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ON PROBABILISTIC ANALYSIS OF A COALESCED
HASHING ALGORITHM

By B. PITTEL
The Ohio State University

An allocation model [n balls, m (> n) cells, at most one ball in a cell]
related to a hashing algorithm is studied. A ball x goes into the cell h(x),
where h(:): {1,...,n} = {1,..., m} is random. In case the cell h(x) is
already occupied, the ball x is rejected and moved into the leftmost empty
cell. This empty cell is found via the sequential search from left to right
starting with the cell occupied by the last (before x) rejected ball. Denote
Ty(x) the number of the necessary probes. In the end, due to a resulting
system of references, the n occupied cells form a disjoint union of ordered
chains, and to locate a ball x it suffices to search only the cells of a subchain
originating at the cell A(x). Denote T)(x) the length of this subchain. The
main result of the paper is: in probability,

max T} (x) = log,n — 2log,log n + O(1),
max T(x) = log,n — log,log n + O(1),

as n — oo, if n/m is bounded away from 0, b = (1 — e~ /™)1,

1. Introduction. Suppose we have n different objects (keys, in computer
science terminology) labelled 1,2,..., n, which are to be allocated one after
another in an m-long array of cells (a table), so that each cell would contain at
most one key. (Naturally, m > n.) Assume also that there is given a function
h(-): {1,...,n} = {1,..., m}, so that, for 1 < x < n, h(x) is the index of a cell
the key x is assigned to, if this cell is still empty. [In applications, the keys may
be numbers, records, i.e., elements of a given key space K. Thus, we should begin
with a function H(-): K — {1,..., m}. But if the keys to be allocated in the
table are k,,...,k, we may and shall restrict our attention to h(i) = H(k;),
1 <i <n.] An allocation algorithm must include instructions about how to
handle collisions, that is, the situations when A(-) has the same value for several
keys. In addition, an algorithm must be able to locate a key if it is already stored
in the table.

Out of the many existing (so called hashing) algorithms meeting these condi-
tions, we consider in this paper a coalesced hashing algorithm [4], [5], [12], [16],
[24] and [25].

This is how it works. Suppose that the keys 1,2,..., x — 1 are already stored.
Suppose also that the x — 1 occupied cells form a union of disjoint subsets
(chains), with an order < induced by the labels of the keys occupying them,
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having the property: If a key x’ is in a cell y, then the cells A(x’), y belong to
the same chain and A(x’) < y. (Technically, the chains are specified by refer-
ences associated with the cells; see the example that follows.) Now, if the cell
h(x) is not occupied by a key x’ < x, then the key x moves into this cell, and a
new chain of length 1 is formed. Otherwise, the key x is rejected and moves into
the leftmost empty cell; the latter joins, as a new last cell, the chain which passes
through the cell A(x), thus producing a longer chain. [The empty cell itself is
found via the sequential (left-to-right) search starting from the right neighbor of
a cell occupied by the key rejected last before the key x.] In the end, all the keys
are stored, and the n occupied cells form several disjoint chains. [If needed, we
can locate now any key x in the table by searching the cells of a subchain which
starts at the cell A(x).]

Efficiency of the algorithm is measured by a sequence of the search times
{Ty(x), Ty(x)}; < x < n- Here Ty(x) is the length of a subchain connecting the cell
h(x) and a cell which actually contains the key x. Ty(x) is the number of extra
cells searched sequentially to accommodate the key x, in case the cell hA(x) is
occupied by a key x’ < x.

EXAMPLE. m =10, n =8 and {h(x):1 < x < 8} = {5,9,10,5,2,9,2,1}. The
keys are allocated as shown on Figure 1. The chains of cells are {10}, {2,4},
{9,3} and (5,1,6}. Also, {Ty(x): 1 <x <8} =1{1,1,1,2,1,2,2,2} and {Ty(x):
1<x<8}={0001,0,21,2}.

Assume that the hashing function A(-) is chosen at random, which means that
hQ),..., h(n) are independent and each A(x) is uniformly distributed on
{1,..., m}. Then the search times become random. Let also n, m — o so that
n=am and 0 < a <1 is fixed. (The parameter a is usually called the load
factor.)

Exact and asymptotic formulas for E(T,(x)) and o%(T\(x)) were obtained in
[16], and it was observed there that the average search times remain bounded
even when a = 1, which corresponds to the completely filled table. (For the
mean values analysis of other versions of the coalesced hashing, see also [4], [5],
[15], [24] and [25].)

Fic. 1.
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Our first result is

THEOREM 1. (a) lim P(Ty(n)=1)=1—a, and forl >0
lim P(T(n) =1+ 2)
(1.1) a? ! s+ 1Y/ ta
=a(l + H) - -+ El(—l) ( 7 )(k)(l — eha),
where Hy=1/1+ --- +1/1. Also
(1.2) P(T(n)=1)~e*1-e)""/l, a=n/m,

if | = o0 and 1% = o(n).

(b) Ty(n) = 8(1 + 7) in distribution, where 8 and 7 are independent,
P86 =1)=1—- P(8 =0) = a and t is geometrically distributed with parameter
e %ie,Plr=8)=e"%(1l—-e"%°%s>0.

Consider now U(n) = max{Ty(x): 1 <x < n}, i = 1,2; these random vari-
ables represent the largest search times. It turns out that U,(n) grow logarithmi-
cally with n. More precisely, we shall prove

THEOREM 2. In probability,
(1.3) U,(n) = log,n — 2log,logn + O(1),
(1.4) Uy(n) = log,n — log,logn + O(1),
where b= (1 — e %)~ 1,

Notes. (1) It is quite surprising that U,(n) and Uy(n) behave so similarly,
since the corresponding searches are very different. (2) Consider T(x) = Ty(x) +
Ty(x) which is the total number of probes needed to accommodate the key x,
1 < x < n, and denote U(n) = max{T(x): 1 < x < n}. In view of Theorem 2,

log,n(1 + 0(1)) < U(n) < 2log,n(1 + o(1))

in probability, and we conjecture that, out of these two estimates, the upper case
is sharp.

