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SPHERICITY AND THE NORMAL LAW!

By RoBERT H. BERK

Rutgers University

Let x = (xy,..., x,) be a random vector in R". Two characterizations of .
normality are given. One involves the existence of two linear combinations of
the {x,} that are independent in every coordinate system. The other, which is
actually a consequence of the first, assumes that x obeys a linear model with
spherical errors and involves sufficiency of the least-squares estimator.

1. Two independent linear combinations. The following characterization
of the normal law is well known: If x is spherically distributed (G’x ~ x for
every n X n orthogonal matrix G) and has mutually independent coordinates,
then the {x,} are iid N(O, 02). The result (for n = 3) is apparently due to
Maxwell (1860). It has been subsequently rediscovered, for example by Bartlett
(1934). (Bartlett’s proof involves an unnecessary smoothness assumption on the
common pdf fassumed to exist] of the {x;}.) Kac (1939) presented a stronger
result: Suppose the coordinates of x are independent in every coordinate system
(i.e., y = G’x has independent coordinates for all choices of n X n orthogonal G).
Then the {x;} are mutually independent normal variables with a common
variance. (The result Kac states is slightly in error, as he concludes that the {x;}
must all have mean zero.) Kac deals explicitly only with the case n = 2. Hartman
and Wintner (1940) give a correct statement and proof for general n. Their
method of proof is quite different from Kac’s. The characterization given below is
in the spirit of Kac’s result. Unlike his, it deals with only two linear combinations
of the {x,} which need not be assumed orthogonal. Theorem 1.1 below considers
the case n = 2, which is then used to get the general result (Theorem 1.2).

THEOREM 1.1. Let x and y be random variables. If there are coefficients a
and b, a? + b%? > 0, so that x and ax + by are independent in every coordinate
system, then x and y are independent normal variables with the same variance.

REMARK 1. The hypothesis means that x* and ax* + by* are independent
whenever (x*, y*) = (x, y)G, where G is any 2 X 2 orthogonal matrix.

REMARK 2. If a # 0, x and y are degenerate (a.s. constant).

ProOOF. The proof is in two parts. We first show that a # 0 implies x and y
are degenerate.
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Clearly b = 0 entails that x is degenerate [and then so is y, on applying the
orthogonal transformation (x, y¥) — (, x)], so we may assume b = 1. Suppose
now a # 0. Let u =x and v =ax + y, so that y = v — au. Let G be a 2 X 2
orthogonal matrix with elements {g; }. Then under G, (x, y) transforms into
(x*,y*) = (x, y)G,sothat x* = g,;x + g5 yand y* = g;,x + g4, y. Let u* = x*
and v* = ax* + y*, which are independent by hypothesis. We have also that

u* = (g, — agy)u + gy,
v* = (ag“ + 81— a8y — ag22)u + (agy + go)v.

Let now A(t) and B(t) denote, respectively, the cf’s (characteristic functions) of
u and v. The independence of u* and v* implies that

E exp{i(su* + tv*)} = Eexp{isu*}E exp{itv*}.

(1.1)

However, su* + to* is a linear combination of u and v, which are also indepen-
dent. Using this latter fact and (1.1), we obtain the relation

A(s[g“ - ag21] + t[ag“ + 81— a8y — agm])B(ng + t[agZI + 822])
(12) = A(s[g“ - ang])B(SgQI) + A(t[ag“ + 812 — 02821 - gazz])

XB(t[agZI + 822])1

which holds for all real s and ¢ and all orthogonal G. Takingin (1.2) g,; = &, = 0,
8o = 1,and g, = *1 yields

(1.3) A(—as+ (1 — a?)t)B(s + at) = A(—as)B(s)A([1 — a%]¢t)B(at)
and
(1.4) A(—as— (1 + a?)t)B(s + at) = A(—as)B(s)A(— (1 + a?)t)P(at).

We argue next that A and B do not vanish. For suppose A has zeros; let ¢ be
the smallest (in magnitude) such (o # 0 since A(0) =1 and A is continuous).
Then setting s = —at and —(1 + a?)t = o in (2.4) gives A(—d/[1 + a?]) =0,
which contradicts o being the smallest zero. Hence A does not vanish. Now
suppose B has a zero, say 7. Setting at = 7 in (1.4) then entails (since A # 0) that
B(s + 7) = 0 for all s, which clearly is also a contradiction. Thus B does not
vanish either. We may then divide (1.3) by (1.4) and let p = —as to obtain

A(p+ (1 -a?)t A([1 - a?]t
(1.5) (p+( 2) ) = (L g ) forall p, ¢t.
A(p—- (1 +a?)t) A(-(1+a?)t)

If a? = 1, then (1.5) becomes A(p — 2t) = A(p)A(—2t), which is to say, the
Cauchy equation
(1.6) A(p +q) = A(p)A(q).

