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TWO-SIDED MARKOV CHAINS

By BRUCE W. ATKINSON'!
University of Florida

Let S be a countable set, and a, b two distinct elements not in S. Let Q -
be the set of functions w: Z (integers) = S U {a, b} so that (i) w(n) € S for
some n, (ii) w(n) = a = w(m) = a for m < n, and (iii) w(n) = b = w(m) =
b for m > n.On Q, let x(n) be the nth coordinate, 6, the shift operator, and
a = inf{n: x(n) € S}. A measure P on Q is Markov if V i€ S, n€ Z,
P(x(n)=1)< o0, and P(x(n+ 1) =ilo(x(k): k<n)=Px(n+1)=
ilx(n)) on {x(n) € S}. A Markov measure P is called a two-sided Markov
chain if there are substochastic matrices on S, p and g, so that V i, j € S,
neZ, Px(n)y=i, x(n+1)=j)=Px(n)=1i)p,Jj)=Px(n+1)=
7)q(J, i). It is shown that if p is a certain kind of irreducible matrix then
there exists an integer d > 1 and areal p > 0 so that Po§,} = p"PV n € Z.
Of particular interest is the generalization of the case d = 1. A two-sided
Markov chain is called quasistationary if there exists p > 0 with Po§; ! =
p"P. It is shown that if # is a measure on S and p>0, and p is a
substochastic matrix on S, with #p < p=, then there exists a quasistationary
chain with p as forward transition, P(x(0) = i) = (i), and P~§, ' = p"P.
P is used to prove the Riesz decomposition theorem for #. Finally, it is shown
under certain verifiable assumptions, that a quasistationary chain, restricted
to {a < 0}, is an extended chain, with transition p, which is a certain kind of
approximate p-chain in the sense of Hunt.

1. Introduction. Recently there has been some interest in Markov processes
with random birth and death. These have been constructed in, for example, [10]
and [11], for the general state space, and with the real line as the index set. The
point of view in [11] is that such two-sided processes can usefully represent two
Markov processes in weak duality in the sense that potential theoretic ideas may
be extended via this tool; see, e.g., [1], [6], and [7]. These two-sided processes are
invariant under shift in time and, run either forward or backward from a fixed
time, they are time-homogeneous Markov, conditioned to be alive at that fixed
time.

In this paper we consider exclusively discrete time and space, and the purpose
is to generalize the properties discussed in the preceding paragraph. Thus, if S is
a countable set, and Z represents the integers, we seek to study processes indexed
by Z with state space S and random birth and death which are time homoge-
neous Markov in both directions. Following, we briefly mention, section by
section, the primary set up and results.

To begin, and to motivate, Section 2 gives some of the basic facts concerning
the usual one-sided Markov chains. Let b ¢ S, and ‘Q% the set of paths from
Z,={0,1,2,...}into S U {b} that start in S and either stay in S fof all time or
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460 B. W. ATKINSON

are absorbed eventually at the state b; see (2.1). On 2%, let x(n) stand for the
nth coordinate, and ,: 2% — Q% the usual shift operator. Let ( p(i, j)) be a
substochastic matrix on S, and let P} be the probability on £% which makes
(x(n)) a Markov chain with one-step transition p and so that Pj(x(0) = i) = 1.
One way to describe all Markov chains on Q% with one-step transition p is as
follows: Let P be a measure on 2% sothat Vi€ S, n€ Z,, P(x(n) =i) < oo.
Then P is a Markov chain with transition p & V f € (o(x(n)): n > 0)*, and
neZ,, P(fe8,x(n)) =P on {x(n) € S}. In this case we say that P is
subordinate to the family (P}: i € S); see (2.7). In fact, the family (Pj: i € S) is
self-subordinate in the sense that V j € S, P/ is subordinate to (P}: i € S).

Now let a & S U {b} and  the set of functions from Z — S U {a, b} so that
there is some time when the function is in S, and to the left the function either
stays in S for all sufficiently large negative n, or it is absorbed at a, and a similar
behavior occurs to the right relative to absorption at b; see (2.9). (Note:  was
defined in [9].) On Q, let x(n) be the nth coordinate and 6, the shift, vV n € Z.
Also, let a = inf{n: x(n) € S}, B = sup{n: x(n) € S}. Let p, g be substochastic
matrices on S, and for each i, let P! be the probability on £ with the following
properties:

1) Pi(x(0)=i)=1.

(2) Under P, a(x(n): n < 0),s(x(n): n > 0) are independent.

(3) Under P, (x(k): k € Z.) is a Markov chain with one-step transition p.
(4) Under P!, (x(—k); k € Z,) is a Markov chain with one-step transition g.

A measure Pon @, with P(x(n) =i) < o Vi€ S, n € Z,is a two-sided Markov
chain with forward and backward transitions p and q if P is subordinate to the
family (P% i € 8) in the sense that V f € 6(x(n): n€ Z)*, and V n € Z,
P(fe°8,x(n)) = P*™f on {x(n) € S}. This is the appropriate analog of the
one-sided situation.

Section 3 concerns itself with the construction of two-sided Markov chains
with given p and ¢ as forward and backward transitions. If P is such a
chain, and if we let 7,(i) = P(x(n) =i) V i € S, n € Z, then it follows that
P(x(n) =i, x(n + 1) =) = m,())p(, J) = m, . (J)g(J, 1) ¥V i, JES, neZ
Theorem (3.1) states that this condition on a family of measures (7,: n € Z), and
substochastic matrices p, q is sufficient to construct such a P.

In Section 4 we analyze carefully the condition, mentioned above,
7 ()p(i, j) = 7m,,(J)q(J, i). The main result states that if p is irreducible so
that for some & > 1, p*(i, i) > 0V i € S, then there exist d > 1 and areal p > 0
sothatV n € Z, Po@,} = p"P; see (4.2). Taking this as motivation we show that
if given p(i, j), d = 1 (an integer), p > 0 and measures 7, 7, ..., 7,_, satisfying
TP < Ty, for 0<k<d-2 my_p<pmn, and 7w, (i)7m, (J) = 7 ()7, (J)
whenever p(i, j) > 0and 0 <m <n < d — 1 (where we define 7; = p7,) then
there exists a two-sided Markov chain P having p as forward transition so that
Pof /] =p"Pand Vi€S 0<n<d-1, Plx(n)=1i)=m(i); see (4.9). We
end the section with an example where d = 2.