The reader interested in a description and probabilistic analysis of other
hashing techniques (linear probing, double hashing, etc.) and related search
algorithms can look at [1], [3], [6]-[16], [19]-[23] and [26]. (The list is by no
means complete!) Undoubtedly, the invention of hashing algorithms and a need
to analyze them have stimulated a new interest in the well known combinatorial
schemes—random allocations [17] and mappings [18].

_ 2. The proof of Ty(n) and U;(n) asymptotic characteristics. Denote by
h(x) the index of a cell which actually contains the key x. By the definition of
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the algorithm, Ty(n) =1 iff n(n) # A(x), x < n. Since A(n) is independent of
h(x), x < n, and is uniformly distributed,

(2.1) P(T(n)=1)=1-(n-1)/m—>1-a.

How can we evaluate P(Ty(n) = [ + 2), I > 0? Introduce X(», 1) the number
of the chains induced by the first » keys, with the length more than I Denote
E(», 1) = E(X(»,1)). Clearly, T(n) = | + 2 iff the cell ~(n) belongs to a chain
(induced by the first n — 1 keys) with length at least I + 1, and the length of the

subchain connecting the cell A(n) and the maximal cell of the chain is exactly
! + 1. Hence, again by independence,

22) P(Ty(n) =1+ 2) = E(P(Ty(n) = 1 + 2|h(x), x < n))
=E(X(n-1,1)/m)=E(n-1,1)/m.

In view of (2.2), the relation (1.1) follows directly from
LEMMA 1. Forl+1<v<m,

E(v,1)=v(1+ H)) — m"l(V)

2
! k+1 k\”
_1)* Ni-1-2

@2) mE (5 - -w) )
1
H=Y -
=

Proor. For A ={x, < -+ <x,,,}, x;<», put 8(A)=1 if the cells

h(x,),..., A(x,,,) form an initial segment of a chain; if not, put 8(A) =
Observe that 8(A) = 1iff h(x,) # h(x) for x < X1, h(x) # h(xl) (= h(xy)) for
X, < x < x5, h(xy) = R(xy), ..., b(xp) € (R(xy), - .-, B(x,_)}, h(x) €
(h(x,),.. , h(x))} for x,<x <x,.,, and h(x,,) € {h(xl), ., h(x;)}. Obvi-
ously, X(v, 1) =2,8(A),so

E(v,1) =2,E(8(A)) =Z,P(8(A) =1).

Here
P(8(A) = 1) = [1 - (x, - )/m](1 - 1/m)™ "7 (1/m) -+

[(1-1)/m]@ - l/m)™ ™" (i/m)
(2.4) l
-(1- so/m)(l!/m’)j[Il(l —j/m)%,

S-=xj+1—x

! i~ 1, xy=0.
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Therefore,

l
E(v,1) = (1t/m')| 2,1 - so/m)j=ﬂl(1 —J/m)7|;

here the summation is taken over all the tuples s = (sy,..., s;,,), s; being
nonnegative integers and Eéit)sj =p — (Il + 1). In other words, the sequence
(E(u+ (I+ 1),1)(1!/m")"1},. 0 1s an (I + 2)-fold convolution of {1 — u/m}, . o,
{@—-j/m)*},5s0 1 <j<l and {1}, , Hence

E(v,1) = (1! /m")coeff,.-u:1 F(2,1),
F(z,0) = [(1 - 2) " = 2(1 - 2) */m] 1%[1[1 —2(1—j/m)]7', gl <1
So, by the Cauchy formula, j
E(»,1) = (l!/m’)(2vri)_1fCG(z)dz, G(2) = F(z,1) /2%

here C = {z = re: —7 < ¢ <7}, r <1. Outside C, G(z) has the poles zj=
(1 —j/m)~ % 0 <j < L Hence, by the residue theorem,

l
E(v,1) = —(1'/m")|res,_ G(2) + Y res,_.G(2)|.
Jj=0

Here res,_,G(z) = 0 because d max{|G(z)|: |z| =d} - 0 as d - oo. A direct
evaluation of the other residues leads, after simple but tedious manipulations, to
the formula (2.3). O

Our next lemma yields immediately [see (2.2)] the formula (1.2), and it will be
also used later to prove the relation (1.3).

LEMMA 2. Suppose that l,v,m —» o, I12/m = 0(1) and v/m is bounded
away from 0. Then
(2.5) E(»,1) =me’l" (1 — e *)"'1 + 0(1)), ov=yv/m.

ProoF. Introduce two auxiliary functions
l

E(t;v,)=tr+m 21(_1)’%—1(;‘)[1 - (1 - tf)v],

(2.6) Ey(t; v,1) = —tvH, i=t2m_1(;) m
B

where t € [0,1]. Clearly,
(2.7) E(v,1) = E|(1; »,1) — Ey(1; »,1).
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Now, differentiating E,(¢; »,1) and Ey(t; v, 1) with respect to ¢, we have

(2.8) Bt v,1) = vkéo(—l)k(é)(l - t%)m,

l k v—1
E{tv,0) = —vH, + tm (v —1) = » ¥ (—1)kk‘1( ’)(1 - t—)
k=1 k m

Cm (1) 4 Y (—I)kk“l(fz)[l - (1 - t%)y_l}

(2.9) k=1

wsfio-nend (o)

=m WE(t;v—-1,1) ().

(We have used here the identity H, = X_,(— l)k‘lk‘l( ’i), which can be easily
proved by induction.) .

