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ASYMPTOTIC EXPANSIONS IN BOUNDARY
CROSSING PROBLEMS!

BY MicHAEL WOODROOFE2 AND ROBERT KEENER?
University of Michigan

Let S,, n > 1, be arandom walk and ¢ = ¢, = inf{n > 1: ng(S,/n) > a}.
The main results of this paper are two-term asymptotic expansions as @ — o
for the marginal distributions of ¢, and the normalized partial sum S¥* =
(S, — tp) /oVt. To leading order, S* has a standard normal distribution. The
effect of the randomness in the sample size ¢ on the distribution of S*
appears in the correction term of the expansion.

1. Introduction. Let X,, X,,... denote i.i.d. random variables with a com-
mon distribution function F, a common mean p and a finite positive variance o2
and let

.
b

S,=X,+ - +X

n

and
Sy = (8, — np)fovn

denote the partial sums and standardized partial sums for n = 1,2,... . Next, let
t=1t,, a =1, denote positive integer valued random variables, defined on the
same probability space as X;, X,,..., for which

(1) t,/a = c, in probability as a —» oo,

for some finite positive constant ¢. Then Anscombe’s (1952) theorem asserts that
the distribution of S* converges to the standard normal distribution ® as
a — o,

S* = N(0,1).

(Here and below ¢ is written for ¢, to avoid second order subscripts.) That is, the
limiting distribution of the randomly stopped, normalized sums S* as @ — oo is
the same as the limiting distribution of S* as n — oo. Of course, the randomness
in the sample size ¢ = ¢, may affect the distribution of S* for each fixed a, as
illustrated at the end of this section; but the effect disappears in the limit. To
see this effect one must look beyond the limiting distribution.

This paper develops asymptotic expansions for the distributions of S;* for a
class of stopping times ¢ = ¢t,, a > 1. Specifically, let g denote a measurable
function on R = (— o0, 0) which is twice continuously differentiable near p. and

Received January 1985.

!Presented at the Midwest Probability Colloquium.

2Research supported by NSF grant DMS-8413452.

3Research supported by NSF grant MCS-8102080.

AMS 1980 subject classifications. Primary 60F05; secondary 60J15.

Key words and phrases. Nonlinear renewal theory, random walks, excess over the boundary,
Edgeworth expansions.

102

[28

i% ¢
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )20
The Annals of Probability.
WWw.jstor.org

®



BOUNDARY CROSSING EXPANSIONS 103

satisfies the conditions g(p) > 0 < g'(p); let

(2) Zn=ng(sn/n)’ n=1)2)-°')
and let
t=t,=inf{n>1:2,>a}, ax=1,

denote the first passage times for the process Z,, n > 1. The main results of this
paper determine two-term asymptotic expansions for the distributions of £,
properly normalized, and S;*. The effect of the randomness in the sample size
t = t, on the distribution of S* appears in the correction term of the latter
expansion.

These results have potential applications to sequential analysis, where
processes of the form Z,, n > 1, and stopping times of the form ¢,, a > 1, arise
naturally, and ¢, represents the sample size of a sequential experiment. See, for
example, Woodroofe (1982). The asymptotic expansions of Theorem 1 may
provide a better approximation to the distribution of the sample size in such
experiments; and, in cases where p is estimated by S,/t, the expansions of
Theorem 2 may provide more accurate approximations to confidence levels in
sequential experiments.

To see the need for improved approximations, consider the simplest case in
which X is normally distributed with mean p and variance 1 and ¢t = ¢,, a > 1,
are defined by (2) with g(x) = x for all x € R. Then (1) holds with ¢ = 1/p and,
therefore, the limiting distribution of S* as a — oo is the standard normal
distribution, which is also the common distribution of S} for n=1,2,....
Direct use of Anscombe’s theorem suggests the approximation P{S}* < 0} = 1.
On the other hand, Monte Carlo estimates for this probability are 0.408 and
0.424 with a standard error of 0.0025, for @ = 8 and 12, when p = 1. These values
of a are modest, but of interest in sequential analysis.

The expansions for the distribution of ¢ and S* are presented in Sec-
tions 2 and 3. Some of the terms which appear in the expansions are com-
plicated; these are related to the underlying distribution function F in Section 4.
The expansions are compared with simulations and direct normal approximation
in Section 5.

