < co almost surely. We note also that almost surely
SP<T, 8P, >T, and

3.18 - :
(3.18) 0=80<80< - <8O i=1,2.

m,+19
Let, for i = 1,2,
m;(n) = first integer £ > 0 such that nS{"/S,., < T and nS{?,/S,,, > T
Again we note that almost surely

Sm(n) nS; l(n)+1

m

<T, > T, and

(3.19) Sn+1 Sn+1

Séi) nS{i) nS,(ni,)(n)H .

0 — < < e < e —— 1= 112'
Sn+1 Sn+1 S’H'l
Let
AD = (m;=my(n)} (i=1,2),
'h Br(zl):={ / H—nS”/ n+1+ 0<j<m1+1}

and

Br(zZ) = {n(sn+1 - n+1—j)/Sn+l = ns(2)/ 1t 0 <js<my+ 1}
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Then we have for i = 1,2 that
(3.20) P{B{"} > 1 asn— .
Fori=1,2,n=12,...,j=1,...,m; + 1 we set
a;j)n = min(S}i)’ nsj(i)/sn+l)’
1 = mas(50,n7/5,.),
and
C = {a, < b, < af®, ,forj=1,...,m}.
Fori=1,2and j=1,...,m;+ 1 we let
1= (aft, 1)
and for i = 1,2and j=1,..., m; we let
I =(bf, a}i’l,n].
For any choice of 1 < A < o0, we set
IO =(8O/NA80]  (i=1,2), j=1,...,m;+ 1,
and let
DV = {If’}, cI®(\)forj=1,...,m;+ 1} (i=1,2).
Finally, let
EQ=ADNBONCPNDY, i=1,2.

Since
(3.21) S,i1/n—,. 1 asn— oo,
an elementary argument shows that
(3.22) P{E®} -1 (i=1,2) asn— .

We observe that when w € E{” and s € I{!), (i = 1,2), then both
(3.23) J—1<NO(s)<j
and
(3.24) j—1<TW(s) <],
and for s € J) ’
(3.25) [(O(s) = NO(s) =.

Now notice that for any w € EV (i =1,2) and ¢ € (0, T')

m+1 _
JNOE) =06 dia(s)| £ £ [ INO) = T0(6) ik, o)
’ ’ m,—+lj’

+ X [ INO(s) = T(s)| dia,uls),
=1 "Jf
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which, on account of (3.23), (3.24), (3.25), and » € D{", is less than or equal to
m,+1
s i=1,2).
T [ diard®)  (=12)
On applying Lemma 3.1 with B8 = 0, we see that the last expression converges, as

n — oo, to
m,+1

a-! Z (S(‘)) 1/a (N/& = \~Va).

Since A can be chosen a.rbltranly close to 1, on account of (3.22), the proof of
(3.17) is now complete.

For the proof of our next lemma we will need the following fact, contained in
the proof of Theorem 1 of Mason (1983).

Facr. Foreach ; <B<landi=1,2

(3.26) sup |[N®(s)—s|s <o as,
0<s<oo
and
(3.27) sup |T{(s) —s|s™#—>, sup |[N@(s)—s|s7#
0<s<ow 0<s<oo

LEMMA 3.5. Assume @ € X\. Foreach 0 < a <2, thereexistsa0 < <1/a
such that for every 0 < T < o0

(3.28) sup |M(t) - MP(T)| = 0p(1)TA /=
T<t<oo
and
(3.29) sup [L9(¢) — TO(T)| = 04 {T# = + o(1))
T<t<oo

for i = 1,2 where the Op(1) terms in (3.28) and (3.29) are independent of T.

ProoF. First choose § < 8 < 1/a < 1. In this case the left sides of expres-
sions (3.28) and (3.29) are less than or equal to

(3.30) sup / “YNO(s) —s|s™ "V ds
T<t<oo
and
(3.31) sup / ITS(s) — s|dpg als),
T<t<n
respectively (i = 1,2). Expression (3.30) is less than or equal to
(3.32) sup s B|NO(s) —s|(a™ TP V*/(1/a — B)),
0<s<oo
and expression (3.31) is less than or equal to
(3.33) sup s A|T{(s) —sl/ tFdp, (2).

0<s<oo
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Consequently (3.26), (3.27), and Lemma 3.2 complete the proof for this case of
l<a<2.

Now choose 1 = 8 < 1/a < . In this case the left sides of expressions (3.28)
and (3.29) are less than or equal to

(3.34) sup s"'NO(s)(a T "V2/(1/a — 1))
0<s<oo
and
(3.35) sup s7'T(s) [ sdi,, o(5),
0<s<n T

respectively (i = 1,2), and (3.26), (3.27), and Lemma 3.2 also complete the proof
for this case of 0 < a < 1.