In Section 5 we consider the case of d = 1 in the preceding paragraph. Thus, if
given p(i, j), a measure 7, and p > 0 so that =p < pw, then there exists a
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two-sided Markov chain P with forward transition p so that V i € S, n € Z,
Pog ' = p"P, and P(x(0) = i) = n(i). We call such a P a quasistationary
chain. Note that P is “almost” stationary, and is stationary if p = 1. If 7p = pw,
then 7 is a quasistationary distribution according to [2] and [14], from which we
borrow the term. It follows from (5.4), that #p = p7 < P(a > — ) = 0, thus
relating an analytic condition to a “probabilistic”’ one. In fact, if we define
w(i) = P(x(0) =t,a = —o0), and &(i) = P(x(0) = i{,a > —0), then # = p + £
where pup = pp and £ is a pure p-potential; see (5.4). L.e., P is used to give a
“path-wise” proof of the Riesz decomposition theorem. This decomposition
theorem is used to show that if A > 0 is an eigenvalue (with a nonnegative left
eigenvector) of a nonnegative matrix A on S, then A < sup{X;csA(i, j): i € S}.
For finite matrices, this was shown in [5] by using the Perron-Frobenius theory.

In the last part of Section 5, we consider the relationship to extended chains as
defined in [8] and [9]. An extended chain with transition p is a measure @ on
so that V i € S, the expected number of visits to i is finite, and so that for every
finite subset E of S the following holds: starting from the first passage to E, the
process is a Markov chain with one-step transition p. [There are a couple other
technical conditions which can be found in the proof of (5.14).] Now, if P is a
quasistationary chain thenV i € S, ¥, . ,P(x(n) = i) = w(i)X, c zp" = o0 - (i),
and, unless P = 0, P has no hope of being an extended chain. However, P can be
modified. The main result, (5.14), states that, modulo those above mentioned
technical conditions, if (x(n)) is restricted to the set {a < 0}, then it becomes an
extended chain with transition p. This provides another method of constructing
extended chains (see [9], Theorem 10-9), and will perhaps be useful, in future
investigations, for considering Martin boundary problems.

2. Preliminaries and definitions.

2.1. Measures and matrices. Throughout the paper S shall stand for a fixed
countable set. A measure on S is a function 7: S — [0, c0]. Such a 7 corresponds
to a measure, in the sense of measure theory, defined on the power set of S via
the formula, m(A) = ¥, c 4m(¢). Thus, we call = finite if ¥, . gm(i) < oo, and we
call 7 o-finite if m(i) < 0 VieES.

A [0, o ]-valued matrix on S is a function p: S X S — [0, co]. (All matrices in
this paper shall be [0, co]-valued.) Such a p is called substochastic (resp.
stochastic) if Vi € S, ¥, gp(i, j) < 1 (resp. = 1).

As usual, a [0, o]-valued matrix p can be considered as an operator on
measures. Thus, if 7 is a measure, then #p is the measure defined by 7p(j) =
Y, esm(@)p(i, j). Also, if p and g are [0, co]-valued matrices then pq is defined
by pq(i, j) = L, csp(, 8)q(s, J). ,

If p and q are [0, o0]-valued matrices then p < g (resp. < q) means that V
i, J, p(i, J) < q(i, j) [resp. < q(i, j)]. (Of course, this abuses notation, but is
nonetheless standard.) A similar notation goes for inequalities between measures.
If a matrix or measure is ever compared to the symbol 0 in an inequality, it is
understood that 0 stands for the matrix or measure with every entry equal to 0.
E.g., 7 > 0 shall mean #(i) > 0,V i.
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2.2. One-sided processes. In this paper Z shall denote the set of integers and
Z, = {n € Z: n > 0}. This subsection lists some basic facts about Markov chains
indexed by Z_, the one-sided case. This will motivate definitions in Section 2.3
for two-sided processes.

DEFINITION 2.1. Let x & S.

(a) 9% = {functions w: Z, » SU {x}: w(0) € S, and w(n) =x = w(m)=x V
m > n}.

(b) For n > 0 define x(n): % - S U {x} by x(n)(w) = w(n).

(¢c) For n > 0 define 8,: Q% — Q* by 6 (w)(m) = w(m + n).

DEFINITION 2.2. Let P be a nonnegative measure on (2%, o(x(n): n € Z.)),
and assume that Vi€ S, ne Z,, P(x(n) = i) < . Then P is called Markov
ifVie Sand n € Z, wehave

(2.3) P(x(n+1) =ilo(x(k): k< n)) = P(x(n+ 1) = ilx(n))
on {x(n) € S}.

REMARK 2.4. In (2.2), P need not be a probability. Also, (2.3) is to be
understood in the sense of conditional expectation which, of course, still has the
meaning (via the Radon—-Nikodym theorem) as if P were a probability.

DEFINITION 2.5. Let P be a Markov measure on (2%, 0(x(n): n € Z,)).
Then P is called a Markov chain if there exists a substochastic matrix p on S so
that V i{,j€ 8, neZ,, P(x(n)=i,x(n+1)=j)=Px(n)=1i)p(, j). In
other words, a Markov chain is a Markov measure which is “ time homogeneous.”
In this case we say that P has one-step transition matrix p.

Now, suppose given a substochastic matrix p. Then corresponding to every
finite measure 7 [i.e., L, c s7(i) < oo] there exists a Markov chain P on Q% with
one-step transition matrix p and so that V i € S, PJ(x(0) = i) = #(i). If = is
point mass at i we write P7 = P..

DEFINITION 2.6. (P! i € S) is called the family generated by p.

It is easy to check that if P is a Markov chain with one-step transition matrix
p,thenV f € o(x(k): k€ Z )", n € Z,, P(f °8,|x(n)) = PF™f on {x(n) € S}.
We single this property out in

DEFINITION 2.7. Let (@ i € S) be a family of probability measures on
(Q%,0(x(n): n€Z,)) so that V i€ S, Q(x(0) =i)=1. Also, let P be a
measure on (%,6(x(n): n€Z,))sothat Vie S, neZ,, P(x(n) =1) < o0.
Then we say that P is subordinate to the family (Q: i € S) if V f € o(x(k):
keZ),neZ,, P(fe0,x(n) =Q“™f on {x(n) € S}.



TWO-SIDED MARKOV CHAINS 463

Thus, if (P i € 8) is the family generated by the matrix p, then any Markov
chain on Q% with p as one-step transition is subordinate to (P!: i € S). Actually,
it is not hard to verify that if P is a measure on (2%, o(x(n): n € Z,)) with
P(x(n)y=i)<owVi€S, neZ,then P isa Markov chain with p as one-step
transition if and only if P is subordinate to the family generated by p.

Also, (P5: i € S) is self-subordinate in the sense that V j € S, P/ is sub-
ordinate to (P%: i € S). In fact, the appropriately interpreted converse of this
holds. The elementary proof is omitted.