The recent paper by Takahashi (1987) is closely related to this one. Using
more complicated methods he obtains more detailed expansions in the special
case in which F is a normal distribution and g(x) = x%/2 for —c0 < x < 0.

2. First passage times. Some notation and assumptions are required to
state the main results. First, it is assumed that F has a finite third central
moment p and that F is a nonlattice distribution (i.e., not supported by any
coset of a proper closed subgroup of R). Let

) F(z) = P{S} < 2}

for z€e R and n=1,2,...; and let ® and ¢ denote the standard normal
distribution function and density function. Then there is a two-term Edgeworth
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expansion for F, of the form

(4) F,(2) = @(2) + (1/Vn)Qo(2)$(2) + o(1/Vn),

where

Q(2) = p(1 - 2?)/66°

and o(1/Vn) is uniform with respect to z € R as n — . See, for example,
Gnedenko and Kolmogorov (1954, Section 42). This formula is useful below and
allows a comparison of the distributions of S;* and S3*.

Next, it is assumed that there is a closed interval I containing p in its interior
for which g is twice continuously differentiable on I and

(5) g(p) >0 <g'(n).
Let

T, = ng(p) + g'(n)(S, — nu)

for n=1,2,.... Then T,, n>1, is a random walk with ii.d. increments
Y,=T,-T,_,, k=1 The common distribution G of Y;,Y,,... has mean
v = g(p) > 0, standard deviation A = g’(p)o, and third central moment g’(p)%;
and G is nonlattice.

The assumptions of the previous two paragraphs are made throughout Sec-
tions 2, 3, and 4; they are not repeated in the statements of our lemmas and
theorems.

Recall that Z, = ng(S,/n) for n=1,2,... and observe that Z, may be
written in the form Z, = T, + £, for n = 1,2,..., where £, converges in distri-
bution to g’(p)s?/2 times a chi-squared random variable on one degree of
freedom. Let

* =(2,- w)[Mn
and
K, (2) = P(Z* < z)

forze Rand n=1,2,....

LEMMA 1.

K,(2) = ®(2) + Q(2)#(2)[Vr + o(1/Vn),
where
Q(2) = Qy(2) — 347 'g"(n)o%2?, z€R.
ProOF. The lemma is a special case of the main result of Bhattacharya and

Ghosh (1978); or it may be proved directly from simple Taylor series expansion
of the inverse of the restriction of g to a suitable neighborhood of p. O
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In the next lemma, let

L;(n,y)=P{t,<n,Z,—a<y},

L;(n,y)=P{t,2n,Z,—a>y},
M =inf{T,: n > 1},

(6) y
I_(y)= f—wP{M <x}dx,

1.(y) =[ P{M > x} dx,
y
and
a,=(a—- nv)/A\/t?
foryeRand n=1,2,....

LeEmMMmA 2. If n=n,— o as a — o in such a manner that a, remains
bounded, then .

1 1
L;(ny y) = ‘A—‘/——;l_(y)(l)(an) + 0(7’7—)
and

1 1
Li(n,y)=——I1 +o| —
a(r,y) = 1=1.(y)¢(a,) 0( = )
uniformly on compacts with respecttoy € R as a — oo.

Special cases of Lemma 2 appear in Anscombe (1953), without a complete
proof, and in Woodroofe (1976), under unnecessary conditions. For y > 0, the
second assertion of Lemma 2 may be deduced easily from Theorem 7 of Lalley
(1984); and Lalley’s proof may be extended to all ¥ € R. The first assertion may
be established along similar lines.

It is well known that the normalized first passage times

tr = (t,— a/v)|\a/v

are asymptotically normal with mean zero and standard deviation A/v as
a — oc. The first theorem gives an asymptotic expansion. Its proof follows
Anscombe (1953).