In the light of Lemmas 3.3, 3.4, and 3.5 the proof of the first statement of

Theorem 3.1 in (3.3) is now also complete.
In order to prove the second statement of Theorem 3.1 we require the

following analogue of Lemma 3.2.

LEMMA 3.6. Assume Q € X,. Foreach0 <a <2,0<B<1/a, and 0 <T
< o0

(3.36) lim ["s#dp, ,(s) = 0.
n—o YT

ProOF. Integration by parts gives that the left side of expression (3.36) is
equal to the sum of

(3.37)  lim {H(1)nf~Y*/L(1/n)+ TPn""/*Q(1 — T/n)/L(1/n)}
and
(3.38) ~ lim nf VB [ H(u)uf~'du/L(1/n).

T/n

n— oo
By (K.3) and the assumption that 8 — 1/a < 0, expression (3.37) equals zero. For
each 0 < A < 1, expression (3.38) equals

~ lim nﬁ—l/“;ﬁefA H(w)uf ' du/L(1/n)
T/n

n—oo

— lim nB‘l/"B/;H(u)uB‘ldu/L(l/n),

n—oo

where the second term is obviously zero and the first one is less than or equal to

Q(1 - s) A
sup ——— lim nf~¢ L(wuP"V*du/L(1/n
Osszx L(s)s™ /% n>oo B‘/T/n (u) /LQ/n)

B Q1 -s) BTF 1/
T o L(s)s V* (1/a) - B’

where the last equality is obtained by the same argument as given in the proof of
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Lemma 3.2. Since 0 < A < 1 can be chosen arbitrarily close to zero, we have (3.36)
by (K.3).

Now we turn to the proof of the second statement of Theorem 3.1. It is enough
to show that
(339) [ [TO(s) = s|dp,, a(s) = 0p(1) fori=1,2 ifl<a<2,.

0
(3.40) fn IT{(s) — s|dpy o(s) = 0p(1) fori=1,2 ifa=1,
nU, ,
(3.41) [TS(5) dig, of5) = 04(1) fori=1,2 if0<a<1.
0
To prove (3.39), chose any 0 < T < n. Then the integral in question is equal to
. . . n .
BO(T) + CAT) = ['|T(s) = s|dig, o(5) + [ IT(s) = 5] dhe, u(s).
0 T
Choose now any 3 < B < 1/a. We see that
C(T) < sup s #TO(s) = s| [ thdp, o(¢)
T

0<s<oo

= Op(1)o(1) = 0p(1)
by (3.27) and Lemma 3.6. Hence, to complete the proof of (3.39) it is enough to
show that for any 0 < & < o0,

(3.42) lim limsup P{B{(T') > &} = 0.
TL0 poc
Since
(3.43) lim limsup P{nU, , > T} =1,
TL0 poco ’
to establish (3.42) it is sufficient to prove that
(3.44) lim fTsd,ua’n(s) =0 foreach0 < T < .
n—o vQ

Here the left side equals the limit of
—nfT/nudQ(l - u)/(n"*L(1/n)),
0

which by integration by parts equals

T\ - n
_TQ(I— ;) n/T/ Q(1 —u)du
0
n'/*L(1/n) * n/*L(1/n)

By (K.3) the first term converges to zero as n — . The second term is not
greater than

sup Q1 — u)(ul/"‘L(u))_lfoT/nnL(o)v‘l/" dv(nl/"‘L(l/n))_1

O0<u<T/n

4 n -1
(3.43) = o1) [™nL(0)0™ /" do(n/ L1 /m))
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where the last equality is by (K.3). Applying now Theorem 1.2.1 of de Haan
(1970), page 15, we have

lim fT/nnL(v)v_l/"‘ dv/(n**L(1/n)) = T*"V*/(1 - 1/q).
n—o Y0

Thus (3.44) holds by (3.45), and (3.39) is proved.
Now consider (3.40) and (3.41). By (3.43) it is enough to show that for any
0<T< oo,

(3.46) [ |T(s) = s|dpy o(s) = 0p(1),  i=1,2, whena=1,
T
(3.47) fnl‘,‘li)(s) dp, o(s)=0p(1), i=1,2, whenO<a<1.
T

Choose any ; < B < 1. Then the integral in (3.46) is less than or equal to
. n
sup s #|T(s) = s| [ t#du, ,(t),
0<s<oo T
and when 0 < a < 1, the integral in (3.47) is not greater than
. n
sup s'lI‘,(,”(s)f tdp, ().
0<s<oo T

Applying again Lemma 3.6 and (3.27), we see that both of these bounds are 0,(1)
for any 0 < T < co. This completes the proof of the second statement of
Theorem 3.1. O

The rest of this section is devoted to establishing results for stable laws
paralleling that of Corollary 2.2 for the normal convergence criterion. These
results will illustrate Theorem 3.1 as an analogue of Theorem 2.1.