The only continuous (indeed, measurable) solutions of (1.6) are of the form
A(t) = exp{yt}. Since A is a cf, we must have A(¢) = exp{iAt} where A is real.

That is, u = x is degenerate at A. (1.3) then becomes B(s + at) = B(s)B(at), so
also v and hence y is degenerate.
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If a?+# 1, then, letting r = (1 + a?)/(1 —a?)# 1 and (1 — a?)t =, (1.5)
becomes

(1.7) A(r)/A(—-rr)=A(p + 1)/A(p — r7) forall p, .
Setting p = rr in (1.7) gives A(7)/A(—r7) = A(rt + 1), so that (1.7) becomes
(1.8) A(p—rr)A(rr+17)=A(p + 7).

Since (p — rr) + (r7 + 7) = p + 7, (1.8) is also Cauchy’s equation, so that again
x and y are degenerate. Thus a # 0 implies that x and y are degenerate.

For the second part of the proof, we assume a = 0 and show that x and y
must be normal with a common variance. This can be concluded from Kac’s
(1939) result, or from Hartman and Wintner (1940). It also follows from the
Darmois—Skitovich theorem (cf. Kagan et al. (1973), page 89). Thus we simply
sketch a proof.

When a =0, u=x, and v =y, taking g,, = g5, =&, = —&» =1 in (1.2)
gives

(1.9) A(s+ t)B(s — t) = A(s)A(t)B(s)B(-t),
which, on interchanging s and ¢, becomes
(1.10) A(s + t)B(t —s) = A(s)A(t) + B(—s)B(t).

Again, A and B do not vanish. For suppose o and 7 are the smallest zeros of
A and B, respectively (6 =00 if A has no zeros), and suppose |o| < |7|
(the contrary case being similar). Then taking s=t=0/2 in (1.9) gives
A%0/2)B(0/2)B(—0/2) = 0, which is a contradiction if o is finite. Thus A has
no zeros. Similarly, B has none [take ¢ = 7 in (1.9)]. Dividing (1.9) by (1.10) and
replacing ¢ by —t yields

B(s +t) B(s) B(t)

B(-s—t) B(-s) B(-t)’
so that C(t) = B(t)/B(—t) satisfies Cauchy’s equation. Thus C(¢) = exp{26t}
for some 4. Let b(t) = B(t)exp{—4&t}. Then b(t)/b(—t) = 1, so that b is even.
Similarly, A(t)/A(—t) = exp{2yt} and a(t) = A(t)exp{ —yt} is even. (1.9) then
entails
(1.11)  a(s+t)b(s—t) =a(s)a(t)b(s)b(t) =a(s —t)b(s + t).
Setting s = ¢ shows that a = b and (1.11) becomes
(1.12) a(s + t)a(s — t) = a’(s)a’(t).
Kac (1939) argues that the only continuous solutions of this equation are of the
form a(t) = exp{at?}, so that A(¢) = exp{yt + at®}. In order that A be a cf, we
must have y = iX and a = — 1o where A and o are real, so that x ~ N(X, 0?).
Since b = a, B(t) = exp{8t + at®} = exp{ipt — 10°t}, and y ~ N(g, ¢?). Since
a, = 0, x and y are independent. O

REMARK 3. The full force of the hypothesis is not used in proving the
theorem, as only three particular orthogonal transformations are used.
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Theorem 1.1 extends to n dimensions as follows.

THEOREM 1.2. If x is an n-dimensional random vector for which there are
(constant) nonzero vectors o and B so that o’x and B’x are independent in
every coordinate system, then either the {x;} are degenerate or a L B and the
coordinates of x are mutually independent normal variables with a common
variance.

ProoF. The hypothesis entails that «/(G’x) and B’(G’x) are independent for
all n X n orthogonal G. We can suppose |a| = |B| = 1. Let a = (1,0,...,0) and
b = (b,, b,,0,...,0) in R" be such that |b| =1 and a’b = a'f, i.e.,, b, = «'B.
Then there is an n X n orthogonal matrix G for which Ga = a and GB = b. The
hypothesis then entails that a’x and b’x, which is to say, x, and b,x, + b,x, are
independent. Theorem 1.1 entails that x, and x, are degenerate if o’ = b, # 0
and that otherwise, x, and x, are independent normal variables with a common
variance. By choice of G, we may replace (x,, x,) with any pair (x,, x;) and
conclude that x,,..., x, are either all degenerate (if o’/ # 0) or are marginally
normal with a common variance (and are pairwise independent).

Further, let y,x, + y,x, be any linear combination of x, and x, with y2 + yJ
= 1. Then there is an orthogonal G so that the first two coordinates of G’x are
Y%, + v.x, and x,. (The first row of G’ is (v, ¥5,0,...,0) and the second is
0,0,1,0,...,0).) Thus y,x, + y,x, and x, are independent. Since every linear
combination of x, and x, is proportional to some y,x; + y,%,, x5 is independent
of every linear combination of x, and x,. It is clear then that the joint cf of x,
x,, and x, factors or that x, is independent of (x,, x,). Continuing this argu-
ment, we see that x;,, is independent of (x,,...,x;) for every 1 <j<n—1,
thus that (x,,..., x,,) are mutually independent. O

We have thus the following refinement of Maxwell’s result.