THEOREM 1. If n=n,— oo as a = oo in such a manner that a, remains
bounded, then

() P{t,<n} =(1-2)(a,) + (1/Vn)Qy(a,)9(a,) + o(1/Vn),
where

Qx(2) = A7U_(0) — @i(2) = A7L_(0) + jA7 8" (n)o%2* — Qy(2)
for z € R with Q, as in Lemma 1.
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ProoF. Foralln>1and a>1,
P{t<n}=P(Z,>a}+ P{t,<n,Z,<a}
= (1 -K,)(a,) + L (n,0).
So, the theorem follows easily from Lemmas 1 and 2 and some simple algebra. O

3. Randomly stopped sums. The following lemma provides a connecting
link between the distributions of ¢} and S>*.

LEMMA 3. Forze R anda > 1, let
v(a, 2) = inf{x > a/2v: xg(p + 02/Vx ) > a}.
Then
a 2zA [a A2 1
= — — — —+_._____/l 22+
va,2) === 2w T - e+ o)
uniformly on compacts with respect to z € R as a — oo.
PROOF. Let I denote a compact subinterval of R. If a is sufficiently large,
the xg(p + 02/ Vx) is increasing in x > a/2» and has a value which is less than
a when x = a/2v, simultaneously for all z € I. So, y(a, 2) is the unique solution

to the equation xg(p + 02/ Vx) = a for all z € I when a is sufficiently large.
This equation may be written

a=xv+zAVx + 1g”(p)e%? + 0(1),

where o(1) is uniform with respect to z€ I and x > a/2v as a - oo. The
equation is quadratic in Vx . So,

Jr(a,2z) = %{\/4(;1/ + A%22 — 2g"(p)ve?2? + o(1) — Az}.

The lemma follows by squaring this relation. O

In the next theorem N = N(a, z) and 8 = 8(a, z) denote the integral and
fractional parts of y(a, z); that is,

N=|y(a,z)] and & =17v(a,z) - N,

for z € R and a > 1, where | - | denotes the greatest integer function. Then it is
easily verified that

1 1 1
(8) ay=2+ W -2—g”(p.)o222 + 81!] + O(W)
uniformly on compacts with respect to z € R as a = .

THEOREM 2. If
9) P{t,<a/2v} =0(1/Va), asa— oo,
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then
P{S}* <z} =®(z) + LQ(a, z2)o(z) + o(-—l—)
VN VN
uniformly on compacts with respect to z € R as a — oo, where

Qa,2) = 5|58 W% 400 = Q) - £ Llk-o)]

(10) 1 1 =
= Q(2) - 1 [1-(0) - &v] - 7 2 Ll(k-8)]
, k=1
for z € R and a > 1, with @, as in Theorem 1.
PROOF. Let &£ > 0 be so small that g is twice continuously differentiable and
g > 0on[p — ¢ p+ e]. Then it follows easily from standard maximal inequali-
ties that

a
(11) P{ta < 5 or

7ol -l

— > = o| —

P Va

as a — co. Let I denote a compact subinterval of R. If a is sufficiently large and

z € I, then the intersection of the events ¢, > a/2v, |S,/t — p| <e¢, and S < z
implies a < g(S,/t) < tg(p + 02/ Vt) and, therefore, £, > N = N(a, z). So,

<d

S
P(S¥ <z} = P{ta >N, ’7‘ -

(12) —P{t >N,S5* >z ﬁ—p <e} +O(L)
a ’ ) t JE ’
1
=Ia_IIa+O ﬁ), say,

uniformly with respect to z € I as a > c0. These two terms are considered
separately.

By (11), I, = P{t,> N} + o(1/ Va) uniformly with respect to z € I as a —
. So, I, may be approximated from Theorem 1. Using (7) and (8) in the
computation, one finds that

I = ®(ax) - 7= Qu()8(2) + o\ 7]

1 (11 1
= —_— — | — o 2,2 _
°(2) + (5| g8 W o0 Qu(=)o(2) + o 7
uniformly with respect to z € I as a — oo.

To estimate the remaining term, write

II,= Y Ila,n,z),
n>N
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where
l(a,n,z) =P{t,=n,S,>np+20/n,|S,/n— p| <e}
forn> N, z€ I,and a > 1. Let
G, = G,(a, 2) = ng(p + z0/Vn)

for n>N, z€1 and a > 1. Then G,> a for all n> N and z €I for all
sufficiently large a, by definition of N; and P{|S,/n — p| > &} = o(1/Vn?) as
n — oo, since F has a finite third moment. So,

l(a,n,2z)=L}(n,G,—a) + 0(1/\/773)

uniformly for n > N and z €I as a = oo, where L} is as in Lemma 2. If
n= N+ k, where k remains fixed as a » o, then a simple Taylor series
expansion shows that

(13) G,—a=(k—8)w+o(l),

uniformly with respect to z € I as a = ; and it then follows from Lemma 2
that

1
L;(n,G,—a)= ﬁh[(k = 8)r][¢(ay) + o(1)]

uniformly with respect to z € I as a - 0. It is shown in Lemma 4 below that
the operations of summation and limit may be interchanged. So,

o= 7ro(an) £ LIk - ap] + o\ 77 )

uniformly with respect to z €I as a —» . The theorem then follows by
substituting the asymptotic values of I, and II, in (12). This completes the
proof, except for Lemma 4.

