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EXCHANGEABLE URN PROCESSES

By BrRUCE M. HiLL,! DAvID LANE AND WILLIAM SUDDERTH 2

University of Michigan, University of Minnesota and
University of Minnesota

If Y, is 1 or 0 depending on whether the nth ball drawn in a Pélya urn
scheme is red or not, then the variables Y}, Y,,... are exchangeable. It is
shown for a generalized class of urn models that no other scheme gives rise to
exchangeable variables unless the Y, are either independent and identically
distributed, or deterministic (that is, all of the ¥,’s have the same value with
probability 1).

1. Introduction. Let Y = (Y, Y,,...) be a sequence of {0,1}-valued random
variables. The process Y is exchangeable if its distribution is invariant under
finite permutations of the indices. The notion of exchangeability was investi-
gated by de Finetti (1931, 1937), who recognized its fundamental role for
subjective probability and Bayesian statistics. As de Finetti (1931) showed, for
every exchangeable process Y, there is a random variable ® with values in [0, 1]
such that, given ©® = §, the variables Y}, Y,,... are independent Bernoulli (8). (A
convenient reference is Section 2 of Freedman (1965).) The distribution @ of the
variable ® will be called the de Finetti measure for the exchangeable process Y.

Conversely, an exchangeable process can be constructed according to the
following recipe: Suppose © is a random variable with values in [0,1] and let
Y, Y,,...be conditionally independent Bernoulli (#) variables given ® = 4. Then
the process Y is obviously exchangeable.

The Pélya urn scheme is another interesting way to generate a sequence of
{0, 1}-valued random variables. Suppose that an urn initially contains r red and
b black balls and that, at each stage, a ball is selected at random and replaced by
two of the same color. Let Y, be 1 or 0 accordingly as the nth ball selected is red
or black. Then the Pélya process Y is easily seen to be exchangeable and has a
de Finetti measure which is a beta distribution with parameters r and b (see
Pélya (1931) or Freedman (1965)). Thus, two different methods for generating
data, corresponding to the Polya urn scheme and the scheme discussed in the
previous paragraph (with a beta distribution for ®) give rise to precisely
the same distribution for the process Y. (For an interesting discussion of the
connection between these two schemes, see de Finetti (1975), page 220).

The Poélya process is a special case of a family of processes whose distinguish-
ing feature is that the sequence of observations can be concretely represented by
successive drawings from urns of changing compositions. To define this family
precisely, consider an urn with initial composition (r, b) of r red balls and b
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black balls and let f be a mapping from the unit interval to itself. Set
X, = r/(r + b), the initial proportion of red balls, and suppose that a red ball is
added to the urn with probability f(X,) and a black ball is added with
probability 1 — f(X,). Let X, be the new proportion of red balls and iterate the
procedure to generate a process X = (X,, X;, X,,...). As before, let Y, be the
indicator of the event that the nth ball added is red. The process Y = (Y}, Y3, ...)
is an urn process with initial composition (r, d) and urn function f. The
distribution of an urn process Y is completely determined by the initial composi-
tion and the values of the urn function f at the successive proportions X, X, ... .
(The only possible proportions are of the form (r + k)/(r + b + n) where k and
n are nonnegative integers and k < n.) These generalized urn schemes were
introduced by Hill, Lane, and Sudderth (1980), who proved a convergence
theorem for the process X. Generalized urns with balls of many colors have been
studied by Arthur, Ermoliev and Kaniovski (1983). See also Johnson and Kotz
(1977) for a discussion of a variety of urn processes.

Notice that the process Y for the Pélya urn scheme is an urn process with urn
function f(x) = x. As we saw, such processes are exchangeable, with beta
de Finetti measures. A constant urn function f(x) = p generates a Bernoulli
process Y, Y,,... of independent, Bernoulli (p) variables. Such a process is
clearly exchangeable and has a de Finetti measure concentrated at the single
point p. A trivial collection of exchangeable urn processes are the deterministic
ones. Suppose initially a red ball is added with probability p and a black with
probability 1 — p, and that all subsequent balls are the same color as the first.
This scheme corresponds to an urn function f which equals p at X, is
identically 1 on (X, 1], and identically 0 on [0, X,). The de Finetti measure @
assigns probability p to {1} and 1 — p to {0}.

On the other hand, not all urn processes are exchangeable. For example, if
f(x) =1 — x and the initial urn composition is (1, 2), a simple calculation shows
the probability of a 1 followed by a 0 differs from the probability of a 0 followed
by a 1. Hence, this urn process is not exchangeable.

