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COMPOUND POISSON APPROXIMATIONS FOR SUMS OF
RANDOM VARIABLES!

BY RicHARD F. SERFOZO
Georgia Institute of Technology

We show that a sum of dependent random variables is approximately
compound Poisson when the variables are rarely nonzero and, given they are
nonzero, their conditional distributions are nearly identical. We give several
upper bounds on the total-variation distance between the distribution of such
a sum and a compound Poisson distribution. Included is an example for
Markovian occurrences of a rare event. Qur bounds are consistent with those
that are known for Poisson approximations for sums of uniformly small
random variables.

1. Introduction. There have been a number of studies on Poisson approxi-
mations for sums of uniformly small random variables. Of paramount interest is
the total-variation distance between a sum of random variables and a Poisson
variable. The total-variation distance between two probability measures (distri-
butions) F and G on some measurable space is defined by

(1.1) d(F,G) = Sl;plF(B) - G(B)|,

where the supremum is over all measurable sets (2d(F, G) is the total variation
of the signed measure F — G). The total-variation distance between random
elements X and Y with the respective distributions F and G is d(X,Y) =
d(F,G).

Building on the works of Hodges and Le Cam (1960), Le Cam (1960), Franken
(1964), and Freedman (1974), Serfling (1975) proved this result: If X,,..., X,, are
nonnegative integer-valued random variables adapted to the increasing o-fields
{‘%} ?=0’ then

n n
(1.2) d( ZXi’N) <X [Ez(pi) +E|Pi_EPi|+P(Xi22)],
i=1 i=1
where p, = P(X; = 1|3,_,) and N is Poisson with mean ¥ , Ep;,. Comparable
bounds for other Poisson approximations appear in Barbour and Eagleson (1983),
Brown (1983), Chen (1975), Kabanov et al. (1983), Kerstan (1964), Valkeila (1982),
and their references. Such bounds are useful for proving limit theorems for
random variables and for point processes as well.

In this paper, we present analogues of (1.2) for compound Poisson approxima-
tions for sums. We consider sums of random elements that take values in a
measurable group S: The group operation, addition, is measurable. If X is a
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random element of S with the compound Poisson distribution H(B) =
Yo F™(B)a" ~“/n!, then we say X is ¥P(a, F). If X has the distribution
EH(-), where a or F are random, then we say X is mixed ¢#(qa, F).

Here is our main result. Let X,,..., X, be random elements of S adapted to
the increasing o-fields { %}, and define

p,=P(X;#01#,_,), F(B)=P(X,€B|%_,,X+0).

Let F be a distribution on S with F({0}) = 0, and define, by (1.1), the random
distance d; = d(F,, F) (F, is random but F is not).

THEOREM 1.1. If Z is mixed ¢P(X",p;, F), then
(13 o £x.2)<5[ £ (a0
i=1

i=1

If Zis ¢! a;, F) where a; = Ep,, then
n n
(1.4) d( Y X, z) < E[ Y (di+|p;— o) + a?)]-

i=1 i=1

If Z is ¢%(a, F), then
(1.5) d(i‘,Xi,Z)sE[Zn:(di+p?)+|anpi—al]~
i=1

i=1 i=1

This result says, roughly, that ¥ | X, is approximately compound Poisson
when the X;’s are rarely nonzero (the p;’s are small), and given that the X,’s are
nonzero, their conditional distributions F,,..., F, are nearly identical. Note that
(1.5) with a = X' ,a; is different from (1.4); in some cases the bound in (1.4) is
smaller than that in (1.5) but in other cases the reverse is true.

For the degenerate distribution F on R with unit mass at 1, Theorem 1.1
yields bounds for Poisson or mixed Poisson approximations for sums. In this case,
(1.4) is the same as (1.2), and (1.5) is consistent with the inequalities of Brown
(1983) and Kabanov et al. (1983), which were established by martingale tech-
niques.

Brown (1983) also obtains compound Poisson approximations for certain
discrete variables via Poisson approximations. This approach, however, does not
apply to the general case. We prove our results by rather direct arguments based
on judicious conditioning and the use of (1.1) as a random distance for random
distributions. Our approach also brings to light the key role of the F,’s.

