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CONTINUOUS LOWER PROBABILITY-BASED MODELS FOR

1. Introduction:

STATIONARY PROCESSES WITH BOUNDED AND
DIVERGENT TIME AVERAGES!

BY YVESs L. GRIZE AND TERRENCE L. FINE

Ciba-Geigy and Cornell University

We have undertaken to develop a new type of stochastic model for
nondeterministic empirical processes that exhibit paradoxical characteristics
of stationarity, bounded variables, and unstable time averages. By the well-
known ergodic theorems of probability theory there is no measure that can
model such processes. Hence we are motivated to broaden the scope for
mathematical stochastic models. The emerging theory of upper and lower
probability, a simple generalization of the theory of finitely additive probabil-
ity, seems to provide a locus for this new modelling methodology. We focus
our attention on the problem of the existence and construction of a lower
probability P on the power set 2% of a countably infinite product X of a finite
set of reals X, that is shift invariant, monotonely continuous along some
class M of sets that includes the cylinder sets C and such that P(D*) > 0
where D* = {x = (x;);e z € X: (1/n)L? ¢x; diverges as (n — )}. We show
that these constraints are incompatible when M = 2%, but when M. = C we
are able to construct such a lower probability. Most of our results extend to
the case of a compact marginal space X,

doubly infinite sequences from a subset X, of the reals, i.e.,

Let C be the algebra of cylinder sets of X, o(C) the ¢-algebra generated by C, T
the left shift on X (i.e., (Vi) (Tx), = x,,,) and T~ the right shift on subsets of
X (i.e, (VA c X) T7'A = {x: Tx € A}). Consider the following subset D* of X:

where

X=X{= {x=(%))iez x: € X,}.

1 -1
D* {x € X: - Y x, divergesas (n — oo)}.
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The Basic Problem. The same notation is used
throughout the paper. Denote by Z the set of integers and let X be the space of
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The problem we discuss in this paper, and that we shall refer to as the Basic
Problem, is the existence and the construction of a set function P under the
following constraints:

(BP1) P is a lower probability on the power set 2% of X, i.e., P is a nonnegative,
unit-normed set function with P(@) = 0 and which satisfies:

P(A) + P(B) <P(AUB) + P(AN B)

for all pairs (A, B) of setsin X such that AUB=Xor AN B= g,
(BP2) X, is a finite set;
(BP3) P is stationary, i.e., (VA c X) P(T"'A) = P(A);
(BP4) P supports the divergence of averages, i.e., P(D*) > 0;
(BP5) P is continuous along monotone sequences of sets that belong to a class M
such that 2X D M > C, i.e,

(v, A, €M)  4,,,24,-P(U4,) = limP(4,)

(continuity from below along M),
(Vn,4,€M) A4, cA4,=P(N4,) = imP(4,)

(continuity from above along M).

The motivation for the study of this particular problem arises in part from
certain experimental results that are briefly discussed in Section 2. In Section 3
we summarize the fundamentals of the theory of (upper and) lower probability.
In Section 4 the five constraints that constitute the Basic Problem are examined
« with particular attention devoted to justifying the continuity requirement (BP5).
We then proceed to show that the constraints of the Basic Problem are
incompatible when M = 2% (Section 5) but that, if M = C, solutions to the Basic
Problem exist (Section 6). Moreover these solutions can be chosen to assign a
lower probability to D* that is arbitrarily close to unity. An explicit example of
a solution to the Basic Problem is presented in Section 7. We conclude in Section
8 by indicating some possible generalizations of our results, in particular to the
case of a compact marginal space X,

2. Motivation. The Basic Problem addresses the question of the existence
and construction of stochastic models for nondeterministic empirical processes
that exhibit paradoxical characteristics of stationarity and bounded but diver-
gent (i.e., fluctuating) time averages. By the celebrated .Birkoff ergodic theorem
no probability measure can model processes having these properties, under the
assumption of the existence of the mean of the process. In fact, it turns out that
even without this assumption, stationarity and almost surely bounded but
divergent averages are incompatible (Kalikow (1984)). The inability of probabil-
ity theory to reconcile these properties might tempt one to assert the nonex-
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istence of such processes. However, although claims of stationarity or divergence
of averages are mathematical and not directly empirical assertions, a number of
compelling experimental results suggest the existence of processes with such
paradoxical combination of properties.

More specifically our attention has been drawn to the empirical and well-
studied process of the frequency fluctuations of high quality quartz crystal
oscillators (see, e.g., Howe, Allan, and Barnes (1981), Kroupa (1983)). The
fluctuations have long been modelled as a flicker (or 1/f ) noise process. As noted
in Walsh (1981), “although numerous models have been proposed to account for
flicker noise, none seems to have been generally accepted; it has often been
explained but never understood.”