Let X, X,,... be a sequence of ii.d. rv with common distribution F and

_quantile function @. Let
G(y) = P{|X,| <y} fory>0,
and
K(u) =G Yu) =inf{y: G(y) = u} forue [0,1).

Put

Q,(u) = (-Q(1 —u)) vo,

Qx(u) = Q(u) V0,

H(u)=-@Q(u+) and Hy(u)= —@Qy1 —u).

Note that @(u) = —Q,(1 — u) + Qy(u).

Assume that for some 0 < a < 2 and function L, slowly varying near zero, we
have '
(3.48) K1 -u)=u""L(u).
Assume also that for each i = 1,2 '

(3.49) E%Qi(l —u)/K(1 — u) = w; exists.
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We observe that whenever conditions (3.48) and (3.49) hold true and w; > 0, then
for this i

(3.50) Q1 —u)=u""Ly(u)
for some function L,, slowly varying near zero such that
(3.51) limL,(u)/L(u) = w,.

ul0

It is shown in Proposition A.3 of the appendix that the above conditions on @
are equivalent to the classical necessary and sufficient conditions on F for it to be
in the domain of attraction of a stable law with a € (0, 2).

Whenever 1 < a < 2, let

Spa=n"V" Y (X;—u)/L(1/n),
j=1

where

W= /:Q(u) du = fooooxdF(x).

We notice that

Sna=on VY (QU;,,) —1)/L(1/n)

Jj=1

=17 ¥ (@) - ) /L1 /m)

n

n

-n~Ve Z (Ql(1 - l]j,n) - “1)/L(1/n)’

Jj=1

where
1 .
B = f Q(u)du fori=1,2.
0
Thus by integration by parts we have
80 =on /[ (TP(s) = s) dHy(s/n) /L(1/n)
0

o = ['(T0(s) = s) dHy(s/0)/L1/m).
When o = 1, let
Sp0=n 7t X (X () /L(1/m),
wl;gere J

w(n) =~ [ ‘/nelu ~u)du + | l/nQ2(1 - u)du.
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Applying integration by parts again, we see that
Sei=ont [ (TP(s)—s) dHy(s/n)/L(1/n)
n(1-U, )

a0 (T(s) = 8) dHi(s/n) /L(1/n)

nUy n

(3.53
: +n—1{ /1 "ns dH (s/n) + Hl(l/n)} /L(l/n)

| [ sy (s/m) + Hy(1/m)) /L(l/n).
1
Finally, whenever 0 < a < 1, we let

Suut= 01" Y X,/L(1/n)

J=1

and integrating by parts as above we get

Sua =an ™+ [[T(s) d(/n) = ny (1)} [L01/m)
0
(3.54) )
—n= /| [T0(s) dHy(s/m) — (1)) /L(l /).
0
Whenever 0 < a < 1, we write

Boi=a ' [TNO(s)s™ " Veds  (i=1,2),
0

When a = 1, we write

A= [C(NO(s) = s)sds — (log ¥ = 1) (i=1,2),
Yll

and whenever 1 < a < 2, we write

Aa’i:= a—lfw(N(l)(s)_s)s—l—l/ads (i=1’2)'
0

The following corollary gives a probabilistic proof of the sufficiency part of the
classical criteria for a distribution to be in the domain of attraction of a stable
law of index 0 < a < 2.

COROLLARY 3.1. Assume that Q is such that (3.48) and (3.49) hold. Then for
0 < a < 2 we have

(3.55) S, a2 o— WA, T WA, .

PROOF. First we consider the case when both w, and w, are positive. We first
note that whenever 1 < a < 2, (3.55) follows directly from the in distribution
representation of S, , given in (3.52) in combination with condition (3.49) and
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(3.3) of Theorem 3.1 for the case when 1 < a < 2. Similarly, since for 0 < a < 1
n'"V°H(1)/L(1/n) = o(1), n - oo,

for i = 1,2, (3.55) in this case follows from (3.54), (3.51), and Theorem 3.1 for the
said case.

We consider now the case when a = 1. Applying (3.3) of Theorem 3.1 in the
latter case in combination with Lemma 3.5, along with (3.49), we get

(n“/L(l/n))fn'; (T™(s) — s) dH,(s/n) —>Pwlf:”(N‘”(s) - s)s%ds,

and
o0

(n/L@/m) 1 (02(s) = s) dHy(s/n) = poy [ (N(s) = 5)s"ds.

ylﬂ)

".")
Also, for 1 = 1,2 .
n"'H/(1/n)/L(1/n) = —1.