Similarly, not all exchangeable processes can be represented as urn processes.
For example, it is easy to see that a distribution for 6 placing probability ; on
6 = 1 and probability ; on § = 2 cannot be an urn process.

This paper addresses the question: Which urn processes are exchangeable?
The following theorem provides the answer.

THEOREM. Suppose the process Y = (Y,,Y,,...) of {0,1}-valued random
variables is an exchangeable urn process. Then Y is Pélya, Bernoulli or
deterministic. ‘

The proof is in the next section.

The result of the theorem can be expressed in a manner reminiscent of
Johnson’s sufficientness postulate (cf. Zabell (1982)). Johnson'’s postulate assumes
a finite sequence Y,,...,Y,,, of {0,1,..., ¢ — 1}-valued random variables which
are conditionally independent given the probability vector p = (py,..., Pi—1)-
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The postulate then states that, for0 <j < ¢ — 1,
P[Yn+1 =jIY1 =y1"'°’Yn = yn.]

depends only on n;, the number of the y,’s which equal j. Johnson argued that
the only prior distributions on p consistent with his postulate are symmetric
Dirichlet distributions and point masses. This result is of course vacuous for
t=2.

Suppose, however, that ¢ = 2 and the sequence can be infinitely extended.
Assume further that, for every n,
(1.1) P[Yn+1=1IY1=y17""Y;t=yn]
is a fixed function of x,, the proportion of red balls in the urn. In this context,
our theorem shows that the only distributions for p consistent with this
assumption are beta distributions, point masses, and distributions concentrated
on {0,1}.

Let S,=Y, + -+ +Y,. The proportion X, of red balls at stage n can be
written as

X,=(r+8,)/(r+b+n).

For urn processes, the predictive probability (1.1) is a function of X, rather than
S,/n. Are there exchangeable processes Y for which the probability in (1.1) is a
fixed function of S,/n? It follows easily from the theorem that the only such
processes are Bernoulli or deterministic. (To see this, observe that given Y, = 1
), Y,,Y,,... is an exchangeable urn process with initial composition (1,0)
((0,1)). Apply the theorem and argue that the processes cannot be Pdlya.)

2. Proof of the theorem. Throughout this section, Y = (Y, Y,,...) is an
exchangeable process of 0’s and 1’s with de Finetti measure Q. It is assumed that
Q{0,1} < 1 and that @ is not concentrated at a single point. In the language of
the previous section, we are assuming Y is neither Bernoulli nor deterministic.

Let S,=Y, + --- +Y, for n > 1. Because of the first assumption about @,
all of the events [S, = k] have positive probability for £ = 0,1,...,n and n > 1.

LEMMA 1. For n > 1, the function
8.(k) = P[Y,,, =1|S,= k]
is strictly increasing on its domain {0,1,..., n}.
Proor. Consider first the case when n = 1. Let © be a random variable with
distribution @. Then )
E(©%) E(6(1-0))
E(®) E(1-0)
E(®?) - (E©)’
" E(®)E(1 - 0)
> 0.

P[Y, = 1Y, =1] - P[%, = 1]¥, = 0] =
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Next suppose n > 2 and 0 < k < n — 1. By exchangeability,
P[Yn+1 = ]'ISn = k] = P[Y;L+1 = ]'lSn—l = k’ Yn = 0]

and
P[Yn+l = 1|Sn =k+ 1] = P[Yn+1 = ]'ISn—l = k’y;z = 1]‘

Now apply the previous case to the process (Y,,,Y,,,,...) given S, , = kO
From now on, assume that Y, in addition to being exchangeable, is an urn

process with initial composition (r, b) and urn function f with domain D =
{(r+k)/(m+n):k=01,..,nn=0,1,..} wherem=r+b.

LeEMMA 2. The function f is strictly increasing on D.

Proor. By definition of the urn function,
f((r + &)/(m + n)) = P[Y,.,, = 1S, = k].

Now use Lemma 1. O

Let i=r+ k and I = m + n where 0 < k& < n. Thus i/! is an element of D.
Notice that i/(l + 1) and (i + 1)/(I + 1) also belong to D.

LemMa 3. f(i/1) — fG/(L+ 1) = fG/DLFG + D/ + 1) = {6/ + )]

Proor. By the law of total probability and the definition of f,
P[Y,,,=1S,=i] = P[Y,,, = 1|8, = i, Y, = 1]P[Y,,, = 1|S, = i]
+P[Y,,,=1|S,=4i,Y,,, =0]P[Y,,, =0|S, = i]
= f(G+ 1)/ + D)/ + £/ + 1)) - f(i/1)).
By exchangeability and the definition of f,
P[Y,,,=1|8,=i] = P[Y,., = 1S, =i] = {(i/1). a
Lemmas 2 and 3 will be used to see that f has a continuous extension to all of
the unit interval. Let 0 < a < 1. Because f is increasing, it has a left limit
f(a =) = sup{f(x): x < a,x € D}
and a right limit
f(a +) = inf{ f(x): x > a, x € D}.