In examining the Allan Variance, a measure developed at the National Bureau
of Standards to characterize oscillator instability (and flicker noise), and relating
it to the behavior of the time averages of the process, we found that extensive
experimental results strongly support the hypothesis that flicker noise is char-
acterized by divergent time averages. From this, under the reasonable physical
assumption of the existence of the mean of the process, we must conclude that
flicker noise is a nonstationary process. However, this not only contradicts the
controversial but widely maintained hypothesis of stationarity of flicker noise
(see, e.g., Dutta and Horn (1981) and Keshner (1982)) but also appears hardly
tenable in the specific case considered; e.g., high quality oscillators are state-of-
the-art nonevolving systems. It is easily shown that allowing for small depar-
tures from stationarity in the model does not resolve the contradiction. We also
showed that deterministic stationary (i.e.,, shift invariant) flicker noise-like
sequences with bounded (and of course divergent) time averages could be
constructed. These results (Grize (1984)) motivated our desire to model flicker
noise as a (1) stationary process with (2) bounded averages. Taking into account
the experimental evidence of (3) divergent averages, we were led to explore the
possibility of constructing stochastic models for processes having the three
aforementioned properties. The emerging theory of upper and lower probability
seems to provide a conceptual and mathematical framework broad enough to
support such models.

3. Upper and lower probability structures. The theory of upper and
lower probability (also called interval-valued probability) is a simple generaliza-
tion of the theory of finitely additive probability. We present only the definitions
and results that we shall need in the sequel. Further details of the theory of
upper and lower probability can be found, for example, in Walley and Fine (1982)
and the references cited therein.

If A denotes a collection of events modelled as subsets of a set €, then the
propensity for an event A in A to occur may be described by the interval
(P(A), P(A)) where the two set_functions P and P satisfy the following axioms:

(I) Normalization: P(Q) = 1;
(IT) Nonnegativity: (VA € A) P(A) > 0;
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(III) Conjugacy: (VA € A) P(A) + P(A°) = 1;

(IV) Super- and Subaddivivity:

P(A) + P(B) < P(A U B)
(superadditivity (IVa))

P(A) + P(B) > P(A U B)
(subadditivity (IVb)).

(VA,BEA) ANB=9o =

Elementary consequences of these axioms include:
(A) (VA € A)
P(2) = P(2) = 0< P(4) < P(A) <1=P(Q) = P(Q);
(B) (VA, B € A)
AcB=P(A)<P(B) and P(A) < P(B) (monotonicity);
(C) (VA,Be€ A)
P(AUB)<P(A) + P(B).

The case where P = P corresponds to a finitely additive probability structure.
If P happens to be countably subadditive then it is an outer measure but the
converse is in general false. _

In view of the conjugacy relation (III) between P and P, the theory of upper
and lower probability can be reexpressed in terms of the lower probability P by
replacing Axiom (IVb) with

(IVo) (VA, B € A)
AUB=Q=P(A)+ P(B) <1+ P(AnN B).

DEFINITION 1. A lower probability P on class A of subsets of a set £, which
contains £ and is closed under finite intersections and unions, is a set  function
that satisfies (I), (II), (IVa), and (IVc) The complementary set function P defined
by (VA € A) P(A) + P(A°) =1 is called the upper probability associated
with P.

Henceforth we shall only deal with lower probabilities. The class of lower
probabilities can be partitioned into two subclasses:

DEFINITION 2. Let A be an algebra of subsets of a set @ and P a lower
probability on A.

(i) The set m(P) of all (finitely or countably additive) probability measures N
such that (VA € A) u(A) > P(A) is called the set of dominating measures of P.

(i) If m(P) # @ then P is called a dominated lower probability, otherwise it
is called undominated.
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Kumar and Fine (1985) have shown that solutions of the Basic Problem must
be sought in the class of undominated lower probabilities.

We conclude this section by observing that a lower probability can always be
extended to the power set provided that its domain of definition satisfies some
simple conditions:

LEMMA 1. Let F be a class of subsets of a set @ that contains & and Q, and
that is closed under finite unions and finite intersections. Any lower probability
P on F can be extended to a lower probability Q on 2% by defining

(VAc@Q) Q(A)=sup{P(B): BEF, BC A}.

Further if R is another lower probability on 2% that extends P then (VA C Q)
R(A) = Q(A). For this reason Q is called the least-committal extension of P
from F. -

ProoF. Routine verification. O

4. Discussion of the constraints in the Basic Problem. Our original
problem, as motivated in Section 2, is the construction of stochastic models for
stationary random processes with bounded but divergent time averages. As a
first step towards the construction of such models, we choose to restrict ourselves
to the simpler case where the infinite product space X is generated by a finite
marginal space X,,. This finiteness assumption is also entertained so as to treat a
case that clearly lies outside the scope of countably additive probability theory.
(If X, is infinite the measure corresponding to a sequence of independent
identically Cauchy-distributed random variables provides a solution to the Basic
Problem.)