Hence, in order to complete the proof of (3.55), it suffices to show that when
a=1

(3.56) not [ s dH (s/n) /Ly(1/n) = plog ¥,
1
and
(3.57) n‘lfn(l "l dH,(s/n)/L,(1/n) - plog Y?.
1

We will only provide a proof for (3.56). The proof for (3.57) is, mutatis mutandis
in notation, exactly the same. We notice that by integration by parts the left side
of expression (3.56) is equal to

— nUl,n
(Ul,nHl(Ul,n) —n_lHl(l/n))/Ll(l/n) -n 1,/1. H\(s/n)ds/L\(1/n),
which, in turn, by definition of H; and (3.50) is equal to
nU , -
A= 1= LU, )/ Li(1/n) + ["7Ly(s/n)s ™ ds/Ly(1/n).

Choose any A > 1 and set
A, (N) = {1/n\ < U, , < \/n},

and
8,(A)=sup [1—L,(u/n)/L\(1/n)|.
Al<u<A
We note that (3.7) implies that §,(A) = o(1) for any A > 1. Also, we observe that
(3.58) nU, ,—»pY®P asn— oo.

Thus for any w € A (A)
|A, — log Y| < 8,(A){1 +|log(nU, )|} +|log(nU, ,) — log YV
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Since (3.58) implies that
(3.59) lim limsupP{A,(A\)} =1,

S

the proof of (3.56), and hence also that of Corollary 3.1 is now complete in the
case when w, > 0 and w, > 0. .

Now we consider the case when w, = 0 or w, = 0. Suppose that w, = 0. This
entails that w, = 1 (cf. Proposition A.3 in the appendix).

First assume that a = 1. Since w, = 1, we have as before

nt (" (TP(s) - s) dHy(s/n)/L(1/n)
n(1-U, ,)

_n‘l{'/;n(l_UI'")Sde(S/n) + H2(1/n)}/L(1/n) —phis

as n — oo. Since when w; = 0, @, satisfies (K.3), we have by the second
statement of Theorem 3.1 that

nt [ (T9(s) — s) dHy(s/n)/L(1/n) 0.

nuy

Hence to complete the proof for this case it is enough to show that
n! [ s (s/n) + Hy(1/m) /L(l /n) = 0.
1

First note that by (K.3)

n~'H/(1/n)/L(1/n) >0 asn — 0.
By (3.59) it is therefore sufficient to show that for every 1 < A < oo,
(3.60) n~! 1};)‘sdHl(s/n)/L(l/n) -0 asn— .

Integrating by parts, the left side here is
n”{AH{(\/m) = B0/ Q)N /L /m) =07 [ Hi(s/m) do/L(1/m).

Now (K.3) implies that the first term converges to zero as n — oo, while the
second term is less than or equal to

S (5= 25 el eafa(5),

The latter bound, by (K.3) and the fact that

sup L(t/n)/L(1/n) > 1 asn — oo,
1/A<t<A
equals o(1)2log A = o(1). This completes the proof of (3.60), and hence that of
the case w, = 0, w, = 1 when a = 1.
The method of the proof for the case when 0 < a < 2 with a # 1 should be
obvious from the aforegoing proof, so we omit the details. Also the case when
w;, = 1 and w, = 0 is the same. This completes the proof of Corollary 3.1. O
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Finally, we identify the limiting stable distribution of the S, , in Corollary 3.1.
From now on i will denote the imaginary unit.

The canonical form for a nonnormal stable characteristic function [see Feller
(1966) and the words of caution given by Hall (1981) concerning other standard
references] is

(3.61)
Pa,p,v,0(t) = exp{ift — v|8|*[1 — iBsgn(t)w(t, @)]}, —o0 <t< oo,
where a € (0,2) is the characteristic exponent, 8 € [—1,1] is the skewness

parameter, y > 0 is the scale parameter, § € (— 00, o0) is the location parameter,

and
7o

tan— ifa #1,

w(t,a) = 9
——log|¢| ifa=1.

T

In particular, if 8 = 0 then the corresponding distribution is symmetric about 4,
and distributions with |8| = 1 are commonly called completely asymmetric stable
distributions. In case 0 < @ <1 the stable laws with |8] = 1 are one-sided,
namely their support is [, ©) in case 8 = 1 and (— o0, #] in case § = —1.
The limiting characteristic function of S, , in Corollary 3.1 is the product
Yo —w )Y (wyt), where
¥,(s) = Eexp(ish, ) = Eexp(ish, ,), —00 <§ < 0.
Note first that Proposition A.3 (in the appendix) identifies the constants w; and
w, in terms of the tail behaviour of the underlying distribution function. We have
w, = q"/* = (1 — p)/* and w, = p'/*, where p is given in (A.30). On the other
“hand, borrowing ideas from Ferguson and Klass (1972), the characteristic func-
“tion ¢, of the completely asymmetric stable variables A, ;, j=1,2, can be
obtained by routine calculations not detailed here. The final result is that for any
—00 < t< 00,
lim E exp(itS, ,) = ¥a( — (1 = p)"*t) ¥o( p'/"t)
n-— oo