From its proof, one can easily see that Theorem 1.1 is also true when the
number of variables n in the sum is a stopping time of {%;}. For instance,
Theorem 1.1 applies to sums of the form LN9X, where N(t) = L,I(r; < t) and
T, < T, < --- are stopping times of the increasing o-fields {#(¢)} and %, =
F (T;), respectively. Theorem 1.1 also holds when F and a are random; the Z in
(1.4) and (1.5) would then be mixed compound Poisson.

The rest of this paper is organized as follows. Section 2 gives some basics on
the total-variation distance, Section 3 consists of the proof of Theorem 1.1, and
Section 4 gives an example of Markovian occurrences of an event.
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2. Basic inequalities for distances. Let X and Y be random elements of
some measurable space. A well-known coupling inequality is

(2.1) d(X,Y) < P(X + Y).

The X, Y in the probability are the random elements—with an arbitrary depend-
ency—defined on a common probability space. Inequality (2.1) follows because
P(XeB)<P(X+Y)+ P(Y € B).

It is natural for us to analyze d(X,Y) in terms of conditional probabilities.
Accordingly, we sometimes refer to X as having a distribution EF(-) where F is
a random distribution. Typically, F(B) = P(X € B|%), or F could be defined as
a measurable function of random elements.

LEMMA 2.1. Suppose X and Y have the respective distributions EF(-) and
EG(:), where F and G are random distributions. Then

(2.2)  d(X,Y) <E[d(F,G)].

In case F(B) = P(X € B|¥), and G(B) = P(Y € B|9), for some o-fields ¥
and 9, then

(2.3) d(X,Y)<E[d(F,G)] <E[P(X # Y|#,9)].

Proor. Expression (2.2) follows since

d(X,Y) = sup|EF(B) — EG(B)|< sup E|F(B) — G(B)|= E[d(F,G)].
B B
Expression (2.3) follows from (2.2) and a random version of (2.1). O

REMARK. Keep in mind that F, G in the expectation in (2.2) are the random
distributions on a common probability space and their dependency is arbitrary. A
similar comment applies to the X, Y, #, ¢ in the probability in (2.3).

Distances involving functions of random elements, such as sums or maxima,
can generally be represented as D = d(h(X), A(Y)), where X = (X,,..., X,,),
Y =(Y,...,Y,), and A is a measurable function from the range space of X and Y
to some other measurable space. Here are some bounds on this distance.

LEMmMmA 22. (i) D <d(X,Y).

(i) D < ¥ P(X;+ Y).

Gii) If X,,..., X, are independent and Y,,...,Y, are independent, then
D < Z;;ld(xi’ Yz)

(iv) If X,,..., X,, are adapted to the increasing o-fields { #}}_, and Yy,...,Y,
are adapted to the increasing o-fields {9,}}_,, and F(B) = P(X; € B|%,_,),
G{(B) = P(Y, € B|¥9;_,), then

(24)  Ds E[ ) d(E,G,-)] < E[ S P(X, # Ylé’*’?)]

i=1 i=1
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PrROOF. Statement (i) is true since
D =sup|P(h(X) € B) — P(h(Y) € B)|
B

=sup|P(X € h"(B)) - P(Y € h"Y(B))| < d(X,Y).
B
Statement (ii) is true since by (i) and (2.1) we have

D < P(X+ Y)=P(O{Xi# Y,.})s Y P(X, + Y).

i=1 i=1

Now consider (iii) when n = 2. From (i), the triangle inequality for d, and the
independence, we have

D <d((X,, X,),(Y,, 1)) < d((X,, X,), (¥;, X)) + d((Vy, X3), (Y1, 13))
<d(X,,Y)) +d(X,, ;).

Using this inequality and induction yields (iii) for general n.