To justify the imposition of the continuity requirement on our model (con-
straint (BP5)) we observe the following:

LEMMA 2. If P is a stationary lower probability on 2% then there exists a
stationary lower probability @ on 2% such that

1) (vCecC) Q(C)=E(C);
(2) Q(D*) =o.

PROOF. Define @ as the least-committal extension of the restriction of P to
C (Lemma 1), and observe that D* does not contain any nonempty cylinder set.
The stationarity of @ follows easily from the stationarity of P. O

Bearing in mind that the cylinder sets are often viewed as the only genuinely
observable events, Lemma 2 shows that if a statistician attempts to fit a lower
probability model to some real data, his cylinder set observations will yield a
lower probability on C but not enable him to distinguish between models that
support D* and those that do not. Hence we need to restrict the class of
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desirable models so that models that agree on the observable sets also agree on
other sets, such as D*, of interest.

DEFINITION 3. A monotone set function ¥ on 2% is monotonely continuous
along a class F of subsets of X if

(Vn,A,€F) A, CA,, = qf(uA,,) - im¥(4,)

(continuity from below),

(Vn,A,€F) A, HA, = \If(nAn) — lim¥(A,)

(continuity from above).

If ¥ is continuous only along those monotone sequences {A,} in F that
converge to a set in F (i.e,, such that U,A, € ForN, A, € F) then ¥ is said to
be continuous on F (there is of course no distinction if F is a monotone class).

REMARKS.

1. Observe that if X = XZ with X, finite, then X is a compact topological space
in the product topology induced by endowing X, with the discrete topology,
and the cylinder sets C form the class of clopen (closed and open) sets. Using a
compactness argument it is easy to see that any monotone set function on 2%
is continuous on C (but not necessarily along C).

2. Denote by C, and Cj;, respectively, the class of countable unions and count-
able intersections of elements of C. For a monotone set function, continuity
along C is equivalent to continuity from above on C; and from below on C,
(to see this, use for example an argument similar to the one in Neveu (1965),
Proposition 1.5.1(d)).

The constraint (BP5) of continuity along a class M of sets that contain C will
enable us to discriminate between models that disagree in their probability
assignments to sets such as D*.

DEFINITION 4. A lower probability P on 2%, continuous along a class M of
subsets of X, that supports divergent averages is strongly (respectively, weakly)
distinguishable on C (from models with the same continuity properties that do
not support divergent averages) if

(i) Q is a lower probability
(i) @ is continuous along M = Q(D*) = P(D*)
(i) (vcecC) QC)=P(C)|

(respectively Q(D*) > 0).
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Indeed, suppose that a lower probability P, continuous along a class M of sets,
supports divergent averages. If M contains ¢(C), then by virtue of the monotone
class theorem (e.g., Loéve (1977), page 60) P is strongly distinguishable on C. If,
however, P is only continuous from above along C and if D* contains a
C;-subset of positive lower probability, then P is weakly distinguishable on C.
The larger the domain of continuity of P, the stronger the distinguishability
of P.

The problem we wish to solve is therefore the construction of a set function P
defined on 2% that satisfies the five constraints ((BP1) through (BP5)) of the
Basic Problem and that is (at least weakly) distinguishable on C.

5. Stationarity, continuity on the power set, and support of divergent
averages. In light of Lemma 1 the natural domain of definition of a lower
probability on X is the power set of X. This motivates the question of the
existence of solutions to the Basic Problem with a domain of continuity M equal
to 2%, -

As noted in Section 3, the work of Kumar and Fine (1985) has shown that
solutions of the Basic Problem must belong to the class of undominated lower
probabilities, excluding finitely additive probabilities. This essentially follows
from the requirement of monotone continuity along C (see the same reference for
an example of a finitely additive probability that satisfies (BP1) through (BP4).
Until recently (Papamarcou (1983), Papamarcou and Fine (1986)) the only
continuous lower probabilities known in the literature were all of the dominated
type (e.g., two-monotone capacities, as defined in Huber and Strassen (1973)).
Stationary lower probabilities that are undominated and continuous on the
power set of X are now known to exist (examples can be found in Grize (1984)).
However, we prove that such set functions cannot support divergent averages
and thus that the Basic Problem is unsolvable when M = 2%,

THEOREM 1. Let X = XZ where X, is an arbitrary set. Denote by A the set
of aperiodic sequences, i.e., A ={(x€ X: (Vke€Z)(k+0) T*x #x}. If Visa
nonnegative superadditive set function such that

1) (VEcCX) ¥(T'E)=¥(E),
(2) ¥(X) < oo,
(3) V¥ is continuous from below on 2%,
then

¥(A) = 0.