The sum in (2.8) has a nice probabilistic interpretation. Namely, consider an
allocation scheme with w balls and m cells, which differs from the classical
scheme in that a ball is accepted by a cell, chosen by the ball, with probability ¢
independently of all other balls and cells. Consider some fixed [ cells, and denote
P(t; w, 1) the probability that none of these I cells is empty. Since the probabil-
ity that some k fixed cells are empty equals (1 — ¢{(k/m))”, the inclusion—exclu-
sion principle shows that

l B\
. - D)1 - 2
(2.10) P(t; w,1) kgo( 1) (k)(l tm) .
Combining (2.8) and (2.9) with (2.10), and using E;(0; », 1) = 0 [see (2.6)], we
get
(2.11) E(1;0,0) = 'P(t; v - 1,1) dt,
0

(2.12) Ey(1;»,1) = m (v — 1)/01(1 — t)P(t; v — 2,1) dt.

To proceed, we need a sharp estimate of the function P(¢; w,l), and it could
hardly be done directly via (2.10). Fortunately, using the probabilistic interpreta-
tion of P(¢; w, l), we can show that

(2.18) P(t; w,1) = w! coeffzw[ez(l — e~=t/m)],

Further, an application of the saddle-point method yields that, uniformly over
t e (0,1],

(2.14) P(t; w, 1) ~(1-e#), g=w/m,
provided that 12/m = o(1), g # o(1). (See Appendix A.)
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The rest is simpler. By (2.11) and (2.14),
(2.15) E(1;v,1) ~» /O -eat)at, g =@-1)/m.

Introducing y(t) = log(1 — e4%), we observe /(1) = g,(e® — 1)~1, y(¢) < 0,
¢t € (0,1] and is bounded for ¢ € [}, 1]. By Jensen’s inequality,

[ expliv()] at < [exp(1lv (1) +)(e - V)] at
= (1= )’ [Cexp[1y/(1)(¢ - 1)]

~(1-e ) ()™, 1o,

= efi(lg) (1 —e&)™,
On the other hand, denoting ¢, = 1 — [~%/3,

[la-eeiar> [a-eeta
0 t

(2.16)

= [Cemp{tlv(@) + w(0)(¢ - V] + O(u(e - 1)7))} e

=~ (L= em8) () [ Ve
0

(2.17)

~efi(lg) (1 —e )M, Uty - 1) =11
By (2.15)~(2.17),
(2.18) E(1;9,1) ~mel (1 —e )™,  v=v/m.

To estimate E,(1; »,1), observe first that, by the definition, P(t; w, 1)
increases with w. Hence [see (2.11), (2.12) and (2.14)]

Ey(1; v,1) < (v/m)v [ "= 6)P(t; v —1,1) dt
0

(2.19) ~ (v/m)» fo "1 -6 - e 8t) dt
= (o/m) ["¥(0) at,

where

(2.20) ¥(t) = V/:(l — e &%) ds.

Now, the direct differentiation shows that ¥"(¢) — le¥'(t) > 0, t € [0,1], ¢ =
(e — 1)~ therefore, ¥'(t) — le¥(t) = ¥'(0) — le¥(0) = 0, and

f;l‘l'(t) dt < (lc)‘lfOl\Ir’(t) dt = (Ic) '¥(1).

Together with (2.15), (2.19) and (2.20), it implies that
Ey(1;»,1) = O(I7'E\(1; »,1)) = o( E,(1; », 1))
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(remember, [ — o). This relation, (2.7) and (2.18) combined complete the proof
of Lemma 2. O

Let us turn to Uy(n) = max{Ty(x): 1 < x < n}. Inti'oduce

I, = log,n — 2log,log,n + w(n),

(2.21) 1 b 85108 (n)
I, = log,n — 2log,log,n — w(n),

where w(n) = o and w(n) = o(log n).

Proor oF (1.3). We need to show that
P(Uy(n)>1) -0, PU(n)>1l)—->1, n- o.

Fix aninteger 0 </<n—1.Foraset A= (x; < --- <x,,,},I<L<n-1,
put &(A) = 1 if the cells A(x,),..., A(xy,,) form an initial segment of a chain,
and Ty(x,),..., Ty(x) < I, but Ty(x;,,) =1+ 1, that is,

{fz(xl),...,ﬁ(xj_l)}, 2<j<l,
h(x;) € {ﬁ(xj_(l_l)),..., ﬁ(xj_l)}, l+1<j=<1L,
{(A(x)),.., A p_oyy)}s  J=L+1

Otherwise, put ¢(A) = 0.

Introduce the random variables Y(n,l) and Z(n,l) which are the total
number of such segments and the total number of segments of length exactly
1 + 1, respectively. Clearly,

Y(n,))= Y e(4), Znl)= Y e(A).

A:|Alzl+1 A:|A|=1+1
Also
(2.22) P(U(n) >1) = P(Y(n,1) > 0) < E(Y(n,1)),
and by Chebyshev’s inequality,
(2.23) P(Uy(n)>1)=>P(Z(n,l)>0) > E%(Z(n,1))/E(Z%(n,1)).

We will use (2.21) with =1/, and (2.22) with [ = l,. To estimate E(Y(n, 1)),
E(Z(n, 1)) and E(Z*(n, 1)), we observe first that, by (2.4), and the definition of
e(A),

E(e(A)) = P(e(A) = 1)
= (1 = so/m)[(1 = DI = )" L~ 1+ 1) /m"]
L
224) x [T —-j/m)¥, s;j=x.,—%—1,2,=0,
j=1
= B(3(A)(I - )" (L -1+ ) /(L) ot
Let [ ~ log,n, b= (1 — e %)}, a = n/m. Denote p = [3log,n] and write
E(Y(n,1)) = Z4E(e(A)) + Z{E(e(A)) = 2"+ 27,
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where |A| <p in 3’ and |A|>p in 2. Since e(A) < 8(A) and E(n, L)
decreases as a function of L, we have by Lemma 2,