= ¢a,1—2p, v(a), G(a,p)(t)’

where
7a

I‘(l—a)cos7 if0<a<l,

W .
(3.62) y(a) = 5 ifa=1,

-1 T

a(a—1) I‘(2—a)cos7 ifl<a<?2,

and * '

8( )= 0 f0<a<2 a#l,
“P)=\A@2p-1) ifa=1,
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where

o[ sin x 1
(3.63) A= fo - —

dx.
x x(1+x)

Given now any possible configuration of the parameters0 < a <2, -1 < 8 <
1, y > 0,and — oo < @ < o0, a routine calculation gives the following representa-
tion of the corresponding stable rv in terms of the independent and identically
distributed Poisson integrals A, ; and A, , of Corollary 3.1. Let y(a) be given as
in (3.62) and set

0 ifa#1,
_ 2( 2
C.B,v) B{A + ~(1og.. + ylog‘y)} ifa=1,
™ T

where the constant A is given in (3.63).

THEOREM 3.2. The characteristic function of the rv

1/a 1-— 1/a 1-— 1/a
v (s {557 -5 e

is ¢y p, 6 @S given in (3.61).

We note that this representation can also be obtained from the It6—Lévy
integral representation of a stable process X(t) [see Itd (1969), pages 1.12.4-1.12.5]
after setting ¢ = 1, changing variables, integrating by parts, and identifying the
parameters.

Since, as shown in Proposition A.3 of the appendix, conditions (3.48) and (3.49)
are equivalent to the classical criteria for a distribution function to be in the
domain of attraction of a stable law with index 0 < a < 2, Corollary 3.1 gives a
probabilistic proof of the sufficiency of these criteria for the existence of se-
quences of constants {A,} and {C,} such that A, (X7 X, — C,) converges in
distribution to a stable law of index 0 < a < 2. In fact these constants are given
explicitly in the statement of Corollary 3.1. Previously, probabilistic proofs of the
sufficiency of stable convergence criteria were given by Simons and Stout (1978)
and LePage, Woodroofe, and Zinn (1981). The Simons and Stout (1978) proof is
obtained by means of a special weak invariance principle, whereas the LePage et
al. (1981) proof is based on order statistics methodology. In neither of these
papers is the characteristic function of the limiting distribution identified, nor are
the normalizing constants A, and C, given as explicitly as in Corollary 3.1.

Our approach is more closely related to that of LePage et al. (1981). Their
method of proof and corresponding representation of the limiting distribution is
based on the asymptotic independence of the upper extreme values of
| X1, ...,|X,| and the sign of the Xs that correspond to these extremes, whereas
our approach is in a sense based on the asymptotic independence of the upper
and lower extreme values of X,..., X,. Only for the case when w;, = 0 or 1 and
0 < a < 2 is the representation we obtain for the limiting stable rv algebraically
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equivalent, modulo a constant factor, to theirs (our w, = ¢'/%, where our gq
corresponds to their g; cf. Proposition A.3).

4. The role of the extreme terms in nonnormal stable convergence. Let
X,,..., X,, be independent and identically distributed rv and consider the trun-
cated partial sum

Ma-

n+l—i,n»
i=1
where X, ,_ B ~n, . denote the rv that appear inside the modulus of the
upper k order statlstlcs of |X,l,...,|X,|- Several authors such as Darling (1952),

Arov and Bobrov (1960), Hall (1978), and Teugels (1981) considered the problem
of the asymptotic distribution of Z, _x When £ is kept fixed and n — oo, and the
common distribution function of the X is in the domain of attraction of a stable
law of index 0 < a < 2. They have shown that for suitable constants a, and b

the rv (Zn, & - b ..)/d, converge in distribution to a nondegenerate rv. Most of
these works are based on characteristic function techniques. Using the asymp-
totic independence results of LePage et al. (1981) referred to above we could
easily reprove all these results by our probabilistic techniques. However, from the
point of view of statistical motivation it is perhaps more natural to consider the
problem when a certain number of the largest and the smallest order statistics
are removed from the partial sum, i.e., sums of the form

n—-m
Z Xi,n’
i=k+1

where X, , < .-+ <X, , are the order statistics corresponding to X,,..., X,,.
As far as we know this problem has not yet been considered. The following result
is a generalization of Corollary 3.1.

