The Annals of Probability
1986, Vol. 14, No. 4, 1404-1410

STOCHASTIC DETERMINATION OF MODULI
OF ANNULAR REGIONS AND TORI

BY HIROSHI YANAGIHARA
Tokyo Institute of Technology

Let A = A(r,1) be an annulus {z: r < |z| < 1} with the Poincaré metric
g on A. Let Z = (Z,, P,) be a Brownian motion on A corresponding to g. If
we take a geodesic disc D centered at c¢ in A, then the probability P,(3t,
Z, € 3D such that Z, 0 < s < ¢t, winds around the origin in the positive
direction) is a function of r, |c|, and the radius p of D. In the present paper
we shall calculate the value S of the supremum of these winding probabilities.
Then it will turn out that there exists a 1 to 1 correspondence between S and
r. Noting that r is called the modulus of A, we have an explicit formula of
moduli of annular regions. Further we shall give an explicit formula of moduli
of tori in a similar way.

1. Introduction. Let M, and M, be two Riemann surfaces and suppose
that there exists a conformal homeomorphism f: M; — M,. Then it is a theorem
of Lévy that if Z,, t > 0, is a Brownian motion on M, then f(Z,) is also a
Brownian motion on M,, although moving with varying speed. In other words
Brownian motions are conformally invariant except for time-change.

Let M be a Riemann surface whose fundamental group is commutative. Then
M is conformally equivalent to one of the following seven surfaces, the unit disc
A = {z: |z| <1}, the complex plane C, the Riemann sphere (the extended
complex plane) C, the punctured plane C — {0}, the punctured disc A — {0}, the
annulus A(r,1) = {2: r < |z| < 1} with 0 < r < 1, and the torus. See Farkas and
Kra (1980, page 192). In the present paper we shall give explicit formulae
concerning the modulus of M in terms of the winding probability of a given
Brownian motion.

2. Preliminaries. Let M be a Riemann surface with a Hermitian metric
8 = 8(2) dzdz. The corresponding Laplace-Beltrami operator L(g) =
4g(2)" ' 32/0z 9z defines a Brownian motion X = (X,, P,, t > 0, a € M). Since
a conformal change of metric merely changes the time scale and we study only
pathwise behaviour of X, the metric may be chosen arbitrarily. See Lyons and
McKean (1984). We introduce the standard metric on M as follows. Let M be
the universal covering surface of M with natural projection #. Then we may
assume that M is one of the following three surfaces, the unit disc A, the
complex plane C and the extended complex plane ¢ = C U {o0}. See Farkas and
Kra (1980, page 180). We introduce Hermitian metrics g, = g,(z)dzdz as
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follows. We set

4 N
8o(z )— for M = A,
(1 - 12?)

g/(2)=1 forM=_C,

34(2) ! for M = €
8(2) =— forM=_C.
T ey
Then it is well known that there exists a Hermitian metric g, = g(¢ ) d¢ df on
M, where { is a local coordinate in M, such that the pull-back of g, is g,. See
Farkas and Kra (1980, page 198). Then the corresponding Laplace-Beltrami
operators L(g,) and L(g,) define Brownian motions Z and Z, respectively. Since
the pro;ectlon of Z onto M and Z have the same probability law, we call Z the
covermg motion of Z. Further we note that if ¢(¢) = [{(g,/8)(X,)ds and
=(X)= (X,,-1), then X and Z have the same probability law.

REMARK. It is well known that spherical and flat Brownian motions are
conservative. Further the Brownian motion corresponding to the Poincaré metric
1s also conservative. One way to see this is to show [J(1 — |B,|?) 2 dt = o, where

= (B,) is a flat Brownian motion in A with an absorbing barrier A and o is its
lifetime.