2" <ZYE(3(A) = X X E(8(A) = X E(n,L)

(2.25) L>p A: |Al=L+1 L>p
<nE(n,p) = 0(n%7*) = 0(n™").
Further, by (2.24) (and Lemma 2 again),
p—1

Y=Y E(nL)(I-1)""L-1+1)/(L)_1
L=1
~ me®(126'*1) "' {(n, 1),
f(n,1) = ii_l(bb-’L/l)‘l(l - L -1+ )AL,

Here
1<f(n,l)< X (L—-1+1) (b)) =e2a<e2
L=1

Therefore, if I = I, [see (2.21)], then
3’ = O(n(log,n) ~*b7*) = O(b~™),
and [see (2.22) and (2.25)]
P(U(n)>1) <3+ 32" =0(b~*™) + O(n1) = o(1).
Let now I = I, [see (2.21)]. First of all, according to (2.24),

E(Z(n,1))= X E((A)=0"' Y E(8(4)) =I"E(n,l)
(2.26) A:]A|=l+1 A:)A|=1+1

~(e? = 1)m(I%") ' = a (e - 1)b*™ > oo,
Further, since &(A,)e(A,) = 0for A, # A, and A, N A, + @,

(2.27) E(Z%(n,l)) = E(Z(n,1)) + AZA P(e(A)) =1, e(4,) = 1),

where the sum is taken over all ordered pairs of disjoint subsets A,, A, with
Al = |4y =1+ 1.
LEMMA 3. For all such pairs (A,, A,),
P(e(4,) =1, e(A;) = 1) <c(l,m)P(e(A,) = I)P(G(Az) = 1),
where
c(l,m) = [1 - 21+ 1)/m] 2D,

Proor. For B cC {1,...,n}, denote I(B) the smallest interval which con-
tains B, and J(B) = I(B) \ B. Introduce also f,(x), the total number of the keys



ANALYSIS OF A HASHING ALGORITHM 1189

from A, strictly less than x, i = 1,2. Then [see (2.24)]
P(e(4) =1) = [(1= 1)t/m'](1 = so/m) [T (1 = fi(x)/m),

e]i = J(Al))

where sy; = x;; — 1, x,; being the first key from A, i = 1,2. It is not difficult to
see that

P(E(Al) =1, e(4,) = 1) = [(l - 1)!/ml]2(1 = 501/m)(1 — sp5/m)

(2.28)

(2.29) x TL( - f(x)/m), I =J(4,UA4,),
x€J
where
f(x) = {fl(x) + fo(x), ifmax( fi(x), fz(x)) <l
min( f,(x), fo(x)), if max(f,(x), fy(x)) =1+ 1.
By (2.28),

P(e(A,) = 1)P(e(A,) = 1)
[(l - 1)!/ml]2(1 = 80/m)(1 = s0o/m)ILIIL,1IT,,

II, = xelJ_[m, (1 - fl(x)/m)(l - f2(x)/m),
II, = H (1 - fi(x)/m),

x€J\J,
;= H (1 = fy(x)/m).

x€JJH\y

But f(x) <lon J, i=1,2, so, by the definition of f(-),
(1= H(x)/m)(L — fox)/m) > (1 = (F(x) + fo(x))/m)
=(1_f(x)/m)» xeJ N,
1-f(x)/m=>1—-f(x)/m, x€d,i=1,2.

Hence,
P(e(A;) = 1)P(e(4,) = 1)
E30) > (@ - DymQ = so/m)(1 = sw/m) TT (1= f(x)/m).
Besides, it can be checked that
JUdcdJU([NA)U(I,NnA),
SO

(2.31) (U L)\I| < ,N A+ |[,NA| <A + |4, =2(1+1).
Since f(x) < 2(I + 1) as well, the combination of (2.29)-(2.31) leads to

P(e(A,) = 1)P(e(4,) = 1) = (1 = 2(1+ 1)/m)* " PP(e(4,) = 1, (4,) = 1).
O
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By this lemma and (2.26) and (2.27),
E(Z%(n,1)) < E(Z(n,1)) + (I, m)E2(Z(n, 1))
< E*(Z(n,1))[1 + O(12/m) + O(b~*™)].
Hence [see (2.23)],
P(Uy(n) > 1) 2 [1+ O(2/m) + O(b=*™)] ™' = 1 + o(1).
The proof of (1.3) is now complete. O

NoTE. Introduce C(n), the length of the longest chain (“monster”; cf. [11]).
It is obvious that C(n) > Ty(n). Using X(n, !) instead of Y(n, ) and Z(n, ! ), we
could have proved in the same way that, in probability,

C(n) = log,n — log,logn + O(1).

3. The proof of T,(n) and U,(n) asymptotic behavior. Recall that Ty(x)
is the number of extra cells searched sequentially to find an available cell for the
key x, in case the cell A(x) is occupied by a previous key, 1 < x < n. [This
search starts from the right neighbor of a cell occupied by the last (before x)
rejected key, or from the cell 1 if no key < x has been rejected.] In particular,
Ty(x) = 0iff h(x) & {ﬁ(x’)}x,q. Denote K(x) = 2. _ ,Ty(x") [if K(x) # 0, then
it is the index of a cell filled by a key rejected last among the keys < x]. We
shall also need L(x), the length of the maximal block of cells, beginning from the
first cell, which are all occupied by the keys < x. [“Maximal” means that no key
< x occupies the cell (L(x) + 1).] Put finally M(x) = L(x) — K(x). (The ex-
pected values of K(x), L(x), M(x) were obtained in [16].)

NoTe. Observe that Ty(x) = 8(x)[1 + M(x — 1)], where P(8(x) =1) =1 —
P(8(x) = 0) = (x — 1)/m, and 8(x) is independent of M(x — 1) (in fact of the
whole {A(x'): ' < x}).