COROLLARY 1. The Basic Problem cannot be solved by a lower probability
that is continuous on 2%,

PROOF OF THE COROLLARY. D* is contained in the set of aperiodic se-
quences. O
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PRrROOF OF THEOREM 1. Define on X an equivalence relation by
(Vx,yeX)x=y e (IneZ)x=T"y.

By employing the axiom of choice, form a set B by choosing exactly one element
in each of the equivalence classes that partition A. Note that (Vh € Z)T"A = A
and since BC A: (Vn € Z) T"B c A. Thus U} *__T"B c A. Conversely,

xeA=AyeB)x=y= (Ane Z)xe T"B;

hence,
+ o0
AcC U T"B.
n=-o0
Therefore
+ o0
A= U 1B
n=-—o0

Observe now that B is a wandering set (i.e., {T'"B, n € Z} is a disjoint collection
of sets). Indeed

x€ET"BNT"B= (A'yeB)3'zeB) (x=y,x=2z)
>y=12
=Try=x=T"y
=n=m (byy € A).

Thus n #+ m = T"B N T™B = &. Using successively the continuity from below,
superadditivity, and stationarity of ¥ we have

k n
tim ¥| U T«znw( 0 TJB)
i=—k j=-n

k— o0

(VheN) ¥(A)

v

k n
lim E \If(Ti(Z”+1) U TJB)

koo o _p j=—n

klim (2% + 1)‘1'( U T’B).

— 00 ]= -n
Since ¥(A) is finite we conclude that (Vn € N) Y(U7- .T/B) =0 and by
continuity from below it follows that ¥(A) = 0. O

REMARK. There obviously exist stationary probability measures p such that
p(A) > 0, which proves that the set B in the proof of Theorem 1 cannot be
measurable nor can any of its shifts. Up to the set of periodic sequences we have
invoked a partition of X into nonmeasurable sets. This result is closely related to
thé classical construction of nonmeasurable sets (e.g., Halmos (1974), page 69).

6. The Basic Problem when M = C. Theorem 1 obliges us to search for
solutions of the Basic Problem that possess a domain M of continuity strictly
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smaller than 2%. As mentioned in Section 4, continuity along monotone se-
quences of cylinder sets might be sufficient to ensure weak distinguishability on
C, which suggests that we seek for solutions with M = C. Our main result is:

THEOREM 2. Let X = XZ where X, is a finite set. For any p in [0,1) there
exists a stationary lower probability P continuous along the cylinder sets C such
that P(D*) > p. Moreover, P is weakly distinguishable on C.

We begin the proof of Theorem 2 by introducing the following lemma, which
can be viewed as a partial generalization of the classical extension theorem for
probability measures.

LEMMA 3. Let P be a lower probability defined on an algebra A of subsets of
a set Q. If P is continuous on A, then P can be extended to a lower probability Q

on 2% that is continuous along A (i.e., from above on A; and from below on
A ) by letting
(VA € Aj) P,(A) =inf{P(B): B€E A,B> A},

(VAcX) Q(A)=sup{P.(B): B€A;, BCA}.

REMARK. Unlike the extension of a probability measure, the extension @
need not be continuous on ¢(A) (see part (D) of Section 8).

PRroOOF. It is easy to see that if ® is a monotone set function continuous from
above on an algebra A of subsets of a set 2, then

(VA,, B, € A) nA -nB =hm<I>(ﬂA) hm@(ﬂB)

i<n j<m

(for example see Neveu (1965), Lemma 1.5.1). Therefore we can define a new set
function P, on A; by

(VA € A,)P,(A) = hmP( N 4, )

i<n
when {A,} is any sequence of A such that N,A, = A. Evidently
(vAeA,) P,(A)=inf{P(B): Be A,BD A}.

Clearly P, extends P to A; and is monotonely continuous from above along A.
Since P, was obtained through a simple limit operation, P, is also a lower
probability on A . But A; is closed under finite unions and finite intersections
and we can apply Lemma 1 to P,. Denote by @ the least-committal extension of
P, from Ay, ie, -

” (VAcX) Q(A)=sup{P.(B): Be A;,BC A}.