Under the hypotheses of (iv), it follows by successive conditioning that
P(X € B, X --- XB,)= E[F(B,)--- F(B,)], and a similar statement holds
for Y. Then using (i), (2.2), and (iii) we have

D<d(X,Y) <E[d(F, --- F,,G, --- G,)] < E Y d(F,,G,)
i=1
The second inequality in (2.4) follows from (2.3). O

The next two results deal with compound Poisson distributions.

LEMMA 2.3. If X is $P(a, F) and Y is €P(B,G), with F({O}) =0 and
G({0}) = 0, then d(X,Y) < |a — B| + (a A B)d(F, G).

ProoF. First consider the case in which a < B. Clearly Y is equal in distribu-
tion to Y; + Y;, where Y,,Y, are independent ¥#(B — a,G) and €#(a,G),
respectively. Note that the distributions of X and Y, can be written as EF™'(-)
and EG™'(-), respectively, where N is a Poisson random variable with mean a.
Then applying the triangle inequality, (2.2), (2.1), and Lemma 2.2(iii) in the form
d(F™,G™) < nd(F, G) we have

d(X,Y) <d(X,Y,) + d(Y,, Y, + Y,) < Ed(FN",GN") + P(Y, + 0)
<ENd(F,G)+1-e ¥ 9 <ad(F,G) + B — a.

This proves the assertion when a < 8, and a similar proof applies when a > 8.0

LEMMA 2.4. Suppose X is a random element of S and let
(2.5) p=P(X+#0) and F(B)=P(X € B|X #0).
If Z is ¢#(p, F), then d(X, Z) < p2.
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Proor. It suffices, by (2.1), to construct X, Z on a common probability space
such that P(X # Z) < p?. To this end, let N,U and Y,,..., Y, be independent
random elements on a common probability space such that N is a Poisson
random variable with mean p, each Y; has the distribution F, and P(U = 0) =
(1 — p)e? =1 — P(U = 1). Define

N
X=Y(1-I(U=0,N=0)) and Z=) Y.
i=1
An easy check shows that X satisfies (2.5), and Z is clearly ¥#( p, F'). Further-
more,

P(X#Z)=P(X+Z,N=0)+P(X+Z,N>2)
=PU=1)P(N=0)+P(N>2)=p(1l —e P) <p?
This completes the proof. O

We end this section by comparing two random elements that have certain
conditional distributions that are equal.

LEMMA 2.5. Let X and Y be random elements. If there is a measurable set A
such that P(X € B|X € A) = P(Y € B|Y € A) for each measurable B, then

(2.6) d(X,Y) <|P(X € A) - P(Y € 4)|.

Proor. Let U, V, and W be independent random elements on a probability
space. Assume that U is uniform on (0, 1) and that V and W take valuesin A and
A°, respectively, and their distributions are P(V € B) = P(X € B|X € A) and
P(W € B) = P(X € B|X € A°). Let p and g denote the respective probabilities
in (2.6), and define X = VI({U <p)+ WI{U>p) and Y= VIIU < q) +
WI(U > q). Clearly X and Y satisfy the hypotheses and, moreover, P(X # Y) =
P(pANqg<U-<pVq)=|p— q| Thus the assertion follows by applying (2.1).

O

3. Proof of Theorem 1.1. In addition to the notation of Theorem 1.1, we let
G,(+) = pF(-) + (1 — p) 8(-), where §; is the Dirac measure with unit mass at 0,
and we let Y be a random element with distribution E(G, * - -+ * G,(+)) (recall
that p; is random).

To prove (1.3), consider the inequality

(3.1) d( Y X, z) < d( Y X, Y) +d(Y, Z).

i=1 i=1

By the use of successive conditioning, it is clear that

P( Y X e B) = E[F/x --- «F/(B)], where F;(B) = P(X; € B|F,_,).
i=1

Note that F/(-) = p;F(-) + (1 - p;)8,(*), and so d(F/

i ¥p;

) = d(F, F) = d,.
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Then applying (2.2) and Lemma 2.2(iii), we have
(3.2) d( ¥ X,.,Y) <E[d(F{+ - F/,G,* - %G, )] < E( ¥ d,.).
i= i=1
Similarly, using P(Z € B) = E [H, * --- * H,(B)], where the distribution H,is
€P(p, F), and applying Lemmas 2. 1, 2.2(iii), and 2.4, we have

d(Y,2) SE[d(Gpl* v x Gy, Hy ke *Hpn)]

- E[iéd(G’"’Hpi)] < E( )n:P?).

i=1

(3.3)

Then combining (3.1)—(3.3) yields the assertion (1.3).