THEOREM 2.8. Suppose Q- i€ S)isas in (2.7), and is self-subordinate in
the sense that V j € S, Q’ is subordinate to (Q": i € S). Then (Q": i € S) is the
family generated by the substochastic matrix q where q(i, j) = Q(x(1) =j), ¥
i, JES.

2.3. Two-sided processes. Fix a ¢ S, and b & S U {a}.

DEFINITION 2.9.

(a) @ = {functions w: Z — S U {a, b}: there exists n€ Z with x(n) €S,
x(k)=a=x(l)=aforl <k,and x(k) = b= x(l) = b for [ > k}.

(b) For n € Z define x(n): & - S U {a, b} by x(n)(w) = w(n).

(¢c) For n € Z define 6,: & — @ by 0, (w)(m) = w(m + n).

(d) a = inf{n: x(n) € S}. (Note: —0 < a < ®.)

(e) B =sup{n: x(n) € S}. (Note: —00 <8 < 0.)

Let p, q be substochastic matrices on S. Let (P}: i € S) [resp. (P: i € S)] be

the family on Q9 (resp. 22) generated by p (resp. q); see (2.6). Finally, let ®:
Q2% x Q2 - Q be defined by ®(w,, w,) = @ where

o(n) = w,(n) forn > 0,
wy,(—n) forn <O0.

DEFINITION 2.10. For each i € S, let P'=(P{® P))o®~ 1 (P: i€ 8) is
called the family generated by ( p, q).

We list some elementary properties without proof.
PROPOSITION 2.11. Let (P: i€ S) be the family generated by the pair

(p, q). Then for each i, P! is a probability and P{(x(0) = i) = 1. Moreover, if
k,1>20,i,js€Sfor0<y<kand 0<é <l andi,=j,=1, then

Pi(x(-vy) =i, x(8) =jy:0<y<k0<8<1)
, k-1 - -1
= ( ].—I Q(iy’ i'y+1))( I—[P(fsa j8+1))a
¥=0 8=0

where we let T1223q(i,i,.,) = 1if k = 0 and T15_,p(Jjs; Js41) = 1if L=0.
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DEFINITION 2.12. Let (T'%: i € S) be a family of probabilities on (£, o(x(k):
k€ Z)),sothatVie S, T{x(0) = i) = 1. Also, let P be a measure on (2, o(x(k):
ke Z)),sothatVie S, ne Z P(x(n)=1i) < . Then we call P subordinate
to the family (T i € S)ifV f € o(x(k): k € Z)*, n € Z, P({ ° 0,|x(n)) = T*™f
on {x(n) € S}.

The following definition is motivated by the discussion following (2.7).

DEFINITION 2.13. Let P be a measure on (2, o(x(n): n € Z)) so that V
i€ 8, neZ P(x(n)=i)< . Then P is called a two-sided Markov chain if
there exist substochastic matrices p, ¢ so that P is subordinate to the family
generated by (p, g). In this case we say that P has forward transition p and
backward transition q.

Now, let P be as in (2.13). For each n € Z define the measure 7, by
7(i) = P(x(n)=i)Vi€ S.Fix i, j € Sand n € Z. Then

P(x(n) =i,x(n+1) =j) = P(6, (x(1) = j); x(n) = i)
— 0 (i) Pi(x(1) = j) = m()pi, J)-
Also,
P(x(n) =i, x(n+1) =) = P(6;}(x(=1) = i); x(n + 1) =)
=7, 1(J)P/(x(-1) = i) = Tori(7)a(J, 7).
Thus, we have
(2'14) 7Tn(i)p(i’ j)=77n+1(j)Q(jai) Vi,jeS,neZ.
Also,if n€ Z, k>0,i €S for0<y<k then
P(x(n+y)=i7:0sY$k)
= P(Bn‘l(x(y) =i:0<y< k); x(n) = io)

my(ig)Po(x(y) =i :0<y < k)

k-1
= 7Tn(i()) ]._.[Op(iy’ iy+l)'
y=

This easily shows that P is Markov [i.e.,V i€ S, n € Z, P(x(n + 1) = i|o(x(k):
k <n)) = Px(n+1)=ilx(n)) on {x(n)€ S}] and that V i€ S, n€Z
P(x(n + 1) = i|x(n)) = p(x(n), i) on {x(n) € S}. Similarly, V i€ S, n€ Z,
P(x(n — 1) = ilo(x(k): k= n))= P(x(n— 1) = i|x(n)) = g(x(n), 7). This is
what justifies calling p and g the forward and backward transitions.

« Actually, it is easy to check that if P is a measure which is Markov, in the
above sense, then P is a two-sided Markov chain with p and g as forward and
backward transitions if both quantities in (2.14) are equal to P(x(n) =1,
x(n + 1) =)
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REMARK 2.15. (a) If P is as in (2.13) then P defines a process which is
Markov and time homogeneous in both directions, and as such P is analogous to
one-sided Markov chains. However, unlike one-sided chains, the family generated
by (p, q), (P% i € S), can only be self-subordinate [i.e., V j, P’ is subordinate to
(P% i € 8)]in the trivial case where p = g7, and p is deterministic in the sense
that V i, j, p(i, j) = 0 or 1. (The not too difficult proof is omitted.) In other
words, we cannot expect each of the P's to be a two-sided Markov chain with
forward and backward transitions p and q.

(b) The purpose for having two-sided chains defined on two-sided path space
is because it is not possible to have both forward and backward transition
matrices homogeneous in one-sided chains for arbitrary initial measures. In
Section 4 we shall see that there is much freedom possible for two-sided chains
with a prescribed “initial” measure.

3. Construction of two-sided Markov chains. Let P be a two-sided
Markov chain with forward and backward transitions given by p and q. We have
already seen that (2.14) is a necessary condition. It is also sufficient for the
construction of two-sided Markov chains. [In the case where p and g are
stochastic, (3.1) follows from [3], Theorem B.]

THEOREM 3.1. Let p,q be substochastic matrices on S, and (7, n€ Z) a
family of o-finite measures on S. Suppose that (2.14) holds. Then there exists a
two-sided Markov chain P with p and q as forward and backward transitions so
that Vi€ S, n € Z, P(x(n) = i) = w,(i).

PROOF. Let (P% i € S) be the family generated by (p, ¢), and @, = {x(n) €
S}, V n € Z. If the P we are seeking exists, then Vi € S, A € o(x(k): k € Z),
n € Z we should have

P(A; x(n) = i) = P(6,(02}(4)); x(n) = i) = =, (i) P{(7}(4)).
Thus, we are led to define P, = ¥, . gm,(i)P’ > 0_}. Note that P, is concentrated
on 2, for each n.