The results of the present paper will be proved by studying explicit formulae
for the harmonic functions A(z) on the complement of two discs D, and D, in
the Riemann sphere with boundary values 0 and 1 on 9D, and 9dD,, respectlvely
Such a function is called the harmonic measure of dD, in ¢ - D, U D,. (Note
that A(z) is the probability that a Brownian motion starting at 2 h1ts on dD,
before hitting on dD,.) We summarize as follows.

LEmMMAl. IfD, = {2:Imz <0} andD, = {2: |2 —iR| < p}with0 < p <R,
then

h(z) log|(ik + 2)/(ik — 2)|
z2)= ’
log|(k+ R —p)/(k— R+ p)]

where k = (R? — p?)/2,

LEmMmA 2. If D, = {z: |2| < p} and D, = {z: |z — R| < p}, then

h(z) = log|(z — xp)/(p — x2)|
log|(R—p —xp)/(p — kR + kp)|’
where k = (2p) (R — (R? — 4p*)'/?).

3. Main results. Let X = (X,, P, t> 0, { € M) be a Brownian motion on
M with lifetime 7. We shall use the same notation as in Section 2.
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DEFINITION. We call an open set D in M a geodesic disc centered at { € D,
provided that M = A, C or € and that there exists a disc D, € M centered at
$o € D, in the same sense_of Poincaré, Euclidean or spherlcal metric on M,
respectively, such that =: D, — D is bijective and #({,) = ¢, where D, and D
denote the closure of D, and D, respectively.

Throughout this and next sections we assume that =,(M), the fundamental
group of M, is commutative. Then (M) is isomorphic to one of the following
three groups, {1}, the group of all integers Z and Z & Z (the free Abelian group
on two generators). See Farkas and Kra (1980, page 192).

CAsE 1. Suppose that #,(M) = {1}. In this case M is conformally equivalent
to € if and only if M is compact. If M is not compact and the Brownian motion

= (X,, P,) is recurrent, then M = C (conformally equivalent). If M is not
compact and X is transient, then M = A.

CASE 2. Suppose that (M) is isomorphic to the group of all integers Z.
Take { € M and a geodesic disc D centered at {. Let ¢ be a closed curve starting
and ending at { such that c generates = (M). Let M/D be the quotient space
obtained by identifying all the points in D. If y(¢), 0 < ¢ < T, is a continuous
curve in M, y*(¢), 0 < t < T will be the curve in M/D which results from the
projection of y. If y* and v are two curves such that yJ begins where y;* ends,
we let v* + v stand for the curve y;* followed by v5*. We write y;* ~ v, if v}* is
homotopic to vs. See Davis (1975).

Define a stopping time o by
0= inf{t: X[’(k),t] -~ C*},

where X, ,; is the restriction of sample paths of X in [0, ¢]. Then we have the
following.

THEOREM 1. If for some { € M and a geodesic disc D centered at ¢
(3.1) P(o<m)=1
holds, then it does for all { and D and M = C — {0}.

If for some { € M and a geodesic disc D with center §, (3.1) does not hold,
define S by
(3.2) S =supPy(o <),
where the supremum is taken over all { € M and geodesic discs D centered at ¢.
IfS=1,then M =A—-{0}. If S<1, then M = A(r,1) = {z€ C: r < |2| <1},
where r is uniquely determined by

log(A +1)/(A=1)
log(VA +1)/(VA - 1)

(3.3)

and
(34) r = exp(—272/log ).
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CaskE 3. Suppose that (M) is isomorphic to Z @ Z (the free Abelian group
on two generators). In this case M is a torus, i.e., there exist a, b € C such that
a/b is not real and M is conformally equivalent to the quotient surface C/G
where G is the group of automorphisms on C generated on two elements
z—>z+a and z - z+ b. We may assume that a > 0, |b| > @ and Im b > 0.
Recall that b/a is called the modulus of M.

REMARK 3.1. The modulus b/a is not unique. But if /a is given, then the
conformal equivalence class to which M belongs is uniquely determined. See
Farkas and Kra (1980, page 196).