Q is monotonely continuous from above along A and it remains only to show
that it is also monotonely continuous from below along A. Let A € A, and
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A =U_A, for some sequence {A,} in A. Clearly

va) @ Ua4)-pUa)se)

i<n i<n

Thus
th( gnA ) < Q(A).
Suppose that
( U4, ) < Q(A).
Then 3B € A,) B C A and -
hmP( UA) th(UA)<Q(B) mnp( nB)
isn isn “\jen

for some sequence {B;} in A with NB; = B. By the properties of upper and lower
probabilities (Section 3 (C)) we have
U A,.) + 1_3((

£f(a)v(na)]=HY

j<n

ns)]
J=n
-p(Ua)+1-2(N8B)
i<n Jj<n
But {(U;.,4;,) VU (N;_,B)°} is a monotonely increasing sequence in A that
converges to 2. Using the continuity from below on A of P we have

lshmP(UA)+1—hmP(ﬂB)

i<n j<n

ie.,

hmP(ﬂB)shmP(UA)

Jj<n i<n

which contradicts the hypothesis. We conclude that
tim@( U 4] - @(4)

i<n
and thus @ is continuous from below along A. Equivalently, by Remark (B) of
Section 4, @ is continuous from above on A, and from below on A . O

LEMMA 4. If there exists a stationary lower probability P on 2X whose
restriction to C is continuous on C and such that P(E) > 0 for some Cgssubset
E of D*, then there exist a weakly distinguishable solution of the Basic Problem
(with M = C) and a stationary lower probability @ continuous along C such
that Q(E) = P(E).
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ProOF. Suppose that there exists a stationary lower probability P such that
(AEeC;) EcD* and P(E)>0.

Consider the restriction B, of P to C. By applying Lemma 3 to P, we obtain an
extension @ of F, on 2% that is continuous along C. We note that the stationar-
ity of P implies the stationarity of @. Observe that

(VCeC) EcC=P(C)=PC)=P(E)>0.
Let E =N,C, for some sequence {C,} of cylinder sets. In view of the definition
of @ we have .
Q(E) - imB( N ¢.) > P(E) > 0.
n isn
Therefore @(D*) >0 and @ satisfies (BP2). Clearly @ is also weakly dis-
tinguishable on C. O

The next two lemmas address the question of the existence of a lower
probability that satisfies the conditions of Lemma 4.

LEMMA 5. Let n be an integer greater than 1 and F a collection of subsets of
a set Q such that all collections of 2n — 2 elements of F have a nonempty
intersection. Set ¥, = {Q} and for (1 < k < n — 1) define F,, by

Fk = {G: (HGI,G2,..-,Gk (S5 F)G = Gl N G2 N e nGk}.

Then the set function P, defined by

1, ifA=Q,

k
P(A)=(1- ~, #(VGEF, ,)G¢Aand(3GEF,)GC 4,

0, otherwise,

is a lower probability on 2%.
Proor. Clearly P(Q) =1, P, is nonnegative and monotone. By the prop-

erty of the collection F no two sets of positive lower probability can be disjoint,

and since P, is monotone, it must be superadditive. Finally consider a pair
(A, B) of sets (A # Q, B # Q) of positive lower probability, say:

r s
£n(A)=1—; and P(B)=1-—
for some r and s (1 < r,8 <n — 1). Then there exist G;€F (1 <i<r) and
H; € F (1 <j < s) such that
G,Nn:---NG,cA and HnN:---NH,CB
(and G; # G, if i # k and H; # H, if j +# I). But then
g+GNn---NGNHN---NH CANB.
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Thus
r+s
P(ANnB)>1-

and
r+s
fn(A) +£n(B) =1+ (1 - T) <1 +_P(A N B).
This concludes the proof that P, is a lower probability on A. O

Note that if the collection F in Lemma 5 (where € = X) is shift-invariant (i.e.,
(VG € F) G € F & T7!G € F), then the induced lower probability is stationary.
We can apply Lemma 5 to generate a lower probability that satisfies the
conditions of Lemma 4 by taking for F the collection {T*E, k € Z)} where E is a
C;-subset of D*, provided that F has the adequate nonempty intersection
property. The final step required for our proof of Theorem 2 is:

LEMMA 6. Let K be an arbitrary positive integer and ¢ a real number such
that 0 < & < 1. Consider any sequence of positive integers {b;, j € N} such that

Yi.b;
(vi) K==I<s,
Lj<ib
where 8 = (1 — ¢€)/2, and define
3i
=0, n=2x0b (Viix1).
j=1
Finally, define for all i (i > 0) the cylinder set
D,={xeX:@n,m)r,<n<m<r,,,|%, — %, =¢},
where X, = (1/n)L" Jx,.
The Cy-set E defined by E = NZ.,D; is a subset of D* and enjoys the property
(Vky,...,kx€Z) T En-.-NT *E =+ g.
PROOF. E is obviously a subset of D*. The proof of the second part of the
conclusion is elementary but lengthy, and only the main line is presented here
(the detailed proof can be found in Grize (1984), pages 88-92 and 118-122, and is

appended).
Define a sequence y = (¥,),<z by

2m—1 2m
_ )1, i Y bi<n+1<.)2 b,
In = Jj=1 Jj=1

0, otherwise,

v;here m is a positive integer. Note that for nonnegative n, y is composed of
alternating blocks of zeros and ones of length b; (i > 1) and clearly y belongs to
E. The case K = 1 is trivial. By induction on K (K > 2) one can prove that for
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all k,,..., kx_, such that 0 < k; < &, the sequence z defined by