Suppose m <n, i, JE€S. Let k,1>0, iy,=1, j,=J, So= z, Sp—m =J and
bosevvsipy Jor-vos JpSore-r Sy m €S, Let A= {x(m—-vy)=1i,x(m+39)=
Sg x(n + p) = J;: 0$y<k0<8<n—m0<,u<l} Then 0-1(A) =
{x(—v) =1, x2(8) =s5x(n —m+p) = j 0<y<k0<8<n—m0<u<
1}, and 0} (A)= {x(—(n—m)—y)=1i,x(—(n—m)+8)=s;x(p) =
0<y<k0<d<n-mO<p<l}

In the sum for P,(A), there is only one possibly nonzero term which corre-
sponds to our fixed i. Thus,

P,(A) = m,(i)P(8-},(4))

s
< T ptswsso| [ Tt i)
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by (2.11), where, as in (2.11), we understand that a product with no terms is 1.
But by (2.14)

)| 1 s | =TT atouns))
and hence

P.(4) = ,,(J)( [T a(: y,zm))

n—m-—1

-1
H Q(ss+1a 88))(}:[017(.];;7 J‘F+1))'

However, again by (2.11) and the definition of P,, this is also equal to P,(A).

Thus, whenever A has the above specified form, then P, (A) = P,(A). This
proves that P,|q ~o = P, na,

Let n,, ny,.. be an enumeration of Z. Let Q=%,, and for &> 2, let
Q0,=9, (Ulk 119n,) Then 9, @), ..., forms a partition of . For each £ > 1,
let Pk P,,, and finally, deﬁne P by P(A) =X3_PyA N Q). We now will
verify that P has the desired properties.

Fix n and choose k, so that n, =n. Then if A C 2, we have P(A) =

Tho \P{(A N QY. But for 1 <k < ko, ANQ,cQ, NQ, "and hence PyAN
SZ;) =P(A N Q). Since Q,=Uk Q, it follows that P(A) P(A). Thus
Plﬂ,, = Pnlﬂ,,'

Thus,V i € S, n € Z we have P(0, '(A); x(n) = i) = P(0,'(A); x(n) =i) =
7r (z)P‘(ﬂ_n(ﬂ 1(A))) = m(i)P(A) V A. This proves that P is subordinate to
(P% i € 8), and, letting A = @, P(x(n) = i) =7n,(i) Vi€ S, n € Z, completing
the proof. O

4. Necessary conditions and generalizations.

4.1. Case of irreducible forward transitions. Let P be a two-sided Markov
chain with forward and backward transitions p and g, and for each n € Z let 7,
be the “distribution” of x(n) under P, i.e.,V i € S, 7, (i) = P(x(n) = i). By the
remark in (2.15a) it can happen that the measures =, are all point masses at
distinct points and are, in this sense, all independent of one another. However, if
one stipulates that p is irreducible [see (4.1)] and that there exists 2 > 1, an
integer, so that the diagonal entries of p* [also see (4.1)] are strictly positive,
then there is a type of periodic dependence among the 7,; see (4.2).

DEFINITION 4.1. (a) Let p be a substochastic matrix on S. p° is the identity
matrix, 1e p°G, j) = 1;_;,. Also, if k > 1, then p* = pp*~'; see Section 2.1.
That is p* is the kth power of p.

(b) A substochastic matrix p is called irreducible if V i, j € S there exists
k > 1 with p*(i, j) > 0.
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THEOREM 4.2. Let P be a two-sided Markov chain with forward transition p.
Further suppose p is irreducible and that there exists k > 1 so that p*(i,i) > 0V
i € S. Let d be the greatest common divisor of the set of k > 1 so that p*(i, i) > 0
V i € S. Then there exists a real numberp > 0 so that ¥ n € Z, P§,} = p"P.

Proor. If P =0 the conclusion is obvious. Thus, we shall suppose that

P=+0.
Fix i, j € S. Then by (2.14), letting ¢ be the backward transition for P,

X m(i)p(i, s)p(s, j)

seS

= Y m.(s)a(s, i)p(s, )

seS

> Mo F)a(s, 1)a(d, s)

s€eS
= 7. 2()a*(J, ©)-
Continuing by induction it follows that
Vi, jeSs, nez, keZ,,
m ()P (i, J) = 1y (S a*(J, 7).

vnez, m(i)p*(iJ)

(4.3)

Now, since P # 0 then there exist i, € S, n, € Z so that =,(i,) > 0. Let
i€ S and k> 1 so that p*(i,, i) > 0. By (4.3) we have, 0 < m, (i,)p*(io, i) <
7,,+ (8). Thus, V i € S there exists n € Z with m,(i) > 0.

Let T = {k > 1: p*@i,i)> 0V i € S}. By hypothesis, T # @. Let k, € T,
and i € S. Then p**4i,i) > p*(i, i)pXi, i) > 0, and hence & + [ € T. In other
words, T is closed under addition. By [9] Lemma 1-66, there exists K > 1 so that
Vies, k=K, p*4i,i)> 0. ,

Fix i € S. By the paragraph following (4.3), there exists n € Z with =,(i) > 0.
By (4.3), m(i)p¥(i, i) = 7, x4(i)g¥%Gi, i) and thus, ¢¥9(i, i) > 0. By a similar
argument it follows that ¢¥*V%(i, i) > 0. Define

(4.4) pi = (g(i, i) p™E+Va(i, i)) (g K+V(4, i) pKe(i, i) .

Now, V i €S, n€ Z we have m(i)p®*VUi, i) =7, x,1)a(D)g TP, i)
and 7, ()p*%i, i) = m,, k+1,4(8)g"?(, i). This implies that V i € S, n € Z,
7 (i) >0 e 7w, ,(i)>0and

(4.5) ViES, nEZ, 7Tn+d(i) =plﬂn(i)'

Fix i, j € S. By the paragraph following (4.3) and the hypothesis, there
exist meZ, n>1 so that =,(i), p"(i, j) > 0. Thus p;7m,_,(2)p"(i, ) =
'”'m(l)pn(l’ .I) = '”m+n(j)q"(j1 l) = pjﬂm+nfd(j)qn(j’ l) But since
Ty a(IP"(E, J) = Ty n—a(J)q"(J, 1) then it follows that p; = p;.

Thus there exists p > 0 so that 7, ,(i) = p7,(i) Vi €S, n € Z. A straight-
forward monotone class argument completes the proof. O
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REMARK 4.6. (a) Let p be as in the preceding theorem, and T be as in the
proof. For i € S, let T, = {k > 1: p*(i, i) > 0}. The same argument used for T'
gives that each T is closed under addition. Also, 7' =N _¢7;. Let d; be the
greatest common divisor of the elements of 7;. Since p is irreducible, it follows
that d; = d; V i, j € S, and the common value, which we denote by d’, is called
the period of p; see [5] and [13]. -

Let K be as in the proof of (4.2), and : € S. Then Kd, Kd + d € T c T, and
hence d’|Kd and d’|Kd + d. Thus, d’|d. Thus, d is a multiple of the period d’.