Take a geodesic disc D centered at { and two closed curves ¢, and ¢, starting
and ending at { such that they generate w,(M). Without loss of generality we
shall assume #(0) = {. Let ¢, and &, be lifted curves in C starting at 0 such that
7(¢;) = ¢;, i = 1,2. Let a, and b, be endpoints of ¢, and &,, respectively; then
we may assume a, > 0, |by| > a, and Im b, # 0. For integers m, n define o, ,,
by

(3.5) Om, ny = inf{t: X§ , ~ me} + nc}.
THEOREM 2. Let s, = P(0y,9 < 0450 Sz = Pi(041) < 0q2) and s;=

Py(0,_, 1) < 6,y 9)- Then the modulus of M is equal to one of e“H(s,)/H(s,)
and e‘(" 0)H(s2)/H(sl) where H(x) and 6 are defined by

log|(1 — 2kx)/(2x — k)|

H Y(x) =
) = gt + k=) (x = k=D’
E=2"Yx—Vx2-4),
2 + B2 — 2
0 = cos-!| 2 3
0< Cos ("‘ 2h1h2 <,

and hi = H(Sl), i = 1, 2, 3.

4. Proofs. We may identify M with one of the standard surfaces, i.e.,
C — {0},A — {0}, A(r,1)for r,0 <r <1,in Case 2 and C/G for a, b € C with
a>0, |b|] >a, Imb+# 0 in Case 3. Further we may consider the standard
conservative Brownian motion Z instead of a given general Brownian motion X
with lifetime 7.

Proor or THEOREM 1. For a geodesic disc D centered at { in M there exists
a disc D, with center {, in M in the sense of Euclidean or Poincaré metric,
accordingly as M = C or A. Let a be the conformal automorphism on M such
that a({,) is the endpoint of the lift of c starting at {,. For covering motion Z,
define o, by

(4.1) 0y = inf{t: z, ea(Do)} .
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Since the projection of Z onto M and Z have the same probability law, we have
(4.2) Py(o < ») = P, (0, < ).

If M = C — {0}, then M = C and the recurrence property of one-dimensional
complex Brownian motion shows that the right-hand side of (4.2) is equal to 1 for
all geodesic discs D centered at { in M.

If M = A — {0} or A(r,1) with 0 < r < 1, then M = A. For technical reasons
we shall consider the upper half plane U = {z: Im 2z > 0} with the Poincaré
metric (Im z) 2dzdz on U instead of the unit disc A with its Poincaré metric
(1 — |2/*)"2dzdz and identify that M with U. It is easy to see that the
corresponding Brownian motion Z, on U is obtained by setting

Z,=(B-Z,B),t20,5€U),

where B(2) = i(1 — 2)/(1 + z). We shall write Z for Z, and define «, D,, {,, 6, in
those contexts. Now Kakutani’s theorem (see I1t6 (1960, page 103)) enables us to
calculate the value of u(z) = P(a0 < o). Note that u(z) is the harmonic
measure of da(D,) in U — a(D,).

If M = A — {0}, consider the universal covering map f: U — A — {0} given by
f(2) = exp(27iz). From the translation invariant property of harmonic measure
we may assume a(D,) = {z: |z — iR| < p} with 0 < p < R. Then by Lemma 1
we have for fixed p

log|2/R? — p* + i
log(l +p 'YR? - p2)

This shows that S = sup P(0 < o0) = 1.

If M= A(r,1) for r, 0 <r <1, consider the covering map g: U — A(r,1)
given by g(z) = exp(2wilogz/log\), where A = exp(—272/logr). In this
case we may assume that a(D,) = A(Re'; p) with 0 <8 <7, 0 < p < Rsiné,
(R +p)/(R—p)<X and §, = A(Rcos 8 + i(R%sin?0 — p%)'/?). Note that
A1, is the center of A(Re”; p) in the sense of the Poincaré metric on U. Let
u(z) be the harmonic measure of JA(Re¥; p) in U — A(Re”; p). To obtain the
value of S = sup Py(¢ < o), we shall show

-1 asR— o0.

p§0(0< OO) =

u($,) < u( Re” + iN/R? — o — iR).