THEOREM 4.1. Assume that @ is such that (3.48) and (3.49) hold. Then for
0 < a < 2 and any fixed nonnegative integers k and m we have

1 n—m k n)~ Ve
Z (Xi,n_ﬂn,a)_’.@—wl Aa,l— Z (SJ( )
j=1

n*/*L(1/n) ;71
()"}

™

+w2{Am,2 -

Jj=1

where
0 ' if0<a<1,
1 1 .
f Q,(1 — u)du - / Q1 -u)du ifa=1,
Bp o= 1/n . 1/n
le(u)du ifl<a<?.
0
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ProOOF. We need the fact that for each fixed 1 <j<n

(4.1) QU;,,)/(L(1/n)n) = — w,(80)
and
(4.2) QU 1y ) /(L(/R)n2) > — wy(S@) "

as n — oo. We prove (4.1). The proof of (4.2) is the same. Condition (3.49) ir.nplies
that

lims'/*Q(s)/L(s) = —

sl0
Also, it is easy to see that
(4.3) nU; , —pSH.
The last two facts imply that for every ¢ > 0, as n — oo,
(4.4)

u-YeL(u , U, U °L(U;
P{(-w, —¢) 1,1 (j’)S 1Q( ) <(- w1+)1—()‘ -
n'*L(1/n) /"‘L(l/n) n'/*L(1/n)

Now (4.3) implies that

-1/a « —1/a
(4.5) U/ /m e = p(80)
and that
(4.6) All»n:o li':nsupP{l/)\ <nU, ,<A} =1

Thus, since L is slowly varying near zero, we conclude from (4.6) that
(47) L(U; ,.)/L(1/n) —p1.

Hence from (4.4), (4.5), (4.6), and (4.7) we have (4.1).
To complete the proof of the theorem we note that

(4.8)
n- 1/« n-m n-Va b
IR L R v ){ 2 QUn) ZQ( n>}

where S}, denotes the right side of (3.52), (3.53), or (3.54) dependlng on the value
of a. Putting now together (4.1), (4.2), and the proof of Corollary 3.1, we see that
the right side of the latter distributional equality converges in probability to

k m
ofom £ rufas B o

j=1 j=1

The joint limiting behaviour of the sums
-1 n+1-1, n+1-=k,

Z Xi,n’ Z Xi,n’ Z Xi,n’

i=k, i=1, i=n—1I,
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where &k, — oo, [,/k, > o0, l,/n — 0,and k,/n — 0 as n — o0, is investigated
by S. Cs6rg6, Horvath, and Mason (1986), and for related papers on central limit
theorems for sums of extreme values see S. Csérg6 and Mason (1985, 1986).

APPENDIX

Quantile equivalence for the normal and stable convergence criteria.
In this section, let X, X,,... be ii.d. nondegenerate rv with common distri-
bution function F. One of the classical central limit theorems of probability
theory says [cf. e.g., Feller (1966), page 545 or Gnedenko and Kolmogorov (1954),
page 172]: There exist sequences of constants {A,} and {C,} (n = 1,2,...) such
that

(A1) A,,( ¥ X - c,,) S N(0,1)

i=1
if and only if
(A2) x?P{|X,| = x}/E{|X,’I(| X)) <x)} >0 asx — .

Let @ be the quantile function of F, let G denote the distribution function of
|X,|, and let K = G™! be its quantile function. For 0 < s < 1 we write

S2(s) = fG‘K”‘S"’K%u)du,
0

S2(s) = fl‘sK2(u)du,
0

Si(s) = [17°Q%(u) du,
and
Si(s) = fsl_sfsl_s(u Av—u)dQ(u)dQ(v).
In the following, we will use the general change of variables formula

(.3) [ atx) dr(x) = [ g(@(w)) du,

where —o0 < a < b < o0, g is any F integrable function defined on the domain
in question, and F is any distribution function with quantile function Q.

PROPOSITION A.1. Whenever condition (A.2) holds, we have

(A.4) each S? fori = 1,2,3 is slowly varying at zero,

(A.5) lin&sK2(1 —5)/S%(s) = lin&sKQ(l —s)/83(s) =0,
sl . sl

and

(A6) lims(@*(s) + @X(1 - 8))/53(s) = 0.



112 M. CSORGO ET AL.

Proor. We will only provide a proof for the difficult cases, when

(A7) li%Q(l ~8)=o00
and
(A.8) lifl(}Q(s) = — 0.

The details of the proof for the other cases can be worked out along the same

lines.
First we observe that

(A9) x?P{X|=2x}=x%*(1-G(x-))=x*(F(-x)+1—-F(x—))
and
E(X,P1(X%,) <x)) = [ y*dG(y),
which by (A.3) equals
(A.10) [ TKX(u) du.
0
Let x = K(1 — s) in (A.9) and (A.10). We notice that G(K(1 — s))>1 — s,
whereas G(K(1 — s) — ) <1 — s. Hence
K*(1-s){1-G(K(1-s5)-)} =2sK?*1 -3s),

and

G(K(1-s)-) 1-s

K%(u)du+ K2(u) du = Si(s).

S2(s) < fo

Thus we have
(A11) K*(1-s){1—-G(K(1—-s)—)}/Si(s)=sK?*(1 —s)/Si(s)
> sK2(1 - s)/S2(s).