LEMMA 4. Letk<l<x<n.Ifk=>1, then

P(K(x)=k,L(x)>1) = m"‘(g:alc)(x - 1)*P(x,x — 1,x — k)
31 —m (,’,’::,ﬁ)xg(—l)f(x;k)(x—l—f)",

where P(u, v, w) is the probability that in the usual allocation model, with u
balls and v cells, some w fixed cells are not empty. Also
(3.2) P(K(x) =0, L(x) > 1) =m~( 2 = L)x.

ProoF. The relation (3.2) is easy, since K(x) = 0 iff no cell is chosen by two
or more keys < x.[We say a cell y is chosen by a key x’ if A(x’) = y.]

Let K(x) =k =1 and L(x) =1 By the definition of the algorithm and
K(x), L(x), we have then (a) no key < x has chosen the cell %, (b) all the cells
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k + 1,...,1 are chosen by the keys < x and (c) exactly x — [ cells among those
to the right from the cell [/ are chosen by the keys < x.

Conversely, suppose that the conditions (a), (b),(c) are met. If K(x) < k& then
[by (a)] the total number of the cells occupied by the keys < x is at most x — 1
—impossible. If K(x) > k&, then [by (b)] K(x) > [ and [by (c)] the keys < x
occupy at least x + 1 cells—impossible again. Hence, K(x) = & and [see (b)]
L(x)>1

Consequently,

P(K(x) =k, L(x) > 1) = P((a), (b), (c) are satisfied)
= (m_l)(x_ 1)xP(ac,x— 1,x — k)

x—1 m

(2 et - )

O

COROLLARY 1 (straightforward).

(33) P(K(x)=k) = ”‘_x(% ﬁ)(x—l) P(x,x—-1,x—k), kx1,

m_"(mn_l x)x!, k=0.

COROLLARY 2. If m — x = O(1), then M(x) = G,, where G, is geometrically
distributed with parameter e!

[In view of the note preceding Lemma 4, the last corollary implies Theorem
1(b) in case a = 1.]

PRroOF OF COROLLARY 2. We may and shall assume that m — x = p is fixed.
Denote R(x) = x — K(x). By Lemma 4, for fixedr > s > 0,

P(R(x)=r,M(x)>s)=P(K(x)=x—-r,L(x)>x+s—r)

=(l“'+;_s)(1_x_l)x(1+ux_1)—x
x T /() s =)

: - (“ T ey a - ey
P(R(x)=r, M(x) =s)

= e eyt 0 e ey
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So
(R(x), M(x)) = (G + Gy, G,),

where G{¥ is negative binomially distributed with parameters e, u, and G{*
and G, are independent. [Just as easily, we could have proved that M(x) and
the lengths of all u consecutive blocks of occupied cells to the right from the cell
L(x) are asymptotically independent and geometrically distributed with param-
eter e" 1] O

To handle the case m — x — o0, and later — Uy(n), the following two lemmas
are needed.

LEMMA 5. There exists an absolute constant c, such that

(34) P(u,v,w) < cy(u/ro)* " ?exp(ro — u)(1 - e )%, Vr>D0.
LEMMA 6. Introduce

(3.5) E=k(x)=m-(m-x)e*, A=x/m.

For every e € (0,1), there exists p, = po(€) such that for x > em and p = m —
x = ”0’

(3.6) P(K(x) — k| = (m - x)¥°) < exp[—(m - x)1/5/3O].

PROOF OF LEMMA 5. Arguing as in the case of the probability P(¢; w, ) in
Section 2 (see Appendix A), we have

P(u, v,w) = (u!/v*)coeff,.{exp[z(v — w)](e* — 1)*}
(3.7) = (u!/v*)(27) " fjﬂ.)f(rei“’) de,

H(z) = exp[z(v — w)](e* - 1)*/2%, r>0.

Here
(3.8) |#(re**)| < #(r)exp[(rv/2)(cos ¢ — 1)]

< #(r)exp(—c,rv¢?), ¢, >0,
since

|exp(re®)| = e’exp[r(cos ¢ — 1)]
and it can be checked that
lexp(re®) — 1| < |e” — 1|exp[r(cos ¢ — 1) /2]

(see [22, Appendix]).
Hence

P(u,v,w) < co(u!/o*)(ro) " 2#(r), ¢, =2"Ymc,) 2,

and, using an inequality u!< c;u'/%(u/e)*, we obtain (3.4) with ¢, = c,c,. O
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ProoF oF LEMMA 6. First of all

69 K@ -H=lk-RE@)-H

= |R(x) - (m—x)(e*-1), A=x/m.
Further, by Lemmas 4 and 5 with r = A, we have, for 0 < s <j < x,
P(R(x) =Jj, M(x) = s)
=P(K(x)=x—k,L(x)2x+s—k)

= mse - (M P - 1)
(3.10) < co(” +{; - s)m"‘(x ~1)*[m/(x = 1)]* (e )1 - er)
<c[PHIT ey - e

=cP(GW +Gy=j,G,25), p=m-—x,c=2c.

[G, and G{¥ are independent, G,(G§*) is geometrically (negative binomially)
distributed with parameter e * (with parameters e, u).] Consequently,

(3.11) P(R(x) =j) < cP(G{) =j), j<ux,p=p+1.
Also [see (3.3)],
(3.12) P(R(x) =x) =P(K(x) =0)=(m),/m* < exp[—x(x — 1)/2m].
Observe that
E(G) = wE(G)) = w(e* - 1),
so [see (3.9), (3.11) and (3.12)]
P(K(x) — k| = p*®) < exp[ —x(x — 1)/2m]
+cP(|G§"") - E(G®M)| > x(u’)3/5),

where x = 1 as p — co.
The rest of the proof follows a general idea, owing to Chernoff [2]. Namely, we
write

P(GM = (<)j) <g(2)/z), z=(=)1,
where
g8(z) = E(z%) = [E(z9)]" = [p/(1 - ¢2)]", p=1-g=e.
Choosing in each case z which minimizes g(z)/z”, we obtain

PG = (<)j) <exp[®,.(/)], Jj=(=)aw'/p=E(GY),

®,.(y) = wlog[p(w' + y)/w] + yloglg(n' + y)/y].