Vs ifn<k, —1,
Y-y ifk,—1<n<ky,—-1,

(Vne Z) 2, = yn—kz’ if kg_ 1 <n5k3— 1,

Yn-by_p Hkg<n,

belongs to E N T~%E N --- NT~*x-1, The conclusion of the lemma follows then
easily. O

ProOF oF THEOREM 2. Let p in [0,1) be given and choose a nonnegative
integer n such that 1 — 1/n > p. Let F = {T*E, k € Z} where E is a set as in
Lemma 6 for K = 2n — 2. F is shift-invariant and has the nonempty intersection
property required for the application of Lemma 5. Using this lemma we obtain a
stationary lower probability P, on 2 such that P,(E) > p. By Remark (A) of
Section 4 the restriction of P, to C is continuous on C and Theorem 2 follows
now from Lemma 4. O

7. An explicit example of a solution to the Basic Problem when M = C.
We conjecture that, for all n greater than 1, the lower probability P, of Lemma 5
when induced by the family F = {T*E, k € Z} where E is a set as in Lemma 6
with K = 2n — 2, is always continuous along C and therefore solves the Basic
problem when M = C. This means that, in this case, the extension @ of Lemma 3
is identical to P,. We prove this conjecture for n = 2. -

. Let E be the set defined in Lemma 6 for K =2 (and say ¢ =} and
b= 22"}, Denote by P the lower probability induced by F = {T*E, k € Z},
ie.,

ifA=2X,
ifA+Xand Qk€Z)T*E C A,
0, otherwise.

1,
1
2

(VAcX) P(4) ={

Obviously P supports divergent averages and is stationary. It is possible to see
directly that P is continuous along C and therefore also weakly distinguishable
on C (by E € Cy).

Continuity from below. Consider X as a compact topological space as in
Remark (A) of Section 4. Continuity from below along C follows easily from the
fact that cylinder sets are open and the elements of F are closed and hence
compact. Indeed, suppose that-(Vn,A,€C) A,CcA,,, and U,A,=A. If
P(A) = 0 there is nothing to prove by monotonicity of P.1f PA) = 1 then

@3FeF) FcA=UA,
n
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Therefore AN) F c Ay, and thus
imP(A,) = P(Ay) = 4,

and similarly if P(A) = 1.
Continuity from above.

LEMMA 7. If the family F inducing P is such that any cylinder set other than
X contains at most finitely many elements of F, then P is continuous from above
along C.

PROOF. Let {A,} be a decreasing sequence of cylinder sets and let A =N A
If P(A)> ! then continuity from above is obvious. Assume that Pa) =
Suppose that for some n, (Vn > n,) P(A ) = 3. Then

(Vvn>ny) 3E,€F) A,DF,.

By the monotony of {A4,}: (Vn > ny) A, D F,. Then by hypothesis there must
exist a set F in F contained in 4, for all n, thus also contained in A. This
contradicts P(A) = 0 and concludes the proof. O

We shall show that the collection F = {T'*E, k € Z} where E is as in Lemma
6 satisfies the condition of Lemma 7. The following definition is useful.

DEFINITION 5. Let m < n be two integers. Two elements x and y of X agree
modulo (m, n) (write x = ymod(m, n)) if

(Vi,mSiSn) xi=yi.

LEmMA 8. (i) If a subset F of X is such that
(vx€X)(Vm,ne€Z)(3K>0) (V|k|=K)(Iy € T*F) y=xmod(m,n),
then

(VCeC)(C+ 2)(3K) (V|k>K) CNT'F+ &
and the family {T*F, k € Z} satisfies the hypothesis of Lemma 17.

(ii) The set E defined in Lemma 6 satisfies the condition in (i) above.

Proor. (i) Let C € C, C # @. By the characteristic finitary property of
cylinder sets there exist m < n such that )

vxeC and x=ymod(m,n)=yecC.
Now choose x in C. By hypothesis:
AK(m,n) (V|k|> K) (3y € T*F) y = xmod(m, n).
But then y € T*F N C, which proves the first part of (i). Again let C be an
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arbitrary cylinder set such that C # X. Then
3K) (V|k|>K) T NC°+ g;

hence, T*F ¢ C and C cannot contain more than finitely many sets of the form
T*F (k € Z).
(ii) Recall that E = N2, D, where

D;={xeX:(An,n')0<r,<n<n <r1,,|%,— %, ¢

and (r;) diverges as (i = o) (Lemma 6). Fix x in X and m < n two integers.
For all %k, k& > n, the sequence y defined by

X, ifi <k,
%= {z,,_,., if i >k,
where z is an arbitrary element of E, belongs clearly to T-*E and agrees with x
modulo (m, n).