Since by (A.7) and (A.8), K(1 — s) = oo as s |0, (A.2) implies that the left side of
(A.11) goes to zero as s | 0. Thus we have shown (A.5).

We will now show that S? is slowly varying at zero. Choose any 1 < A < oo,
and notice that for small enough s

S7(hs) = 83(s) = [ "K*() du,

G(K(1-s)-)

but
[ R (w) du/S3(s) < (A = DsK*(1 = 5)/83(s),
1-As
which by (A.5) goes to zero as s | 0. Hence we have that
SZ(As)/Si(s) > 1 ass|O,

i.e., S2 is slowly varying at zero.
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In order to verify that S? is also slowly varying at zero, it is enough to
demonstrate that

(A.12) (S2(s) — S2(s))/S%(s) > 0 ass 0.
We observe that

(S2(s) = S(s))/S¥(s) = |

G(K(1-s)—) .
< {1-s- G(K(L - s) =))K*(1 - 5)/8X(s)
< {1- G(K(1 - s) -)}K2(1 - 5)/SK(s),

which by (A.2) converges to zero as s | 0. Hence (A.12) is true.

We show now that S} is also slowly varying at zero. We notice that since
G(x)< F(x)forall —o0o <x < o0, K(1 —s)> Q1 — s) forevery 0 <s <1, so
that by (A.7) we have

(A.13) K%(1-s)> Q%1 —s) forall sufficiently small s > 0.
We also note that by (A.8), for all sufficiently small s > 0
1-G(-Q(s) —) =F(Q(s)) +1 - F(-Q(s) —),

which by definition of Q(s) is greater than or equal to s. We also note that, on
account of all quantile functions in this paper being defined to be left-continuous
inverses of right-continuous distribution functions, we have

K(1—-s)=sup{x:1—- G(x—)>s}.
Thus we have K(1 — s) > —@Q(s) for all small enough s > 0, which implies

(A.14) K?(1—5) > Q%s) for all sufficiently small s > 0.

1-s

K*(u) du/Si(s)

We will now show that
(A.15) (S2(s) — S(s))/S2(s) > 0 ass|O.
First observe that
Sis)= [T yrae(y) = [M07 w2 dR(x),
0 —KQ1-s)+

which by right continuity of ¥’ and (A.3) equals
/F(K(l—s)—)Qz(u) diL.

F(-K(@{-5s))

Hence expression (A.15) equals

[T w) duysis) + [

1-s s

F(—K(I—S))Qg(u) du/Sf(s) 1= AI(S) + Az(s).

Next observe that whenever F(K(1 —s)—)>1—s
F(K(1-s))
As)| < [ Q*(u) du/S(s).

1-s

By (A.7) and the fact that K(1 —s) = oo as s 0, this last expression is, for



114 M. CSORGO ET AL.

sufficiently small s > 0, less than or equal to

(A.16) sQ*(F(K(1 - 5)))/Si(s).

Also, since by (A.7) again, we have for all sufficiently large positive x that
0 < Q(F(x)) < x, expression (A.16) is, for all sufficiently small s > 0, less than or
equal to

(A.17) sK?(1 — s)/S2(s).
Now suppose that F(K(1 —s)—) <1 — s. Then
1-s
As)| < [ Q*(u) du/S(s),
F(K(1-s)-) .

which by (A.7) is, for small enough s > 0, less than or equal to
{1-F(K(1-5)-)}Q*1 - 5)/S(s).
The latter expression by (A.13) is, for all sufficiently small s > 0, less than or
equal to
{1-F(KQ1-s)-)}K*(1-s)/Si(s),
which in turn is less than or equal to [cf. (A.9)]
(A.18) - {1-G(K(Q1-s)-)}K2(1 - s)/SX(s).
Thus, in either of the cases F(K(1 —s)—)>1—-s and F(K(1-s)—-)<1
— s, |A(8)] is, for all sufficiently small s > 0, bounded by expressions [cf. (A.17)
and (A.18)] that go to zero as s |0 by (A.2) [cf. also (A.11)].
As to estimating |A,(s)|, we notice that whenever s > 0 is sufficiently small so
that K%(1 — u) > Q@*(u) [cf. (A.14)] and Q(u) < 0 for all 0 < u < s, then we can

only have F(—K(1 — s)) < s. In case of equality here, A,(s)= 0. Hence it
suffices to consider only the case of F(—K(1 — s)) < s. Then we have

|Ag(s)| = [ @(u) du/SH(s)

F(-K(1-s

S

F(-K(1-s)-)

< [ Quydu/sis)+ [0 Qxu)du/Sis),
F(Q(s)-)

which by (A.3) and by the fact that @ is constant on (F(Q(s) — ), s] is less than
or equal to

Q*(s)s/Si(s) + [ x*dF(x)/SH(s).