Now consider the assertion (1.4). Here Z is ¢#(L} a;, F). Let U,,..., U, be
independent random elements with the respective distributions G, G
Then by applications of (3.2), Lemmas 2.1, 2.2(iii), and 2.5 (with A = S \{0}), we
have

(] e 1) oo o] ol £

<E f )+E[dG #- %G, G % - +G, )]

+d(G *

o

. *Ga,,’Hal* e *Ha,,)

n

SE Zdt+|pl_al|+a?].

Finally, to prove (1.5), consider the inequality
(3.4) d( ¥ X, Z) < d( Y X, z') +d(Z,Z),
i=1 i=1

where Z is ¥#(a, F) and Z’ is mixed ¢2(X"_,p;, F). By Lemmas 2.1 and 2.3 we
have d(Z’, Z) < E|X, p; — a|. Applying this and (1.3) to (3.4) yields (1.5). O

4. A compound Poisson approximation for Markovian occurrences of
an event. Suppose that Y, Y],... is a Markov chain with states 0 and 1 that
represent the nonoccurrence and occurrence, respectively, of a certain event &.
Let ¢ = P(Y, = 1|Y,=0) and p = P(Y, = 1|Y, = 1), and assume that ¢ and p
are not zero or one. The stationary distribution of this Markov chain is

7(0)=(1-p)/A-p+e), 7(1)=¢/(L-p+e).
Consequently, when ¢ is small, then the event & is rare.

Consider the sum N, = X” Y, which is the number of occurrences of the
event & in time n. We assume, for simplicity, that the Markov chain is
stationary. Isham (1980) and Boker and Serfozo (1983) showed that if ¢ varies
with n such that ¢ >0 and ne > a >0 as n - oo, then N, converges in
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distribution to a random variable Z that is ¢#(a, F) with F({k}) = p* "1 - p),
k > 1. A bound on the rate of this convergence is given in the following result.
Brown (1983) obtained a variation of this bound by another approach.

THEOREM 4.1.
(4.1) d(N,,Z)<|ne—a|+e(l+p+en(2-p))/(1 —p+e).

PrROOF. Define the random variables

Xi= Zk(l_Yi—l)Yi Yi+k—1(1_Yi+k)’ i=1""’n’
k=1

X = Z kY1Y2 Yk(l - Yk+1)'
k=1

When the Markov chain begins a sojourn in state 1 at time i (a success run of the
event &), then X; records the length of that sojourn. Clearly

b;= P(Xz 2 ]'IYOr'"’ Yi—l)
= Z (1 - Yi——l)spk_l(]' _P) =e(1 - Yi—l)’
k=1

F,(k) = P(X, < k|Y,,...,Y._;, X; > 1) = F(k).
Let T,= X" ,X; and T, = T, + X{, and consider

(4.2) d(N,, Z) < d(N,, Ty) + d(T}, T,) + d(T,, Z).
Clearly
(43)  d(N,,T)) < P(N,#T;) = P(Y,= 1,Y,,, = 1) =7(1)p,
(4.4) d(T;,T,) < P(X{ # 0) = P(Y; = 1) = =(1),
and by (1.5)
d(T,.Z) < L Ep}+E|}. p;~ «
i=1 i=1

4.5 n
(45) =ne?2r(0) + Ele ). 1-Y,_,) — «

i=1

< ne?r(0) + enw(1) + |ne — a.
Combining (4.2)-(4.5) yields (4.1).

REMARK. Note that the preceding proof applies (1.5) to the auxiliary sum T,
instead of to the original sum N,,. One could also apply (1.4) to T,,, but this would
yield (4.1) with 2 — p replaced by (2 — p)?, which is worse.
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