The main effect of the optional stopping appears as the difference between
Q,(2) and Q(a, 2) in (3) and (10). Optional stopping introduces some skewness
and the small sawtooth 8. Observe that the curvature g”(p) does not appear in
(10).

LEmMA 4. If I is any compact subinterval of R, then there is a summable
sequence ¢, k > 1, for which

L [n,G,— a] <c;/Vn + 0(1/\/;;3)
whenever n = N + kwithk > 1, N = N(a, 2), z € 1, and a is sufficiently large.
PrROOF. Let 0 <& <1 be so small that g'(pn)/2 < g/(x) < 2g'(p) for all
|x — p| < e, and let B, be the event
B,={IS,-1/(n—1) —pl <¢,|X, — p| <e/n}
for n> 2. Then P(B])=o0(1/Vn®) as n — oo, since F has a finite third
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moment. So,
Li(n,y) = P{t,2n,Z,>a+y,B,) +o(1/Vn’)

uniformly for y >0 and @ > 1 as n — oo. To estimate I, first observe that
ln,y)<P{Z, ,<a,Z,>a+y,B,) foral y>0, n>2, and a > 1. If B,
occurs then Z, < Z, _, + c|X,| + b for some positive constants ¢ and b, by the
mean value theorem. So, [ (n, y) =0 when y> ceyn + b; and, letting H
denote the distribution function of c|X| + b,

l(n,y)=P{Z,_<a,Z,>a+y,B,)
<PlclX,|+b>y,a+y—(c|X,| +b)<Z, <a,B,)

< ~/OOP{a +y-x<2Z,_, <a}H(dx)
y

for 0 <y < cevn + b, n > 2, and all sufficiently large a. .

Here interest centers on the case n= N+ k and y = G, — a, where z € |
and a is large. By expanding g in a Taylor series about p and using the
definition of vy, as in (13), it is easily seen that there is an 7 > 0 for which
G, —a>nkforall n = N + k with k£ > 1 for all z € I and all sufficiently large
a. In particular, /(n,G, — a) = 0 when n = N + k with k > (¢yn + b)/q for
z € I for all sufficiently large a; and if n = N + k with & < (¢Vn + b)/7, then

la(n’ Gn - a) < la(n: ’ﬂk)
and

L(n, k) < /n “Pla~ (nk —x) <Z,_, < a) H(ds)

< -‘/%fn::[l + (x— nk)le(dx) + 0("/17)[1 — H(nk)],

by Lemma 1, where o(1/ Vn) is uniform with respect to z€ I and a > 1 as
n — co. The lemma now follows easily. O

Condition (9) may be related to moment conditions on X, and the sequence
&(S,/n), n = 1, by writing
M
P{t<a/(2v)} < X P{g(Sy/k) > a/k} + P{|S,/n — p| > n, for some n > M}
k=1
for appropriate M and 7. For example, if E|X,|? < o0 and E |8(S,/n)|? remains
bounded as n — oo for some p >3 and ¢ > (1 + p/2)/(p — 1), then letting
M = |a'/?| shows that (9) is satisfied. If p = 3, then the condition requires
g > 2. If G is convex then better conditions may be obtained by using the
submartingale inequality in place of Boole’s inequality in the bound for
P{t < a/(2v)}, as in Hagwood and Woodroofe (1982). While inelegant, the
condition is not very restrictive.



110 M. WOODROOFE AND R. KEENER

4. Computational formulas. Use of the expansions of Theorems 1 and 2
requires the calculation of /(0) and

2(8) = ,gll((k ~))

for 0 < 8 < 1. These terms are related to the underlying distribution function F
of X;, X,,..., in this section. Closed form expressions are possible only in special
cases; but numerical calculations are possible more generally.