(3.13)
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Now, since ®,,.(qp'/p) = @,,.(qr’/p) = 0 and
O, (y) = —w/[y(w + )],
we easily get from (3.13) that (p = e™?)

(310 PGP — E(GPM)| = x(w)?) < 2exp[ —p*(m — x)¥°x2/4p]
1 |

< exp[—(m - x)"/°/29.6],
provided that p’ is large enough.
Using (3.12) (remember, x > em) and (3.14), we obtain (3.6). O
This lemma enables us to complete the proof of Theorem 1(b) by proving

LEmMA 7. If liminf,x/m € (0,1], m — x > o and s = o((m — x)'/°), then
P(M(x)>s)~(1-e™)°, A=2x/m.
Proor. By (3.2),
P(M(x)>s) = m"‘(;’n1 _ ;)x! + P + P,
where
p = P(M(x) >s, |K(x) — k| <(m- x)3/5),
P, = P(M(x) > s, |K(x) — k| > (m — %), Rk=m-(m-x)e
It can be checked that, uniformly over % such that |k — k| < (m — x)%/%,

(M B o) = (2B - By /m - B [1 + O(s/(m — x)9)]

- ('g - 5)(1 —e™)°(1 + 0(1)).
By (3.3), (3.15) and Lemma 6, we have then
Pi=(1-e)P(K(x) -k < (m - x)*°)(1 + o(1))
~(1—-e?)".
It remains to observe that
P, < exp[—(m - x)1/5/3O] =o[(1-e)°],
[s = o((m — x)'/%)] and

—x(m—s
m (m—x

(3.15)

)x! < m"‘(m"_l x)x! = O(exp(—¢*m))
=o[(1-¢eM)°]. m]
Next:

LEmMmA 8. (a) If liminf,,x/m € (0,1] and s = o(m), then
(3.16) P(M(x)=s)=0[1-¢)°], A=zx/m.
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(b) Denote #(x) = max{M(x’): x’ < x}. Then, uniformly over x < m, and
s> 0,

(3.17) P(M(x) = s) = O[m@ - e)°].
ProoF. (a) According to (3.11) and (3.12),
P(M(x) > 5) < exp[—%(x — 1)/2m] + ¢ L PGP + Gy =/, Gy > s)
= exp[—x(x — 1)/2m] + cljD(:;A >s)=0[(1-e?)"].

(b) By the definition, M(x’) is the length of the block of cells chosen by the
keys < x’, which begins from the right neighbor of the cell occupied by a key
rejected last among those keys. Hence, .#(x) < B(x), where B(x) is the length
of the longest block of cells chosen by the keys < x. So,

(3.18) P(A#(x)>s) < P(B(x) >s) <mP(x,m,s)

[see Lemma 4 for the definition of P(u, v, w)]. Applying Lemma 5 (u = x,
v=m,w=s, r=\=x/m), we get

P(M(x) = 5) < com(l —e?)°. i
With the last lemma at our disposal, we can now prove

LEMMA 9 [on an upper bound of Uy(n)]. In probability,
Uy(n) < log,n — log,log,n + O(1).
Proor. It suffices to estimate from above .#(n), since 1 + M(x) > Ty(x),
1 < x < n. Denote n, =[n/2], #(n,, n) = max{M(x): n, <x < n}. Let also

s = log,n — log,log,n + w(n), where w(n) — o0, w(n) = o(log n) and is other-
wise arbitrary. Since

M (n) = max{M(n,), #(n,,n)},
we have
P(A#(n) >s) < P(M(n,)=s)+ P(M(n,,n)>5s)

<P(M(n)=s)+ i P(M(x)>s)
(319) x=m

= O{n[l — exp(—n/2m)]° + i [1- exp(—x/m)]s}.

Here[b=(1-e %!, a=n/m]

n[1 — exp(—n/2m)]° = nb~*[(1 — exp(—n/2m))/b]°
= O[(log,n)p®"]  (p = [(1 - exp(—n/2m))/b]"?)
=0(n"°%, ¢>0,

since p < 1 and is bounded away from 1. Furthermore, estimating the sum in
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(3.19) by an integral and arguing as in (2.20)—(2.23), we also have
n

(320) Y [1- exp(—x/m)]° ~ nfll/z[l —exp(—at)]®dt ~ c(a)ns~ b7,

c(a) = e*(ab)~ 1. By the choice of s,
ns~lp7s = p=em,
In view of (3.19) and (3.20), and w(n) = o(log n),
P(A(n)2s)=0(b"“M) >0, n- oo,

and the lemma is proven. O
It remains to establish a similar bound from below. Let us describe our plan of
action. Denote s = log,n — log,log,n — w(n) [w(n) = 00, w(n)= o(logn)],
n,=[n/2)], n,=nif a=n/m<1, and n, =[n— n*?]if a = n/m = 1. De-
fine A(x) =1 [A(x)=0] if M(x)>s [M(x)<s], and introduce Y(n) =
E74 AC). ‘

We shall (a) estimate E(Y(n)) and E(Y?(n)), (b) show—via Chebyshev’s
inequality—that Y(n) is unbounded in probability and (c) deduce from this that
U,(n) = s with probability approaching 1 as n — oo.

LEMMA 10.
(3.21) E(Y(n)) ~ e¥(ab) 'b*™,  n - oo (andm - ).

