The Annals of Probability
1986, Vol. 14, No. 4, 1252-1261

ANSWERS TO SOME QUESTIONS ABOUT INCREMENTS OF A
WIENER PROCESS
BY CHEN GUIJING, KONG FANCHAO AND LIN ZHENGYAN
Anhui University, Anhui University and Hangchow University

Let W(?), 0 < t < o0, be a Wiener process. This paper proves that

|[W(T) - W(T - t)|

limsup sup =1, as.,
Toew o0<t<T {2t(log(T/t) + loglog t)}"*
W(T)—- W(s—t
lim sup IW(T) ( )| =1, as.

P
Too 0<t<T t<s=T {2t(log(T/t) + loglog t)}'/?

These results give an affirmative answer to the questions posed by Hanson
and Russo without additional assumptions.

1. Introduction. The study of convergence properties of increments of a
Wiener process attracts the attention of many probabilists. Various important
results about this problem are summarized in the book by Cs6rgé and Révész [3],
including some general conclusions obtained in [2] by these authors. In order to
investigate the limiting behavior of lag sums (properly normed), Hanson and
Russo [4] studied some forms of increments of a Wiener process, resulting in the

following Theorem A, which in some ways improves and generalizes the results
of [2]:

THEOREM A ([4]). Let W(t),0 < t < o, be a standardized Wiener process.
Suppose that 0 < ar < T for T > 0, and
(1) a;T*> 0 asT — o foreach a > 0.
Then one has

. [W(T) - W(T - ¢)|
(2) limsup sup )
Toow ap<t<T {2t(log(T/t) + loglogt)}

=1, a.s.

Here and in the sequel we shall define logt¢ = log(max(¢,1)), loglogt =
log log(max(¢t, e)), for ¢ > 0. € stands for a positive number given arbitrarily, and
C will be understood as a positive constant independent of n, which can take
different values on each appearance.
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In connection with this theorem, Hanson and Russo proposed several ques-
tions: (i) Under what conditions on a; do we get

. |W(T) — W(T - ap)|
lim sup =1 a.s.?
T-w {2ap(log(T/ay) + loglogar)}

Le., can the Csorg6-Révész condition be relaxed? (ii) Can assumption (1) be
weakened or eliminated? (iii) In (2) can sup,_ _, 7 be replaced by sup,.,_r?
(iv) If the answer to the question (iii) is “no,” can the denominator in (2) be
changed so as to allow this replacement, and if so, how? (v) Under what
conditions can we replace limsup by lim in the theorems of Section 3 in [4]?
When we cannot replace limsup by lim, what is the lim inf?

Soon they answered the first question themselves in [5]. In order to answer
questions (ii)—(v), Chen Guijing and Kong Fanchao, and, independently, Lin
Zhengyan, investigated the remaining questions, resulting in almost the same
results. The present article, which combines and refines our original manuscripts,
is a joint work. ‘

2. On questions (ii)—(iv). We succeeded in completely solving the above
questions. Also some further facts were obtained.

THEOREM 1. Let W(t), 0 < t < o0, be a standardized Wiener process. We
have

. [W(T) - W(T - ¢t)|
3) limsup sup 7z =1 as,
T—w o0<t<T {2t(log(T/t) + loglogt)}

(4) lim sup sup W(s) — Wis — ¢)|
Tow 0<t<T t<s=T {2t(log(T/t) + loglogt)}'”
[W(T) - W(T - s)|

(4) limsup sup sup =1, a.s.
T—w 0<t<T 0<s<t {2t(log(T/t) + loglogt)}"/*

=1, a.s,

Proor. We shall proceed step by step.
(A) Using the law of the iterated logarithm, it follows that
w(T
(5) the left-hand side of (3) > limsup W(T)! 7z =1, as,
T-w (2tloglogT)

(B) In order to prove that

(6) the left-hand side of (4) < 1, a.s,
we take real numbers ® > 1 and @ > 1 such that
1+e)
1 are , 1+2¢.