On the other hand, we can choose r; such that (Vi > i,) r,,, — r; is large
enough to ensure for any & greater than r; the existence of z in E with

(Viim<j<n) z,,=x,

Let now y = T*z (where % > r;,)- Clearly y € T*E and y = xmod(m, n).
Therefore by taking for K the maximum of n and r; we have

(VIk|>K)(Ay € T*E) y = xmod(m, n). |

The continuity from above along C of P follows from the application of
Lemmas 8 and 7.

REMARK. Examples with a continuous range can also be constructed (Grize
(1984)).

8. Generalizations. Generalizations of our results can be sought in the
following directions:

(A) by dealing with the noninvertible transformation 7 in the case of single-sided
sequences X = X[

(B) by relaxing the condition that X, be finite;

(C) by imposing on the solutions of the Basic Problem the stronger condition
that P(D*) = 1;

(D) by requiring a domain of continuity larger than C (and so possibly achieving
a stronger form of distinguishability on C).

We shall briefly discuss each of these four possible generalizations:

(A) X = X}. All of our results extend without difficulties to that case and
we refer to Grize (1984) for the details.
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(B) More general marginal space. Our results are summarized in the follow-
ing theorem:

THEOREM 3. Let X = XZ or X} where X, is a compact subset of R (in the
usual topology). There exists a stationary lower probability P on 2% that is
continuous from below on the open sets and from above on the Cg-sets, P(D*) > 0,
and P is weakly distinguishable on C for models having these continuity
properties.

ProoF. Consider the example of Section 7 and note that E is a closed, hence
compact, subset of D*. The argument of Section 7 remains valid. O

(C) P(D*) =1. Theorem 2 asserts the existence of solutions to the Basic
Problem that assign to D* a lower probability arbitrarily close to unity.
However, the approach taken fails to produce a lower probability that satisfies
the conditions of the Basic Problem with P(D*) = 1 and we are unable at this
point to exhibit an example of such a lower probability. (Incidentally, P =
liminf, P,, where P, solves the Basic Problem with P,(D*)>1 — 1/n, is not

continuous from below along C.)

(D) Larger domain of continuity. The most natural domain M of continuity
such that C ¢ M c 2% is evidently o(C). However, the lower probability P of
Section 7 is not continuous from below on o(C). Indeed, let {x’, i = 1,2,...} bea
countable set of elements of D*° and set

(vn) 4,=X- U{x}eC,.

j=n

Observe that A, converges to X but (Vn) b)) =1

Although we are aware that many questions still remain unanswered, we
think that we have taken the first step toward the solution of the important
problem of modelling stationary stochastic processes with unstable bounded
averages. We also hope to have supported the applicability of the concept of
interval-valued probability.

APPENDIX

PrROOF OF LEMMA 6. E is obviously a subset of D*. The second part of the
conclusion is proven by induction on K. The proof is elementary but lengthy and
we first consider here the case K = 2.

We proceed in a number of steps.

STEP 1. Observe that it is enough to show
(Ve>=1) ENnT*E=+ 2.
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STEP 2. Consider the binary sequence y = (,), <z composed for n > 0 of
alternating blocks of zeros and ones of length b; (i > 1), i.e.,
2m—1
1, if Y b<n< Eb for some m € N,
J=1 Jj=1

0, otherwise.

(Vn e Z) Y, =

Let 3, = (1/n)C?qy; and c,, = L7-,b; and note that, by the property of the
sequence (b;); < n»

(YmeN) y, >1-6 and jy, <.
Clearly (¥,),<n fluctuates with an amplitude larger than ¢ and of course y

belongs to E.
We shall now prove that

(VkeN) ENT*E=+ 2.
To this end, for any given k& (k € N), define a sequence z = (2,), <z by

I A
ie,
Z= (0,30 Yiseevs Yoo1> Yos Y1 Yas---)-
We shall prove that z € E N T~*E. Note that
(Vi=0) (T*z);=y,.