(b) Let p be irreducible and for each i € S, let T; be as in (a) above. By [9]
Lemma 1-66, V i € S there exists K; > 1so that 2 > K, = kd’ € T, where d’ is
also as in (a) above. Thus, if there exists an integer K so that K, < K Vi€ S,
then Kd’ € T;,,Vie S,ie, T =NsT;# D. As a result, it follows that T + @
if, for example, S is finite.

Although (2.14) is a sufficient condition for the existence of a two-sided
Markov chain, it is somewhat intractable. However, for p and d as in (4.2), (2.14)
need only be checked for 0 < n < d — 1. This leads one to suspect that there
exist more tractable sufficient conditions than (2.14). We explore this in the next
subsection.

4.2. A generalization of the irreducible case. Let P be as in (4.2). If m # n
then, upon eliminating q( j, 7) in the equations: «,(i)p(i, j) = =, (/)q(J, i) and
T (PG, J) = 7, ,(J)q(J, i), we find that V i, j € S such that p(i, j) # 0,
T (07, 1(J) = 7 (8)7, (). However, in view of the result of (4.2) this condi-
tion is equivalent to

IfoOo<m<n<d-1,thenvVi jeS

(4.7)
To() i1 (J) = 7(i)m,,1(j) provided p(i, j) # 0.

Also, (2.14) =
(4.8) If0o<n<d-1,thenm,p<m,. .

These lead to new sufficient conditions for the construction of two-sided
Markov chains.

THEOREM 4.9. Suppose p is a substochastic matrix, d > 1 is an integer,
p > 0 is a real number, and w, is a o-finite measure for 0 < n < d — 1. Suppose
further that (4.7) and (4.8) hold, where we define m; = pm,. Then there exists a
two-sided Markov chain P having p as forward transition and such that:

() VO<n<d—1,i€S8, Px(n)=i)= (i),
() VneZz Pog}=pP.

Proor. Fix i, j € S. If there exists 0 < n < d — 1 with =, ,(j) > 0, then let
90, i) = (T () 'm0, J), otherwise let g(j, i) = 0. By (47), g is well
defined.
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Fix jeS. If m, (/)=0V0<n<d-1,then X, sq(J,i)= 0. Next, sup-
pose there exists 0 < n < d — 1 with 7, ,(j) > 0. Then

Y a(i,8) = X (7a()) ") (s J) = (700i(5)) 'm0 (f) < 1
ieS ieS
by (4.8). Thus, it follows that g is substochastic. :

Extend 7y, my,...,7;_, to (m,: n € Z) via the formula, 7, ,= p7, V n € Z.
Let 0<n<d-1, and {,j€S8. If 7,,,(j) >0 then, by definition of gq,
1), J) = Tyy(J)a(J, ©). Whereas, if m,,,(j) =0, then by (4.8),
7(i)P(iy J) < 7,41(j) = 0, and once again m,())p(i, ) = m,,,(/)q(J, i). Thus,
(2.14) holds for 0 < n < d — 1. It follows that (2.14) holds V n € Z by multiply-
ing by appropriate powers of p. Now apply (3.1), and an easy monotone class
argument. O

REMARK 4.10. The method of proof in (4.9) actually shows that if:

(a) V n # m’ p(l’ .]) > O = Wn(i)ﬂm+l(j) = Wm(i)ﬂn+l(j) and
(b) V n’ '”np < 77'n+1’

then there exists a two-sided Markov chain with forward transition p and so that
@, is the distribution of x(n), V n. Even though this is a condition which does not
involve g, it does not in general present much simplification over (2.14). However,
(4.9) does at least give a condition involving a finite number of measures.

ExampLE 4.11. Let S = {1,2,3)} and

0 1 1
1 0 0].
1 0 O

It is easy to check that p is irreducible with d = 2. With d = 2, conditions (4.7)
and (4.8) become:

(D) Hm(2) + m3) < 7).
(ID) iry(1) < m(2) and bml) < m(3).

1D K(m(@) + 1(@) < pr(1).

(IV) 3mQ) < p7y(2), 3m(1) < pm(3).
(V) m@m(1) = prf@)myL).

(VD) m@m(1) = pg(3)m(L).

This amounts to eight inequalities in the seven unknowns, 7(1), 7,(2), 7,(3),
(1), m(2), 7(3), p. There is naturally some degree of freedom in their selection.
For example if we set 7 (1) = 1, and change each. inequality to an equality
then 7(2) = my(3) = m,(1), m(2) = m(3) = 3, p = 3. Specifically, if we write m,, 7,
as row vectors then we can let 7, = (1,0,0), =, = (0, 1, 3), p = 3. In this case we

have
1/0 1 1
gq==12 0 0].

212 0 o0

1

p=§
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D m =1L, p=2
0 1 1

2 0 0f

2 0 0

5.1. Definition. In (4.9), d = 1 means that (4.7) is vacuous, and (4.8) becomes
7P < pm,. Moreover, in the case where d = 1 and p = 1, then the resulting P is
stationary (i.e., Pof,' = P V n € Z). [Actually the class of measures P corre-
sponding to d = 1 and p = 1 in (4.9) is the class of measures which are Markov
and stationary.]

As another example, let 7, = (1

1
9
1
9= %

5. Quasistationary chains.

DEFINITION 5.1. Let P be a two-sided Markov chain. P is called quasista-
tionary if there exists a real number p > 0 so that P8, ' = p"P V n € Z.

From now on we will call the collection (P, p, q, 7, p) quasistationary if P is a
quasistationary chain with forward and backward transitions p and g, P §, ' =
p"PV ne Z and (i) = P(x(0)=i)ViES.

REMARK 5.2. (a) In [2] a quasistationary distribution is a stationary condi-
tional distribution of a finite state Markov chain y(n). Le., if y(r) is started with
this distribution, then V n > 0, the distribution of y(r), given y has not been
absorbed by time 7, does not depend on n; see [2]—Section 4 for details. It is
shown that if 7 is quasistationary, and q is the transition matrix, then there
exists p > 0 so that mq = p7. Of course, if p = 1, then 7 is called stationary.
Thus, the difference between a distribution = being stationary or quasistationary
manifests itself in the issue of whether p = 1 or not in the equation, mg = pm.
Also, see [14].

In the analogy to this, the difference between a two-sided Markov chain being
stationary or quasistationary manifests itself in the issue of whether p = 1 or not
in the inequality 7p < pm where V i, #(i) = P(x(0) = i).