<G+ o0
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For n=1,2,... and k= ...,—-2,-1,0,1,2,..., k,, denote T, = Q", t, = ©F,
where & 2 [(n + 1)log Q/log ®] + 1. Here and in the sequel [a] stands for
the greatest integer < a. Write B =1/¢ and kg = [1/log ®), &k, =
[].Og( Tn+ 1/(10g Tn)ﬂ)/log ®]°

When T € [T,, T, ,], we have

cwp  sup |[W(s) — W(s - t)]
o<t<T t<s<T {2t(log(T/t) + loglog ¢)}"”
(7) |W($) - W(s - t)l
< sup sup sup

oo <kh,—1 fystty, tss<Ty, {26,(108(T,/t,.,) + loglog )}

II>

sup A,

—o<k<gk,

An inspection of the proof of the Csérg6—Révész lemmas (see Lemmas 1.1.1 and
1.2.1 in [3]) convinces one that for any 0 < T, v, 0 < A < T, we have

(8) P{ sup A2\ W(s) — W(s')| = v} < %exp{ v },

0<s’,s<T,0<s—s'<h 2+e

where C is a positive constant depending only on & Using this inequality, for
— o0 < k < kg we have

P(Ank—>—1+8)

< P{ sup 2 W(s) — W(s — t)]
0<s—t,s<T,,1,0<t<t,,
ty T, \"'?
>(1+ a)(2 log )
(9) i1 e
Tn+l (1 + 8)2 Tn
<C exp{ —2 log
k+1 { (2+e)0 T8,
T t 14+2¢ t 2¢ ®k+1 2¢
=C n+1( k+1) =C( k+l) =C - .
tk+1 Tn Tn Q
Hence it follows that
n=1 —co<k<kg
(10) , ,
cy f( L RS PN L)l
< e < 0.
n=1k=0 ®an n=1 © Qn(h)
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For the case kg < k < k, — 1, using inequality (8) again, we have

P(A,,>1+ e)P{ sup i W(s) — W(s — ¢)|
0<s—t,s<T,,,,0<t<t,,
2t, T, 1/2
>(1+e) log + loglog t,,
(1) 79 79

<C

T, .1 { (1+£) Tlogtk}
exp lo

k+1 (2 + 8)® 790

=CTn+l tee, |12 e te,, \2( 1\
tre1 \ T, logt, T, log £, '

Note that when kg < k < k/,, we have

2¢ 2e'm2¢
(%, )25' < @Ukn+12¢ 0T, ., _ 0T, ’
" (logT,)" | (logT,)"
and from (11) it follows that
00 28 2¢ k,’l 1
P(A,>1+¢)<C Q
E E nk =
(12) n=1k=keg+1 n=1 (IOQT) k=kg+1 (logtk)

1+2¢'

® 1 X 1
<C > — s < 0.
n§1 n2 k§1 kl+2e
For the case k, < k < k, — 1, we have

1/2
T.? <t < 0T,
Qn+l n+1

k-—k’< + 1 - log

< Y /log® + 1,
"ot log® (log @’ *

loglog Q" + 2 2 k7.

Using (11) again one sees that

T,

n

1/2
n=1k=k,+1 n=1k=k,+1 IOng/

i kil P(A,, > 1+€)<C§ kil (@Tn+l)25'( 1 )st,

0 1 1+2¢
<c¥ kYo (——_—)
(13) < ngl (6Q) log @/

) 1 1+2¢
<C Z loglogQ”(W)

n=1

e 1
SCZ-—I?<OO
n=1n
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Finally, merging (7), (10), (12), and (13) together, we get

[o}
Y P( sup A, >1+ e),
n=1

—oo<k<k,—1
o0
Y Y P(A,,>1+¢) < o0,
n=1 —co<k<k,—1

and (6) follows by the Borel-Cantelli lemma.
(C) From (5) and (6), we have

1 < theLh.s. of (3) < thel.hs.of (6) <1, as,;

hence (3) holds true.
(D) In order to finish the proof of (4), it is enough to prove that

. [W(s) — W(s —t)]
(14) liminf sup sup 7z 21, as.
Tow 0<t<T t<s<T {2t(log(T/t) + loglogt)} )

Let
[W(s) - W(s —1)]

B, = sup
l<s<n (21og n)1/2

n

Using the well known probability inequality

a3~ 3 -0 < P00 2.9

27)'/? ; F
) @7 1
- A2
< @) exp(—x2/2), forx >0,
it follows that
o o W) — Wi - 1
Y P(B,<1-¢)< ) P max| @) (i/z )|51—e
n=2 n=2 l1<i<n (2logn)
o n
= ¥ {1-P(W()|> (1 - €)(2logn)"?)}
n=2