PROOF. For m large enough, m — x > n'/2, s = o((m — x)'/%)if n, < x < n,.
Since E(A(x)) = P(M(x) > s), summing over n, < x < n, and using Lemma 7,
we have [see (3.20)]

E(Y(n)) = 2, P(M(x) 2 5) ~3,(1 - e™*/™)°
~ nfnz/n[l —exp(—at)]® dt~ nfl [1 - exp(—at)]®dt ~ c(a)ns'b°
n/n 1/2
= e%(ab) 'bem, ]
LEMMA 11.
(3.22) E(Y%(n)) ~ E2(Y(n)).
(See Appendix B for the proof.)
COROLLARY. Y(n) — oo in probability.
PrOOF. (For the sake of completeness.)
P(Y(n) < E(Y(n))/2) < P(Y(n) - E(Y(n))| = E(Y(n))/2)
< 40*(Y(n))/E*(Y(n))
= 4[E(Y*(n))/E*(¥(n)) - 1] — 0. 0
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Finally,

LEMMA 12. In probability, Uy(n) > s. ,

Proor. Introduce
H(n) = min{l <x < n: M(x) > s}, if#(x)=>s,
" n, if #(n) <s.
[Recall that #(n) = max{M(x): 1 < x < n}.] Since Y(n) is the number of keys
x (between n, and n,) such that M(x) > s, the previous corollary yields that
n — t(n) = oo in probability. Also, #(n) is a stopping time adapted to the
sequence {A(x): 1 < x < n}; in other words, for each j, {¢(n) = j} belongs to the
o-field generated by {h(x): 1 <x <j}. Hence, {#(n) =j} is independent of
{h(x): j+1<x<n}
Consequently,

P(Uy(n) <s) = X P(t(n) =j,V x > j chooses an empty cell)
j=1

(3.23) . -
= ) P(t(n) =) }!:Ij_(l — k/m).

j=1
Fix an integer d > 0. Then, it follows from (3.23) that
n—d n—1
P(Uy(n) <s) < P(H(n)>n—d)+ X P(t(n)=j) 1 (1 - k/m)
L k=j

J=1
n—1
<P(n)>n-d)+ [I @ -k/m)
k=n—-d
<P(t(n)>n-d)+exp[—d(n—d)/m].
Since P(#(n) > n —d) — 0, as n > o, we have

limsupP(Uy(n) <s) < exp(—da), a=n/m,

and, letting d 1 oo,
limsup P(Uy(n) < s) =0,

because a > 0. The lemma is proven. O
This completes the proof of Theorem 1(b) and (1.4) of Theorem 2.

APPENDIX A

On the asymptotic formula for P(¢; w,l). Observe first that by the
definition of P(¢; w, ), rather than (2.10),

m l
(A1) P(t; w, 1) = Es(w!/mw)jl:[l(sj!)_l k]:[l [1-@1-8)%],
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where s;>0, 1 <j<m and L7 s;= w. Indeed, (w!/m*)[T7 (s;!)"" is the
probability that s; balls choose the jth cell, 1 <j < m, and IT}_,[1 — (1 — ¢)%]
is the probability that each of the first / cells accepts at least one of the balls
which have chosen it. (Of course, the latter probability equals 0 whenever s, = 0
for some 1 < k < 1)

Using (A.1), we can derive a surprisingly simple formula for the exponential
generating function of the sequence {P(t; w, )}, . o:

m l
ZOP(t; w,l)z4/wl= ¥ Ojljl(z/m)sf/s,-! Il [1-(1-6)%]
. = | B
{E - a-0Ne/ms) | £ e/ms]

~ (expl(2/m) — expl2(1 — £)/m] exple(m - 1)/m]
= e*[1 — exp(—zt/m)]".
So, choosing a contour C = {a = re’*: —7 < ¢ < 7}, we have
P(t; w,l) = w!(277i)_1fez(1 — em2/m)lymw-1y,
(A.2) ¢
= w!(2ﬂ)_1f exp( F(re')) d¢,
where
F(z) =z +llog(l — e /™) — wlog .

To estimate the last integral, we use the saddle-point method. Select r which
minimizes F(u), u € (0, ), so that

(A.3) F(r)y=1+(e™=1)""lt/m) — w/r = 0.

[Such a point exists since lim,, _, o+F'(x) = lim, _, o«(I — w)/u= —c0 (I < w)
and lim, _, F'(u) = 1.] By (A.3),

r=w-—IUrt/m)/(e"™/™—1)=w+ O(l)

uniformly over ¢ € (0,1], since n/(e” — 1) <1 for all 5 > 0. (All the related
estimates below are also uniform.) “Bootstrapping,” we get a sharper estimate,

r=w-Igt/(ef — 1) + O({*/m), g=w/m.
Since
(A4)  F'(u) = (w/u?)1 - (Yw)er/(e" - 1)Y],  n=ut/m,
and F'(r) = 0, we have
F(r) = F(w) - (F(@)/2)(w - r)* (r<i<w)
= F(w) + O(1*/w) = w — wlogw + llog(1 — &) + O(1%/w).

In addition, a simple computation shows that

[P FO(rei)| = 2w(1 + O(l/w)) = O(w)

[N

(A5)



ANALYSIS OF A HASHING ALGORITHM 1199

for all small enough |¢|. Then, for |¢| < ¢, = w™ %2,
F(re*) = F(r) + (r2F"(r)/2)(e* — 1)* + O(w|e® — 1]?) [see (A.4)]
= F(r) — (FF()/2)8% + 0{us)
and O(w¢d) = O(w™*). So [N = r?F"(r) = w(l + O(l/w))]

f% exp(F(re®)) do ~ exp(F(r))A~1/? f’\% exp(—u?/2) du
(A.6) ~o )