Since T' = {2z: u(z) = u({y)} U A(Re; p) is a closed disc with center A%, in
the sense of the Poincaré metric and A(iRe¥; p) c T, the Euclidean center p of
I can be written as p = Re® + ie with &¢ > 0. Thus A(R? — p?)"/%% belongs to T’
and so does Re® + i(A(R? — p?)"/2 — R).

Let up ,(2) be the ha.rmomc measure of JA(iR; p) in U — A(iR; p). It is clear
that u(Re‘o + IMR? — p?)/2 — iR) < up ,(iMR? — p?)'/?). We note that
up, (iMR% - p*)/?) = B, (0 < o) for a(D,) = A(iR; p) and $o = INR? — p*)/2,
Thus to obtam the value of S we may only consider the case that § = 7 /2. In
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this case we have by Lemma 1,
P, (0 < ) = up (iAk)
log(A +1)/(A—1)
~log(lk + R — pl)/(k — R+ p])’
where k = (R? — p?)/2. Put p, = (A — 1)/(A + 1)R. Then it is easy to see that

S = Pgoum(ix R? - p?)

N log(A + 1) /(A — 1)
~log(\A +1)/(N-1)

0

PRrOOF OF THEOREM 2. We shall assume that M is the quotient surface C/G
where G is the group of conformal automorphisms on C generated on two
elements z 2 z+a,z—>2+ b with a,b6€C, a>0, |b| > a, Imb # 0 such
that the lifts of ¢; and ¢, starting at 0 end at a and b, respectively.

If Im b > 0, take a geodesic disc D centered at { in M. Then there exists an
Euclidean disc D, centered at {, in C. Without loss of generality we shall assume
that D, = A(0; p) for p, 0 < p <27 'a and §, = 0. For the covering motion Z we
set

G(m, my = inf{t: Z, € A(ma + nb; p)},

where m, n are integers. Then we have for integers m, n, p, q with (m, n) +
(p,q)

(4.4) PO, ) < %p, ) = Pol(Gm, my < G5, 9)

= h(0),
where A(2) is the harmonic measure of dA(ma + nb; p)in C — A(ma + nb, p) U
A(pa + qb; p).

Let vg ,(z) be the harmonic measure of JA(R; p) in C — A(0; p) U A(R; p),
with 0 < 2p < R; then we have by Lemma 2,

log|(z — kp)/(p — k2)|
log|(R — p — xp)/(p — kR + kp)|’

where k = 1/2p(R — (R? — 4p?)/?). If |ma + nb| = R, p =2m and q = 2n,
then by the translation and rotation invariant properties of harmonie measure we
have A(0) = vp ,(2R). We note that v, (2R)is a functionin x = R/p € (3, ).
Set K(x) = vg ,(2R). We shall show that K(x) is strictly decreasing in x and
K(x)| 27! as x 1 c0. To show this it is sufficient to show Vg, ,(2R) <vp ,(2R)
for 0 <p, <p,. Since {z: vp ,(2)=27"} ={2: vp (2)=2""}={2: 2=
(R/2) + iy} and A(R; p,) C A(R; pp), we have vp ,(2) < vp ,(2) for z € {x +
iy: x > R/2). .

Let m =1 and n = 0; then from Lemma 2 we have s, = P(§, o < G0,0) =
K(|a|/p). Similarly we have s, = K(|b|/p) and s; = K(|b — a|/p). Hence if

”R,p(z) =
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Im b > 0, assertions of Theorem 2 follow. If Im & < 0, then a similar argument
shows this fact. Since Brownian motions are anticonformally invariant, we
cannot know whether Im b > 0 or Im b < 0 from the data {s,, s,,s;}. O
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