Thus T*z € E, hence z € T~ *E. It remains to show that z € E, i.e., that
(Vi > 0) z € D,

StEP 3. Fix i (i > 0) and consider the interval (r;, r;,]. Writing for simplic-
ity by; 1 = By bsive = Bo, b33 = B3 we get

i+ B+ B+ By3=r
Observe that
2(r; + By + By) < 8(r;+ By + By + Bs) < 1iuy

W.lo.g. we can assume that

-

, ifrn<n<r+ B,
(,<n<ri)y,={0, ifrn+B <n<r+pB +48,
, r+B+B<n<r,,.

[y

. CasE L. k>r,, This case is simple. For all n <k we have y, =z,
therefore,

(o]
yE nDi=’zEDi.
i=0
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CaseIl. k<r,,.
(A) If & > r; + B,, then
B, n

>1-6

Z. > —
rith ri+ B, r;+ B

and
rn<r+p,<k<r,,
If 2 <r,+ B, then
2r;

-z-k+r,~+ﬁl >1- E+r+ Bl
i

>1— >1-4§

r;
+ B8
and
ri<k+r+B,<2r+pB)<r.
In both situations we have found an index n between r; and 7., st
zZ,>1-04.
B) If r; + B, + B, < k, then
- ri+ By
zr.~+ﬁ1+ﬂz<m<8 and r,<r,+ B, + B, <r,.
If r,+ B, + B, > k, then
2(r; + By) 2(r; + By)

F < <38
RirtBoths " by r+ B+ B, i+ B+ B,

and
r<k+r+ B+ B <2ri+ B+ By) <ripy
In both situations we have found an index m between r; and r;, s.t.
z, <9.

From observations A and B we conclude that |z, — z,,| > 1 — 26 = & for some

m, n in (r;, r;,,]; hence, z € D,
In both Cases I and II we have z € D We conclude that z € D, (Vi > 0), i.e,,
z€ E.

We now turn to the case of K > 2. We proceed in a number of steps.

STEP 1. Again it is enough to prove that
(*)- (Vky,...; kg1 200 ENTHMEN---NT *-E+ &,

STEP 2. It remains to show that E satisfies (*). Let y denote the same
sequence as in the case K = 2. Set L = k — 1. For any given set of L natural
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numbers &k, < k, < --- < k; we define a sequence z by

Vs if n <k,
In—ryp iRy <n <k,

(VRneZ) z,={dnty ifky<n<k,,
yn—kL, if kL < n,

ie,
z= ("" Yis Yaseees ykl’ Yiseees ykz—kl’ Y1seees ykb—kb_ls Y1 y2’~")'
We shall prove by induction on L that such a sequence z belongs to

ENnT REnN ... NT kE,

The case L =1 (i.e,, K = 2) has been treated above. We assume now that the
proposition is true for L — 1. Note that

T 2z = (covy Y1 Yorenvs Yagoys Y1revs Fhg—hgr e+ Yoy—hy_» Yi» Yase++)-
By the induction hypothesis,
Thze ENT " ®EN T k~kE N ... NT~re~k-DE,
ie.,
zeTMENT REn..-NT kE.
It remains only to show that z € E, i.e, that z € D, (Vi).

STEP 3. As in Step 3 of the case K = 2 we fix i (i > 0) and write
i+ B+ Bt B=r
and assume w.l.o.g. that B, is a block of ones (8, a block of zeros).

Casel. k; > r;,,. Then we are in a situation of dimension lower than L and
by the induction hypothesis z € D,.
Case Il. k; <r,, . Then thereisa p (p = 1) s.t.

ki <ky<k, ,<r<k,< - <k <r,

(assume if necessary that k, = 0).
(a) Consider the first index j s.t.

P<j<L and k;_ ,+r,+ B, <k,
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If such an index exists, then
Jjor

z +r + >1]—- —m—m8m8m8mm > 1 -
ki i+ By i+ Btk Bl

>1-46

and
r<ki,+r+p <jr+B)< (L+1)(r;+ B, +8,)
<é-r,<r,

If no such index exists then

EkL+"i+Bl>1—(L+1) >1—8

rl
ri+ By
and
kp+r+ B <(L+1)(r+ B+ By) <1y
In both situations we have found an index »n in (7;, r;,,] where 2z, > 1 — 4.
(b) Consider now the first index [ s.t.
P<l<L and k,_,+r,+B,+ B, <k,
~ Note that necessarily ! > j. If such an index [ exists then
I(r, + By) r,+ B

z < l <é
kiatritbitBe T o r+ B+ By i+ B+ By

and
<k +r+ B+ B <Uri+ B+ B) <ri,
If no such index [ exists then

r,+ 8
‘zk,,+r,+Bl+B2 < (L + 1)+—Bl+l—B; <$
and
rp<kp+r+ B+ By <(L+1)(rB+By) <ri

In both situations we have found an index m between r; and r;, s.t. z,, < 8.
From the observations (a) and (b) we conclude that z € D,. Therefore z € E. O
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