(b) The following theorem follows directly from (4.9) and (2.14):

THEOREM 5.3. Let p be a substochastic matrix and m a o-finite measure.

(A) If there exists p >0 with wp < pm, then there exist P,q so that
(P, p, q, m, p) is quasistationary.

(B) Conversely, if there exist P, q, p so that (P, p, q, 7, p) is quasistationary,
then @p < pm.

(c) Let P be a two-sided Markov chain as in (4.2). If d is one then P is a
quasistationary chain by (4.2).

(d) Let P be a Markov measure in the sense that V i€ S, neZ
P(x(n) = i) < o0, and P(x(n + 1) = ilo(x(k): k < n)) = P(x(n + 1) = i|x(n))
on {x(n) € 8}. It is not hard to check (we omit details) that P is a quasista-
tionary chain if and only if there exists p > 0 so that ¥V n € Z, P, ' = p"P.

Also, note that if P is as in (4.9), thenV n € Z, P 6, = p"P, and we might
call such a P “quasiperiodic” if d > 1.
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5.2. Riesz decomposition theorem for nonnegative matrices with bounded row
sums. Let A be a [0, co]-valued matrix on S, and assume that there exists a real
number p > 0 so that pA is substochastic. Also, suppose 7 is a o-finite measure
on S which is A-excessive, i.e., TA < 7.

Let p = pA. Then 7p < p7. According to (5.3A) there exist P,q so that
(P, p,q,m,p) is quasistationary. Define the measures yp and § by p(i) =
P(x(0) = i,a = —o0) and £(i) = P(x(0) = i,a > —0). )

Also, let { = 7 — 7A, and N, = £2_ A%

RIESZ DECOMPOSITION THEOREM 5.4.

(@) m=p+ &
(b) § = {N,.
(¢) pA =p.

(d) ¢A* - 0 as k - oo, pointwise.
(e) If there exist measures ', ¢’ with m=w + ¢, WA =y, and ¢A% > 0 as
k> oo, then  =p and & = §.
f) A =7 e P(a > —o0) =0.
(8) The following statements are equivalent:
(i) mA* > 0 as k - co.
(i) 7 = ¢{N,,
(iii) = = {’N,, for some measure §’.
(iv) P(a = —o0) = 0.

PrOOF.
(a) Obvious, since 7(i) = P(x(0) =i)Vi€ES.
(b) Fix £ >0, i € S. Then
P(x(0) = i,a = —k) = P(x(—k—1) = a,x(—k) €S, x(0) = i)
=P(x(—k) €8,x(0) =)
—P(x(-k—-1) €8, x(—k) €S, x(0) =)
= L P(x(=k) =j,x(0) =)
-2 X P(x(-k-1)=s,x(—k) =J,x(0) = 1)
jeSsgS
= L o (i)t d)
- Z Z p_k_l'”(s)p(s: ])pk(.]:l)

JES s€eS

= Y a(j)Ar, i) — L L w(s)A(s, j)AR(j, i)
je‘S JjES s€S
= T (4G 0)

= ¢AR(i).



472 ~ B.W.ATKINSON

Thus,
£(i) = P(x(0) = i, a > —o0)

_ ’gop(x(o) Cia= —k)

= §N,(3).

(c) TA=pA + (A =pA+Y? (A =pA +¢—¢ Thus, pA=7A +{ - §=
7 —§=p.

(d) ¢A* = ¥ (A" > 0 as k — oo since N, (i) = &(i) < 7(i) < o0 V i.

(e) From (a),(c),(d) it is clear that p = lim,_, ,7A*. Similarly p’ = lim 2o TAE,
and p’ = p. This, in turn, = §’ = §.

(f) Suppose 7A = 7. Then #p = pm. Thus, V i €S, ne€Z, P(x(n)=
i,a > —oo) = P(6;(x(0) = i,a > —o0)) = p"(i). But by (e), §=0, and
thus, P(a > — o) = 0. On the other hand, if P(a > —o0) =0, then 7 = p
and 7A = 7. '

(g) (i) = (ii): If (i), then = = £, by (e), and (ii) follows from (b).

(i) = (iii): Obvious.

(iii) = (iv): The same argument as in (d) shows that (iii) = 7A* - 0 as
k> . By (e), p=0. But, then, Vi€ S, n€ Z, P(x(n)=i,a= —00) =
P(87(x(0) = i, = —0)) = p"u(i) = 0, which = P(a = —o0) = 0, or (iv).
(iv) = (i): If (iv), then 7 = £, and (i) follows from (d). O

REMARK 5.5. (a) In the proof of (e), i.e., the uniqueness of the decomposition,
it is shown that p = lim,_ 7A*. If we started by defining p in this way, and
letting £ = 7 — p, then it is not difficult to prove all the results of (5.3), except for
the statements concerning P, directly. Thus, the preceding proof may be consid-
ered a “probabilistic” counterpart of a purely analytic proof. Thus, the gain here
is insight, and a method which might well lead to nontrivial results for an
analogous investigation for continuous time and space.

(b) In terms of p we have that up = pp and p~*(p* — 0 as k£ — oo. Simi-
larly, if we define p,(i) = P(x(0) = i, 8 = o0), and £,(i) = P(x(0) =i, 8 < ),
then p,q = p~ 'y, and p*¢,q* — 0 as & — oo, which yields a decomposition of =
relative to ¢. Similar to (f) we have that (7g = p~'7 & P(B < o0) = 0) and
(p*mg* - 0 as k> oo © P(f = ) =0). The conditions P(a = —o0) =0,
Pla> —0) =0, P(B=00)=0, or P(B< o) =0 can all be interpreted in
terms of paths; e.g., P(a = —c0) = 0 means that x(n) always gets absorbed to
the left at a. '

(c) Suppose given (P, p,q,, p) is quasistationary so that 7p = p7 and
7q = p~'n. (Here, we do not assume that this arises from a matrix A as in the
beginning of this subsection.) Here is another way to see that P(a > —o0) = 0: V
ieS, ne’z, )

P(x(n—1) =a,x(n) =i) =P(x(n) =i) — Y P(x(n—1) =j,x(n) = i)
JES
=p"n(i) — X " ' (J)p(J, i)
JjEeS
= 0" '(pm(i) — 7p(i)) = 0.
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Similarly, it follows that P(8 < o0) = 0. Thus, if # # 0 is finite then P(x(0) €
S) = P(Q) = P(x(1) € S) = pP(x(0) € S), and thus, p =1. In this case,
P(x(0) € S)"'P is an example of a Markov random field indexed by Z; see [9].

(d) In [4] the idea of using the sets {a = — 0} and {a > — o0} is also used in
giving a “continuous” version of the Riesz decomposition. The two-sided process
there is similar to that used in [1], [6], and [11].