Recall that M = min{T}: k > 1} denotes the minimum of the random walk
Ty, k> 1. Let M* = max{0, M} and M~ = max{0, —M} denote the positive
and negative parts of M; and let ¢, C, C_, and C_ denote the characteristic
functions of Y, = T}, M, M*, and M~. Then

(14) C_(s) = exp{ él % /{ . SO}(exp(isTk") -1) dP}

for all s € R by Theorem 2 of Feller (1971, page 576). Next, since M = Y] +
min{T, — T;: k> 1} and M = M* — M~ it is easily seen that *
C(s) = ¢¥(s)C_(-s)

and
(15) 1-C.(s) =[1-y(s)IC_(-s)
for all s € R.

It is easy to compute I_(0) and [,(0) from these relations. Indeed, since
I_(0)=E(M~)and 1.(0) = E(M"),

0

1.(0) = —iC.(0) = X E(T;)/k,
(16) k=1

1,.(0) = —iC’,(0) = »,
and
E(M*%) = (A% + »2) — 2v1_(0).

Let H denote the distribution function of M/v». Then routine calculations
show that

2(8) = yfo°°[x + 8| P(M/v > x) dx

_ yj;w(fy+8[x] dx)H(dy)

0
(17)
_ EI;E(M”) + (s - %)E(M*) - %v&(l —~5)

+ §f0°°<y +8)(1 — (y + 8))H(dy)

for 0 < 8 <1, where |x| and (x) = x —|x] denote the integer and fractional
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parts of x for x > 0. The penultimate line may be computed from (16). So, it
remains to compute the final integral. Let e denote the function defined by
e(x)=x(1 —x)for 0 <x <1 and e(x) =e(l + x) for x € R. Then e has the
Fourier series expansion

1 @ .
e(x) =5 = X cos(2msn)/(m))’
j=1

for x € R. Next, fix 0 < § <1 and let W= 8§ + M, /v. Then the final integral in
a7, 1(8) = E[e(W)], is given by

1 © 20 (2mj/v) + e 2"ViC (—27j/v
(18) 1(8) = E _ +(27j/v) +( J/v)

J

=1 2(mj)"
To summarize, [_(0) is given by (16); and

2(5) = %(M ) = 1(0) + Z(8+ 82 = 1) +51(5),

where I(8) is given by (18) for 0 < § < 1. When these relations are substituted,
one finds that

p(1—2%) A +»2  p{82+36—-1+1I(5)}
(19) @(a,2) = 60° T 26w 2A )

To compute 1(8) using (16), C . must be repeatedly evaluated. When [|y|? < oo
for some p, there is an alternative approach to these calculations that may be
more efficient than use of (14) and (15). Let 7 = inf{n > 1: T, > 0} and let x
denote the characteristic function of 7. By a duality argument (see Theorem 2.7
of Woodroofe (1982)), P{T, > r} = E(t)P{M™* > r} for r > 0, and hence C, =
1+ (x — 1)/E(7). x may be computed by quadrature from the formula

X(s)=1- \/(1 w1+ =]

i i dy
Xexp{ﬁ hfg .y-s|>e1°g((1 - ¢(y))(1 + 5)) P s}

for s € R. This identity follows easily from Lemma 2.5 of Keener (1984) (the
factor 1 + i/vy was introduced to make the integrand continuous at y = 0).

5. Simulations. In this section the approximations of Theorems 1 and 2 are
compared with simulations in the special case that F is a normal distribution. In
this case, T, has a normal distribution for each &2 = 1,2,..., and the formulas of
Section 4 may be easily implemented. Two special cases are studied, the cases in
which

t,=inf{n >1: S, > a}
and

t, = inf{n > 1:|S,| > V2an }
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for @ > 1. Below these are called the cases of straight line and square root
boundaries. In both cases, G is taken to be normal with positive mean » and unit
variance, so differences between cases are due to curvature of the boundary. In
the curved boundary case, F is normal with mean p=y2» and variance
62 =1/(2v), and in the straight line case F = G. By focusing on the normal case,
the effect of optional stopping on the asymptotic normality of S* may be
studied directly, without confounding by such other effects as skewness in the
distribution F.