IA

Bl )

5 no (109
exp{ —C——— [ = < o0,
e *P (log n)l/2 ( n)

so we have liminf, , B, > 1, a.s. from the Borel-Cantelli lemma. Notice that

IA
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when n < T < n + 1, one has

o sy W) = W= 1)
0<t=T t<s=T {2t(log(T/t) + loglogt)}"*

Py LORL
B 15szT (2log T)"?

logn |\
>B|———m— ;
"\ log(n + 1)

therefore, conclusion (14) is proved.

(E) Noting that the left-hand side of (3) < the left-hand side of (4") < the
left-hand side of (4), we see that (4”) is true from (3) and (4). The proof of
Theorem 1 is now complete. O

Theorem 1 above can be reformulated in a general form (see Theorem 1’
below), which implies many important results about limsupsup properties of
increments of a Wiener process. Examples are the law of the iterated logarithm
for Brownian motion, the Cs6rg6—Révész theorem (see Theorem 1.2.1 in [3]), and
the Hanson—Russo theorem (see Theorem A above).

THEOREM 1'. Let W(t),0 < t < o0, be a standardized Wiener process. Then
we have

. |W(T) — W(T - t)|
(16) limsup sup 7z =1, as,
Tow ap<t<T {2t(log(T/t) + loglogt)}

. [W(s) — W(s - t)|
(17) limsup sup sup T
T ap<t<T t<s<T {2t(log(T/t) + loglogt)}

for ap such that 0 < ar < T, T > 0, and

. |[W(T) — W(T — t)|
(16" limsup sup 7z =1, as,
Tow ap<t<T {2t(log(T/t) + loglogt)}

. [W(s) - W(s - ¢t)|
(17) limsup sup sup 7z =1, as.
Towo apst<T t<s<T {2t(log(T/t) + loglog t)}

=1, a.s.

for any a; such that 0 < ar < T, T > 0.

As a by-product of solving the question (i), Hanson and Russo obtained
further results about increments of a Wiener process (see [5]). Using these results
and Theorem 1’ above, we obtain easily the following Corollaries 1—4.

First some notation. Let w be any point in the probability space on which
W(-) is defined. We use the following notation:
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L(w) is the set of limit points (as T — ) of
W(T; ) — W(T — ap; @)
{2a;(log(T/a;) + loglog T)}l/2 ’

and, if e > 0 and 0 < ¢, < b, < oo for all 2, K(w) is the set of limit points (as
k — o0) of

W(bk’ ) - W(ck’ )
{2(bk - ck)(IOg(bk/(bk - ck)) + loglog bk)}l/2 ,

c; = max(c,, eb,),
S,= U (cg, 0], and S =8N [e, ).
k=1

COROLLARY 1. Suppose that 0 < c, < b, < oo for k=1,2,... and there
exists ¢, € (0,1) such that .

(18) lim inf w([0,T1nsS,)/T>0,
(19) / (1/tlogt)dt =0 or
sz,
(20) fSl(l/t(log t)2) dt=o0 forally<1,

where u(-) stands for Lebesgue measure on [0, o0). Then
(21) P(w; K(w) =[-1,1]) = 1.
COROLLARY 2. Suppose that a; is measurable and 0 < ar < T forall T > 0.

Then
(22) P(w; L(w) =[-1,1]) = 1.

COROLLARY 3. If ar is measurable and 0 < ap < T for all T > 0, then
W(T) - W(T - a
(23) lim sup (1) ( r) 75 =1, as.
T {2ar(log(T/ar) + loglogT)}

COROLLARY 4. Suppose that c; is measurable, 0 < cp < by for all T, by is
continuous, and by — o as T — oo. Then

. W(bs) — W(er)
@9 h;nf:p {2(by — c7)(log(by/(by — c1)) + loglog bT}l/2

=1, a.s.