By (5.5¢), if (P, p, q, m, p) is quasistationary, = # 0 is finite, 7p = p7 and
7q = p~ 'm, then p = 1. Conversely, what can be expected if p = 1?

THEOREM 5.6. Let (P, p,q,w,1) be quasistationary. If = is finite, then
aTp =7 S WG = 7.

Proor. By (56.1) and (2.14) it follows that V i, j€ S, #(i)p(i, j) =
7(7)q(J,1). (L.e,, p and q are in duality relative to «; see [9].) Thus,
Ymq(j)= ¥ L (i)e(i, j)= X X =(J)p(j,0).
JjES JjES ieS ieS jesS
Now, suppose 7p = 7. Then we have L. 57q(J) = L;cs7(i) = L, cgm(J) < 00.
Thus, X, c 5(7(j) — 7q(j)) = 0. But since 7q(j) < 7(j) V j € S, then mq(j) =
7(j)V j€ S, and nq = 7. Similarly ng =7 = ap = 7. O

ExAMPLE 5.7. The following shows the importance of the condition that « be
finite in the previous theorem.

Let S=Z, and define p by p(i,j)=11if j=i+1 and {# —1, and
p(i, ) = 0 otherwise. Also define 7 on S by (i) =1 if i <0, #(i) = O other-
wise. We now verify that #p = 7.

Observe that if j # 0, then #p(j) = #(j — 1), and #p(0) = 0. Thus, if j <0
we have 7p(j) = w(Jj), and 7p(0) = 7(0), and if j > 0 we have 7p(J) = 7(Jj).
Hence 7p = .

Fori, j€ Slet q(j,i) = 7(j) w(i)p(i, j)if j < 0and g(Jj, i) = 0 otherwise.
According to the proof of (4.9), where we let d =1, and p =1, then q is
substochastic and #(i)p(i, j) = 7(j)q(J,i) V i, j € S. By (4.9) there exists a
stationary chain P having p as forward transition and ¢ as backward transition.

However, #q(—1) = L,csm(i)q(i, —1) = X,csm(—Dp(—-1,i) =0 <1 =
7(—1). Thus, mq # 7. This example was suggested by J. Glover.

Here is an interesting application of the decomposition theorem concerning the
eigenvalues of a nonnegative matrix.

COROLLARY 5.8. Let A and p be as in the beginning of this subsection, m # 0
a finite measure, and A > 0 a real number so that 7A = Aw. Then Ap < 1.

PrOOF. Let A’ =A"'A. Then sup,cgX;csA(i, j) <A p " Let m=p+¢
be the decomposition of 7 according to A’; see (5.4). Since 7A’ = =, it follows
that £ = 0. But if pA > 1, then V i € S, m(A)*(i) =X, sm(JNA)(Jj, i) <
A ko=kE iesm(J)) = 0 as k > oo, and thus, p = 0. This contradicts the fact
that «# # 0. O
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REMARK 5.9. This generalizes a fact proven for finite nonnegative matrices in
[5]; i.e., that the largest positive eigenvalue is less than or equal to the maximum
row sum. The method of proof there uses the theorem of Perron and Frobenius.

ExAMPLE 5.10. This example shows the importance of the condition that =
be finite in (5.8).

Let S ={1,2,3,...}. We loosely describe a matrix p as follows, leaving the
precise definition to the reader:

CaseE 1. Let j be the kth odd number. Then p(i, j) = 0 unless i = i,, or i,
where (i, i,) is the kth consecutive pair of odd numbers, in which case p(i, j) =
1. [Here (1, 3) is the first pair, (5, 7), the second, etc.]

CASE 2. Let j be the kth even number. Then p(i, j) = O unless i = i,, i,, or
iy, where (i, iy, i3) is the kth consecutive triple of even numbers, in which case
p(i, j) = 1. [Here (2,4, 6) is the first triple, (8,10, 12), the second, etc.]

Let 7,7’ be defined by (i) = 1;; i oaq)y 7(i) = 1; is even)- Then we have
ap = 27, and #’p = 37",

This example also shows that not only is it possible to have p > 1 with
7p = pw, when 7 is infinite, but also, there can be more than one such p.

5.3. Relationship with extended chains. As mentioned in the introduction
the space  is defined in [8] and [9], so as to introduce the notion of an extended
chain; see [9], Definition 10-5. An extended chain is a certain kind of measure
Q # 0 on (2, 0(x(n): n € Z)), which displays a type of Markov property, and
such that the occupation measure, defined by ¥,.,Q(x(n) =j), V j€S, is
o-finite.

Now, if (P, p, q, 7, p) is quasistationary then V j it follows that

Y P(x(n) =j)=a(j) X p"= o0 - 7(j).

nez neZz
Thus, the only way P can have a o-finite occupation measure is when P = 0.
Based on this, it follows that no quasistationary chain is an extended chain. The
purpose of this subsection is to show how we may modify a quasistationary chain
in order to obtain an extended chain.

Now, suppose (P, p, q, 7, p) is quasistationary, « is finite and p > 1. Let
A =p !'p. ThenV i € S, 7A*(i) = p *ap*(i) < p_k(Zjesw(j)) - 0as k- .
By (5.4g), P(a = — o) = 0. That is, in this case (x(n): n € Z) always has a
starting time.

Throughout the rest of this subsection we assume that (P, p,q, 7, p) is
quasistationary with: '

(a) p>1land P+#0,
(b) P(a = —o0) = 0.

Of course, by (5.4g) (b) is the same as requiring that p *7p* - 0 as £ — oo.
Let n = p7 — 7p, and N = L_, p*.
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PROPOSITION 5.11. Vi€ S, P(x(a) =i,a <0) = (p — 1) '9(i).

Proor. Fix n € Z. Then
P(x(n)=i,a=n)=P(x(n—-1)=a,x(n) =1i)
=P(x(n)=i)— X P(x(n—1)=j,x(n) =1i)

JjES
=p"(i) = X " 'n(f)p(J, 1)
JES
= p" " n(i).
The result follows by summing over n < 0. O

PROPOSITION 5.12. Fix i€ S. If n <0, then P(x(n) =1i,a < 0) = p"n(i),
while if n > 0, then P(x(n) = i, a < 0) = ap"(i).