-K(1-s)-

The second integral is properly defined since F(—K(1 — s)) < s implies that
Q(s) > —K(1 — s). By (A.14), the last sum is less than or equal to

K*(1 -s)s . K*(1 -s)F(Q(s) -)
Si(s) Si(s)

by the already proven (A.5). Hence A,(s) > 0 as s |0, and (A.15) is proven.
Consequently SZ(s) is also slowly varying at zero.

<2K?*1 -s)s/S%(s) >0 ass|O0,
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Now (A.6) also follows immediately by (A.13), (A.14), (A.15), and (A.5). This
completes the proof of Proposition A.1. O

PROPOSITION A.2. Whenever condition (A.2) holds

(A.19) S? is slowly varying at zero,

and

(A.20) linés(Q2(s) +Q*(1 - s))/Si(s) = 0.
sl

ProoF. We will first show that (A.2) implies (A.20). First observe that if in
addition to (A.2) we assume that

(A.21) [ 'Q%(u) du < oo,
0
then
s(Q%(s) +Q*(1—s)) >0 asslo,

so that in this case (A.20) holds automatically and subsequently there is nothing
to prove. Hence we will assume from now on that

(A.22) 1imf1'sQ2(u) du = limS2(s) = oo.
sl0Vs sl0

Write
u(s) = fl_sQ(u) du for0<s<j.

It is shown in Rényi (1970) that (A.2) implies that

" (A23) [11Q(u)|du < oo.
0
Thus, on account of (A.22) and (A.23) we have
(A.24) lsi?gu(S)/Ss(S) =0,
and
(A.25) s(Q(s)+Q(1—s)) >0 ass|O.

For any 0 < s < } we write

Q(1-s5) forl—-s<t<l,
K (t)={Q(¢t) fors<t<1l-s,
Q(s) for0<t<s.

Then S2(s) can be rewritten as -

si() = [k a-(['K,(0),
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which, in turn, equals

s(Q%(s) + Q%1 — 5)) + S¥(s) —(s(Q(s) + Q1 — 5)) + ()"
Now by (A.6) of Proposition A.1, (A.24), and (A.25) we have
(A.26) liil(l)Sf(s)/Ssz(s) =1.

Thus, on account of (A.6) and (A.4), we have that both (A.19) and (A.20) hold
true when (A.22) is satisfied. Hence it remains to be shown that (A.19) is true
when (A.21) holds. In this case

0< linéSf(s) = Var X, < o,
sl

thus for any 0 < A < o0, we have
(A.27) (S2(s) — SX(As))/S¥(s) > 0 ass o,
which implies (A.19). This completes the proof of Proposition A.2. O

REMARK A.1. We could have proved more precise statements of Propositions
A.1 and A.2, which would describe the chain of equivalences between slowly
varying at zero of the functions in question and their tail condition. In particular,
we have: (A.2) implies S? is slowly varying at zero and (A.6), which, as seen
from the proof of Proposition A.2, in turn imply (A.19) and (A.20) which by
Theorem 2.1 imply (A.1) (cf. Corollary 2.2) for appropriate {A,} and {C,}, which
in turn implies (A.2). Thus we see that the converses of Propositions A.1 and A.2
are also true.

. Turning now to stable laws in the light of our quantile function approach, we

will show that conditions (3.48) and (3.49), which are assumptions on the tail
behaviour of the quantile function @ of F, can be reformulated in terms of an
equivalent set of conditions describing the tail behaviour of F. This is the usual
way that the assumptions of Corollary 3.1 are presented [cf., e.g., Feller (1966)].
Namely, we have: There exist sequences of constants {A,} and {C,} (n = 1,2,...)
such that

(4.28) afLx- c,,) - D(a),

i=1

where D(a) is a stable rv of index a € (0,2) if and only if there exist a function |
slowly varying at infinity, an 0 < a < 2, and a 0 < p < 1 such that

(A.29) 1-G(y)=Uy)y ™™ fory=>0,
(A.30) yli_{lgo(l - F(y))/1-G(y))=p,

(A.31) Jim F(-y)/(1-G(y))=1-P=q
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As to our equivalent quantile tail conditions, we have

PrROPOSITION A.3. There exist a function | slowly varying at infinity, an
0 <a<2anda0 < p < 1 such that conditions (A.29), (A.30), and (A.31) hold if
and only if for some function L slowly varying near zero we have [cf. (3.48) and
(3.49)]

(4.32) K(L-u) = u VoL (),
(A.33) lim @,(1 — u)/K(1 — u) = ¢¥/* = w,
and

(A.34) lirlr(l)Qz(l —u)/K(1 — u) =p"* = w,

with the same o and p as appear in (A.29) and (A.30).

The proof is an easy application of Lemma 1.10 in Seneta (1976), so the details
are omitted.
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