3. On question (v). For this question we give a preliminary result about
Theorem 3.2B in [4]. Csorgd and Révész have proved that if a; satisfies
(@) 0 < ap < Tfor T > 0, (b) a; is nondecreasing, and (c) a;/T is nonincreasing,
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then

wW(T) - W(T -
(25) lim sup W(T) ('~ ar)| 75 =1, as.
T- {2ar(log(T/az) + loglogT)}

If, in addition, (d) lim,_,  log(T/a;)/loglogT = o, then the limsup in (25)
may be replaced by lim. Further,

) Wiers) -wol
imsup  sup sup =1, as.
Tow 0<t<T-ap 0<s<ap {2a7(log(T/ar) + loglog T)}l/2

can also be strengthened to

. [W(t +s) — W(¢)|
lim sup sup 7z =1, as.
T-w 0<t<T-ar 0ss<ar {2ar(log(T/a;) + loglogT)}

These results give the motivation for us to obtain the following theorem.

THEOREM 2. Let W(t), 0 < t < oo, be a standardized Wiener process. Un-
der conditions

") ap = oo continuously as T — oo,

() limg._, , log(T/az)/loglog ar = oo,
we have

W(t+ap) — W(t
06 im Wit o) < WOI
T—o 0<t<T-ar {2a7(log((¢ + az)/ar) + loglog ar)}
) Wit + 5) — W)
im sup sup
(27) 7o o0<t<T-ap 0<s<ar {2a,(log((t + a;)/ar) + loglog az)}'”*

1, a.s.,

=1, a.s.

Proor. It is enough to prove that

W(t+ ap) — W(t
(28) liminf sup W r) @)
T-w 0s<t<T-ap {2a7(log((t + ay)/ar) + loglog ay)

}1/2 >1, as.

Let a7 = sup, ., .{a,}, which is nondecreasing. By conditions (b’) and (d’), we
have

(29) Tlim log(T/a%)/loglog af = oo,
and for T large enough, there exists 7" such that 0 < 7" < T, a%, = a;. Then
[W(t + ar) — W(¢)|
sup 7
0<t<T-ar {2a7(log((t + ay)/ar) + loglogay)}
. W2+ ai) — W)
o<t<T-ap {2ap.(log((t + ay)/as) + loglog ay)}/*’

>
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hence

. |W(¢ + ar) — W(¢)|
liminf sup Tz
T 0st<T-ar {2a7(log((t + ar)/ar) + loglogar)}

L |W(¢ + a7) — W(¢)|
> liminf sup %
T-ow o0<t<7T/2 {2a7(log((¢ + a})/ay) + loglog af)}

liminf A(T),

1>

because T/2 < T — a7 for T large enough. Using inequality (15), for sufficiently
large T' we have

P(A(T) <1—%)
[W((J + Daz) - W(jar)|
< P max
0<j<[7/2ar]-1 {2a7(log(j + 1) + loglog a7.)}

T/2ar—-1
1 P(|W(1)| < (1 - ¢)(2(log(; + 1) + loglog az))"*}

i <1l-c¢

IA

T/2ap—1

renf <5 k]

j=1 J log a7,

9 { -C (a’T)E}
(.4 | ==
"\ ogap) "\ T

< 2exp{—C(log a’T)Z} <2(a}) 73

(30)

IA

IA

IA

where we make use of the inequality T/a} > (log a;)% ¢ for all large T, which is
a consequence of (29). Define T}, by az = k. We have from (30)

liminf A(T},) =1, as.
k— o

For each T large enough, there exists % such that T, _; < T < T}. Then, by an
argument similar to those used in the proof of Theorem 3.2A in [4], it is easy to
see that

lim sup B(T,)

k— oo

1>

. [W(t +s) - W(e)|
limsup sup sup 1/2
k-0 0<t<T, O<s<1 {2a£!.k(log(t + a,Tk)/a,Tk + loglog a’Tk)}

=0, a.s.
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Thus
liminf A(T) > liminfA(T,_,)
T- k
1/2
. {2a’Tk_l(log((t + a’Tk_l)/a’Tk_l) + loglog a’T)}
in
0<t<T,/2 {2a’Tk(log((t + a’Tk) /a}k) + loglog a’Tk)}l/2
— limsup B(T}) =1, as,

k— o0

and this also completes the proof of the theorem. O

REMARK. Similarly to [1] and [7], we can study liminf via changing the
normalizing factor under a condition weaker than (d’).
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