Proor. If n <0, then P(x(n) =1i,a < 0) = P(x(n) = i) = p"r(i).
Next, let n > 0, £ > 0. Then

P(x(n)=i,a=—k)= Y P(x(n)=i,x(-k—1)=a,x(—k) =)

jes
= ZS P(x(—k)=j,x(n) =1)
- ZSP(x(—k -1)=s,x(—k) =j,x(n) = l)]
-y [p-kw<j>pk+n(j, i)
JjES
X ok hn(s)p(s, )P, i)]
seS
= Zsp"“‘ln(j)p’”"(j,i)

= p *Inp*tn(i)
= p~mA"p"(i) = {AMp"(Q),
where A = p~!p and { = 7 — 7A.
But since P(a = —0) = 0, then 7 = {N,, by (5.4g). Thus,

P(x(n) = i, < 0) = IE‘;OP(x(n) i a= —k)

= §0§Akp"(i) = ap™(i).0

We now begin construction of what will be, under a few more hypotheses, an
extended chain. Let ¥: {a <0} —» @ be the canonical injection, and define
Q = (Pla<o))® ¥ 1, Obviously, @ is concentrated on { —o0 < a < 0}.
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Recall the definition of 22; see (2.1). Define I': {a € Z} - 2% by ['(w) = «’
where (k) = w(a + k) for k € Z,. Finally, let @ = (Q|(,ez)° T\

PROPOSITION 5.13. @’ is a Markov chain with p as one-step transition, and
such that V i € S, @(x(0) =i) = (p — 1) n(i).

Proor. Fix i€ S. Then Q(x(0)=1i)= Q(x(a) =i,a € Z) = P(x(a) = i,
a < 0) = (p — 1)~ 'n(3), by (5.11).
Next, let £ > 0, and i, € S for 0 < y < k. Then

Q’(x(y)=iY:Osygk)=Q(x(a+y)=iY:Osysk;an)
=P(x(a+y)=iYZOSYSk;as0)

iP(x(—l+y)=iY:Osysk;a= -1).
But if / > 0, then =
P(x(—l+y)=i7:057£k;a= —l)
=P(x(—l—1)=a;x(—l+y)=iy:Osysk)
=P(x(—l+y)=i7:0sysk)

—P(x(-1-1)eS;x(~-l+7y) = i 0<y<k)
k-1

k—1
=p 'n(io) I'1 p(iw iy+1) - X o (i)p(i, i) I1 P(iy: iy+1)
=0 ieS =0

k—1
= p—l_ln(iO) l—.[op(iy’ iy+1)’
y=

where, as before, a product with no terms is one.
It now follows by summing over / > 0 that
k-1

Q(x(v) =i 0<y<k)=(p- 1)_177(i0)yl:[0P(iw i1,

and the proof is complete. O

It will now be convenient to define the matrix H. V i, j€ S, H(, j) =
Pj(x(n) = j for some n > 0); see (2.6). Also, see [9], page 95.

THEOREM 5.14. If nH > 0, and 7N < o, then Q is an extended chain with
transition matrix p.

PRrROOF. According to Definition 10-5 of [9] the f(;llowing four conditions must
be met:

;(a) V i € S, there exists n so that @(x(n) =i) > 0.
(b) Vie S inf{n € Z: x(n) =i} > —0, Q ae.
(c) Let E be a finite subset of S, and ay = inf{n € Z: x(n) € E}.
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Define Ty {ay € Z} - Q% by ['y(w) = o where (k) = w(ag + k) V k> 0.
Also, let Q% = (Q|(,,cz)°x'. Then the condition is that @} be a Markov
chain with one-step transition p and finite initial measure.

d) VieS, v(i) < oo, where v(i) = ¥, ,Q(x(n) = i).

ProoF oOf (a). Fix i€ S. Since nH(i) > 0, there exists j &S with
n(J)H(J, i) > 0. According to (5.13), and the definition of H, there exists £ > 0
so that Q(x(0) =j,x(k)=1)> 0. But then @Q’(x(k)=1i) >0 and thus,
Q(x(a+ k)=1i,a€Z)>0,and (a) follows.

ProoF OF (b). This follows from the fact that a > — o0, @ a.e.

PRrOOF OF (c). Fix i € E, where E is a fixed finite subset of S. Then

Qu(x(0) = i) = Q(x(ay) = i,ay € Z)

< ZyQ(x(n) = i)

= ZyP(x(n) =i,a <0)

= i p~tm(i) + i mp*(i),
k=1 k=0

by (5.12), which is equal to (p — 1) '#(i) + #N(i), and this is finite by hy-
pothesis. As E is finite, this shows that @} has a finite initial measure. The fact
that Qj is a Markov chain with one-step transition p follows from the strong
Markov property of @’ applied to the first passage time to the set E; see (5.13).

PROOF OF (d). As above, (5.12) implies that »(i) = (p — 1) "'7(i) + #N(i) <
oo by hypothesis. O

REMARK 5.15. As in (d) of the preceding proof, let » be the occupa-
tion measure of @, ie., v(i) =%, ,0(x(n)=1). By the above proof, » =
(p— 17w+ aN.

Thus,

oC
wp=(p—1) 'ap+ Y ap*
k=1

-
<(p-1) "pr+ ¥ ap*

k=1
oCc
=(p-1)"'r+ ¥ npt
k=0
= V.

Le., v is excessive for p, in accord with [9], Proposition 10-8.
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Also, (p—1)"'N = (p = 1)"Y(pwN — L7_7p*) = (p — 1) '(p — D)7N +
7) = (p — 1)"'m + #N = ». This is in accord with [9], Proposition 10-6, since
(p — 1)" ! is the initial measure of Q’; see (5.13).

We conclude this subsection by examining the conditions nH > 0 and 7N < o0,
of (5.14). From now on, let us assume that p is irreducible. Since 7 # (, then
there exists i € S with #(i) > 0. Fix j € S, and choose & > 1 with p*(i, j) > 0.
Then, by (4.3), 7(i)p*(i, j) = p*n(7)q*(Jj, i), and as such #(j) > 0. Hence 7 > 0.

Next suppose there exists i € S so that #N(i) = c0. Thenif j€Sand 2> 1
so that p*(i, j) > 0, we have that

oo = 7wN(i)p*(i, j)
S 3 a(s)p(s, )pH(i, )

seS =0

S 3 a(s)p'*H(s, J)

seSI=0

IA

0

2 mp'(Jj) < 7N(Jj).
I=k

Thus either 7N < o0 or 7N = 0. The condition that 7N < o corresponds to a
type of transience assumption.

Finally, since nH > 7, then n > 0 = nH > 0. Also, 7 > 0 means that 7p < p.
Thus, the condition #p < p7 can be modified to 7p < pm by simply choosing
o’ > p. Thus, if we are given a finite # > 0, p irreducible, and p > 0 so that
aN < o0 and 7p < pw, then it is possible to construct an extended chain as
outlined in this section by changing p to o’ where p’ > max(p, 1). (Note: Clearly,
the condition 7 N < oo would follow if p < 1.)

Acknowledgment. The author is grateful to the referee for helpful com-
ments.
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