~ (2m/w)"*exp(F(r))
because Ap, ~ w'/12.
On the other hand, since |e? — 1| < |e"*! — 1|, we have for || > ||,

|exp( F(rei))| < exp(F(r) + (1 — tl/m)r(cos ¢ — 1))
< exp(F(r) — cw¢?®) < exp(F(r) — cw'/®),  ¢>0,

whence

(A7)

f exp( F(re*)) d¢| = O(exp(F(r) — cw'/®)).
|#1> %o
Putting together (A.2), (A.5)-(A.7) and applying the Stirling formula to w!,
we have
P(t; w, 1) ~ w!(27) (2m/w) " exp(w — wlog w + log(1 — e~¢*))
~ (1 - e &)

APPENDIX B

Proof of Lemma 11. By the definition of Y(n),
E(Y*(n)) =3, ., P(M(x;) >s,i=1,2)
=3, P(M(x)2s)+3, ., P(M(x;) >s,i=1,2)
=3, + 2, n,<x,Xx;,%y <N,
Here 2, = E(Y(n)), =, = 2,, + 2,, and
Sy = 24w, P(M(x;) 2 5,i=1,2; K(x;) # K(x5)),
S =24 ur, P(M(x;) 2 s,i=1,2; K(x;) = K(x3)).
Notice that, for x, < x,, the condition K(x,) = K(x,) means that no key among
the keys x, + 1,..., x, is rejected; so, in particular, M(x,) > M(x,). Therefore,
P(M(x;) = s,i=1,2; K(x,) = K(x,)) = P(M(x,) 25) [ (1 —Jj/m)

X, <j<xy
< P(M(x,) > s)B™™™,
B=1-[n/2]/m,
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and

2o < 2,P(M(x) 2 5)(2;5.8”7%) = ([n/2]/m) 'E(¥(n))
= O(E(Y(n))).

To estimate 3, first we write

Sy < 28, ., P(M(x,) > s, |K(x;) — k(x,)| < (m - x,)*°,

(B.1)

(B2) i=1,2; K(x,) #+ K(xz))

+23, _, P(IK(x,) — R(x,)| > (m — 2,)*°)

=25 + 23,
Here (see Lemma 6)
(B.3) =4 < 2Exl<x2exp[—(m - x1)1/5/3O] = O[nZxp(—n""°/30)] = o(1)

and

(B.4) 2’21 = 22 Ekl,kZP(M(xi) > S, K(xl) = ki’ i = 1,2),

X, < Xg
where k,, k, satisfy the conditions

_ 7 ) . 3/5 . _
(B.5) |kz k(xz)l < (m xz) ’ l 1,2,

ki <k +s<x, ki+s<ky<ky,+s<ux,.

Now, according to an argument in the proof of Lemma 4, M(x,) > s, K(x,) =
k;, i =1,2,iff (a) no key < x, has chosen the cell 2,, i = 1,2, and (b) all the cells
k;+1,...,1;=Fk; + s and exactly x; — [; cells to the right from the cell [, are
chosen by the keys < x;, i =1,2. To evaluate the probability P(M(x,) > s,
K(x;) = k;, i = 1,2), observe that each allocation of the keys < x, satisfying
the conditions (a) and (b) is achieved as follows. Consider the sets of cells
A ={L.., ki =1}, |A| =k, -1, Ay={ky+ 1,..., 0}, |Agl = |, — ky, Ay =
{LL+1,...,ky— 1}, |Ag| =ky—1—=1,and A, ={ky+1,..., 0L}, |Ay =1, —
k,. First, we choose a set A;, |A;| = x, — l,, among the cells >, + 1 (the

m

number of ways is (x - l; )). Second, we choose the set Ag, |Ag| = x; — [;, out of
2~ b2
A3 UA U A I [Ag N (A U Ap)| = J, then the number of ways is

|A4UA5|) |As] =(x2—k2) ky—1-1,

J X, —l—J J ow—L-J|

Third, we allocate the keys < x, on the set A, = A, U A, U A, |4, =x, — 1,
so that the cells of Ag = A, U Ag, |Ag| = x, — k,, are nonempty. Finally, fourth,

we allocate thekeys x; + 1,..., x, ontheset Ay =U?_ A, U {k}, |4y = x5, — 1,
so that the cells of A,y = (A, U A;)\ 4g, |40l = x5 — ky, — J, are nonempty.
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Hence,
P(M(x;)>s, K(x;) =k;,i=1,2)

=m . .
(xz—lz)[g( J =4 —J

(B.6)
><1\’("“'2 — Xy, X9 — 11x2 - k2 _J)]

XN(xy, 2, — 1,x, — ky),

where N(u, v, w) is the number of ways to allocate u balls among v cells, so that
some w fixed cells are nonempty.

The rest is simple. Since |k, — k(x,)| < (m — x,)*%, we can use (3.15) to
obtain from (B.6) that, for &, &, satisfying the conditions (B.4),

P(M(x;) >s, K(x;) = k;,i=1,2)

~(1- e-kz)sm-xz(m— kz)[z(x2 - kz)(k2 -1- ll)

Xy — ko j J x—L—-J

(B~7) XN(x2 — X, X%~ 1,x, — ky _J)]

XN(x;, %, — 1,x, — ky)
=(1-e™)°P(M(x,) >s; K(x;) =k;,i=1,2),
Ay =2xy,/m.
Besides, by Lemma 7,
P(M(x)=zx)~(1—-e)°, A=x/m,
uniformly over n, < x < n,. Combining (B.4) and (B.7) we obtain then
Su=<(1+ 0(1))22x1<x2(1 - e_xz)szkl,kZP(M(xl) 2 S;
K(x;) =k;i=1,2)

(B.8) < (1+0(1))223, ., (1 —e*)°P(M(x,) > s)

< 1+ o), - e ~ EX(¥(n)).
Since E(Y(n)) — oo, the relations (B.1)-(B.3) and (B.8) imply that
E(Y¥(n)) < [1 + o(0)] EX(¥(n).
It remains to observe that E%(Y(n)) < E(Y?(n)).O
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