COROLLARY 1.3. If x is spherically distributed in R" and there exist two
independent linear combinations o’'x and B’x (Ja| # 0 # |B|), then either x = 0
w.p.l or a 1L B and the coordinates of x are iid N(0, a2).

2. A linear model. We suppose now that x satisfies the following linear
model:

(2.1) x=VB+e,

where V' is a known n X p matrix (of independent variables, 1 < p < n), B is an
unknown p X 1 vector of regression coefficients, and e is spherically distributed
in R". We suppose the distribution of € is known, except possibly for a scale
factor o (which can be taken to be the standard deviation of ¢, when Ee? < o0).
Such a model is discussed in Berk and Hwang (1984). We show that for ¢ known,
the least-squares estimator B of B is a sufficient statistic iff the {x;} are mutually

independent normal variables with variance o2.
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In discussing sufficiency for this model, we need the following considerations.
Let x, be the projection of x into (V'), the column space of V and let
X |, = X — X, be the projection into (V)*. (To avoid inessential circumlocu-
tions, we assume dim(V) = rankV =p.) Let u, = ¢ /|ey/andu , = ¢, /le, |

LEMMA 2.1. For spherical e, the vectors uy, u, , and (|ey|,|e |) are
mutually independent. Moreover, u,, and u , are uniform on (the surfaces of )
the unit spheres Sy, and S | in (V) and (V)" , respectively.

PROOF. Let G be an n X n orthogonal matrix for which (V') is an invariant
space and which fixes (V)* pointwise: G{(V) = (V) and Gv = v for all v €
(V)*. Then Ge = G(ey, + €,) = Gey, + ¢, , showing that (Ge), = Ge,. Since
Ge ~ ¢, we have, for A a measurable subset of Sy,

P(“VEA||€V|=-7C,3¢ Y) P(GquA||3v| x,8¢=Y)~

This shows that the indicated conditional distribution of u, is spherically
invariant. It is, therefore, the unique spherically invariant (uniform) distribution
on Sy. Thus uy and (|ey,|, ¢,) are independent. Equivalently, u, and (|ey|,
le , |, u ,) are independent. By reversing the roles of ¢,, and ¢, , we have similarly
that u |, is uniform on S, and is independent of (|ey|, [e, |,uy). O

It follows from Lemma 2.1 that with scale known or unknown, (xy, |X , |)is a
sufficient statistic for the linear model (2.1): By Lemma 2.1, the omitted informa-
tion, x , /|x , | =u , , is independent of (xy, |x , |) and is ancillary. Note that x,
is equivalent to B = (V'V) 'V’x; more precisely, x, = VB. (Note too that
|x , | = |x|® — |VB|? is the usual residual sum of squares from the model.) When
the {¢;} are iid N(0, 0?%) with ¢ known, B alone is a sufficient statistic (as then x |
is 1ndependent of x,, and is ancillary). This turns out to be a characteristic
property of the normal distribution.

THEOREM 2.2. For the model (2.1) with & spherical with known scale, Bisa
sufficient statistic iff the {&;} are iid normal variables with mean zero.

To prove Theorem 2.2, we need to establish:

THEOREM 2.3. Let y € R? and lz be random vectors and consider the
translation family of distributions of (y + B,z), B € R?. Then y + B is sufficient
for (y + B,2) iff y and z are independent.

Proor. That independence suffices is clear. On the other hand, if y + B is
sufficient, then P(z € A|y + B) can be chosen not to depend on B. (Here A is any
measurable subset of range z.) That is, there is a function h on R? so that
we may take P(z € Aly + B =1t) = h(t), for all B and t in R”. But then
h(t) = P(z € Aly =t — B) = h(t — B), showing that A is constant. Thus
P(z € Aly = t) is constant in t, which means that y and z are independent. O
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REMARK. The above argument clearly extends to any “transformation
parameter”’ family—i.e., a family generated by a group acting on y only.

Theorem 2.3 is an analog of Basu’s theorem, since it asserts that an ancillary is
independent of a sufficient statistic. One does not need bounded complete-
ness—but the choice of ancillary seems somewhat restricted.

PrROOF OF THEOREM 2.2. Suppose fi is sufficient. We take y + B = ﬁ and
z = x | in Theorem 2.3 and conclude that § and x |, are independent, or that x,,
and x | are independent. This implies the existence of nondegenerate indepen-
dent linear combinations of the {e;}, so that by Corollary 1.3, the {¢;} are iid
N(0,6%). O

It seems curious that, except in the normal case, one cannot automatically
discard the ancillary |x | |.
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