In order to compare the approximations of Theorems 1 and 2 with direct use
of normal approximation, a substantial simulation study was conducted. In this
study 40,000 independent replications of ¢=t, and S, were generated for
selected values of a and g, and the distribution functions of ¢, and S* were
estimated from relative frequencies. Thus, the standard deviation of the simula-
tion estimate is at most 0.0025.

Table 1 below compares the approximation to the distribution of ¢, given in
Theorem 1 with the simulations and direct use of normal approximation. For

TABLE 1
Simulated and approximate values for P{t, < n}, with a = 12. The upper entry
is the simulated value; the second entry is the difference between normal
approximation and the simulated value; the lower entry is the difference between
equation (7) and the simulated value. Each entry is based on 40,000 repli-

cations.
v = 0.50 v =1.00
Straight Square Straight Square
n line root n line root
6 0.000 0.008 6 0.008 0.023
0.037 0.029 0.048 0.033
0.000 —0.006 0.000 —0.003
12 0.044 0.092 8 0.080 0.106
0.076 0.028 0.076 0.050
0.011 0.002 0.005 0.005
18 0.264 0.291 10 0.268 0.285
0.023 —0.004 0.065 0.048
0.015 0.006 0.009 0.002
24 0.538 0.543 12 0.511 0.518
—0.018 —0.023 0.046 0.039
0.005 0.000 0.004 —0.003
30 0.746 0.753 14 0.715 0.725
0.000 —0.007 0.050 0.040
—0.005 —0.002 0.000 —0.003
36 0.870 0.886 16 0.850 0.868
0.029 0.013 0.053 0.035
—0.007 —0.003 —0.001 —0.004
42 0.936 0.956 18 0.927 0.945
0.034 0.014 0.043 0.025

—0.006 —0.003 —0.001 —0.002
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TABLE 2
Simulated and approximate values for P{S¥* < z}, with a = 12. The upper
entry is the simulated value, based on 40,000 replications; the second entry
is the difference between normal approximation and the simulated value;
and the lower entry is the difference between the expansion of Theorem 2

and the simulated value.
v = 0.50 v=1.00
Straight Square Straight Square
z line root line root
— 1.80 0.022 0.023 0.025 0.027
0.014 0.013 0.011 0.009
0.003 0.001 0.001 -0.001
—-1.20 0.079 0.083 0.089 0.093
0.036 0.032 0.026 0.022
0.004 0.000 0.002 0.000
—0.60 0.211 0.215 0.234 0.229
0.073 0.069 0.050 0.055
0.004 —0.001 —0.003 0.000 -
0.00 0.424 0.421 0.440 0.435
0.076 0.079 0.060 0.065
—0.007 —0.004 —0.005 0.000
0.60 0.662 0.652 0.683 0.668
0.064 0.074 0.043 0.058
-0.013 —-0.003 -0.013 —0.004
1.20 0.849 0.836 0.864 0.853
0.036 0.049 0.021 0.032
—0.015 —0.003 —0.010 —0.002
1.80 0.951 0.942 0.954 0.952
0.013 0.022 0.010 0.012
—0.010 —0.003 —0.005 —0.002

a = 12 and selected values of n and p, the top line lists the relative frequency
with which ¢, < n; the second line lists the difference between normal approxi-
mation and the simulation estimate; and the third line lists the difference
between the approximation of Theorem 1 and the estimate. In the second line,
normal approximation means treating ¢, as a normally distributed random
variable with mean a/» and variance aA?/»3, after a continuity correction. The
results are impressive. The expansions of Theorem 1 are closer to the simulated
values than the direct normal approximations in all but two cases, where both
are very close.

Table 2 provides similar comparisons for the distribution of S;*. The improve-
ments here are also substantial. The expansions of Theorem 2 provide better
approximations for negative values of z than for positive ones. This may reflect
the relation between small values of ¢ and large values of S;*.

Similar results were obtained for a = 8, although the agreement was not quite
as good. The expansions of Theorems 1 and 2 become less accurate as p increases
for fixed a, since increasing p decreases ¢,. For a = 8 and 12, this effect begins to
appear at about p = 2. Similarly, for small values of u, a diffusion approximation
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may be adequate and possibly better than the expansions. This effect begins to
appear at about p = §, when a = 8 for the distribution of ¢,.
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