LEMMA 4. For0<a <1, f(a —)=f(a+).

ProoOF. Choose sequences {i;,} and {/,} such that

@) i,/l,€Dandi,/(,+1) <a<i,/l, for all m,
(b) 1,, > o0 as m — 0.

It follows that i,,/(l, + 1) and i,,/l, converge to a as m — 0.
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By Lemma 3,
[(im/tn) = F(im/ Ly + 1))
= f(im/La) [ 1 (i + 1) /(U + 1)) = f (i /(L + D))].
Let m = oo and examine both sides of this expression. The left-hand side
converges to Af(a)=f(a+)— f(a —). The right-hand side converges to

f(a +)Af(a). Now 0 <f(a+)<1 by Lemma 2. So we conclude that
Af(a) =

It follows from Lemmas 2 and 4 that f has a continuous extension to [0, 1].
Because D is dense in [0,1], the extension is unique and there in no harm in
denoting the extension by the same symbol “f.”

Let X, be the proportion of red balls in the urn at stage n; that is,
X,=(r+S,)/(m+ n). As was mentioned in the introduction, the variables
Y,,Y,,... are independent Bernoulli () given ® = 6. So the strong law of large
numbers implies that S,/n converges to ® almost surely. Obviously, X, con-
verges to © almost surely also.

Recall that © has distribution @ and let S be the support of Q.

LEMMA 5. Forx € 8, f(x) = x.

ProoF. By Corollary 3.1 of Hill, Lane and Sudderth (1980), f(@)=©
almost surely. Thus the closed set {x: f(x) = x} must contain S. O

To complete the proof of the theorem, let x be an element of D. It suffices to
show f(x) = x.

Choose sequences of positive integers {k;} and {n;} such that n; > c as
J — o and (r + k;)/(m + n;) = x for every j. Then, for each j, the event

A;= [(r + S,,j)/(m +n;)= x] = [Sn,. = kj]

has positive probability by our assumption that @{0,1} < 1. Condition on A;
and use the definition and continuity of the urn function to see that

(2.1) E(814;) = P[Y, ., = 114;] = f(x)
and
ar (O14) = P[Y, 1 = %, 00 = 114)] = (P[¥, 11 = 114,])

(2.2) = (@) F((r + k; + 1) /(m + n; + 1)) — f(x)°
-0 asj— oo.

Let Q; be the conditional distribution of ® given A;. By (2.1) and (2.2), Q;
converges to a distribution & concentrated on the single pomt f(x). Now each Q
gives probability 1 to the closed set S because @ does. Hence, the limit measure
8 also gives mass 1 to S. Thus f(x) € S, and so by Lemma 5, f( f(x)) = f(x).
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Suppose f(x) # x. Say, f(x) > x. The strict monotonicity of f (Lemma 2)
would give the contradiction f(f(x)) > f(x).
The proof of the theorem is complete.

3. More than two colors. Suppose Y = (Y}, Y,,...) is a sequence of vari-
ables with possible values in {1,2,..., t}. The process Y is a generalized t-color
urn scheme if, for n=1,2,... and 1 <j < n, the conditional probability
PlY,,.,=J1Y, =cy..., Y, = c,] that the next ball is of color j depends only on
the proportions of balls of each color at stage n. That is,

. rn+n, rp+n, r,+n,
P[Yn+1=JlYl=cl""’Yn=cn]=fj( )’

where r; is the number of balls of color i in the urn initially, n; is the number of
¢;’s equal to i, and m = ¥r;. The urn functions f,,..., f, have domains in the
simplex S, = {x = (xy,...,%,): £x;=1,x,>0,i =1,..., ¢t} and are constrained
to sum to 1.

If f(x) = x; for 1 <j < ¢, the Y corresponds to a ¢-color Pélya urn scheme in
which at each stage a ball is drawn at random and replaced by two of the same
color. In particular, Y is exchangeable and has de Finetti measure @ which is
Dirichlet (r,,...,r,). (Note: For a t-valued exchangeable sequence Y, the
de Finetti measure @ lives on the simplex S,, and the variables Y, Y,,... are
independent, multinomial () given ® = § where ® has distribution §.) A
natural conjecture, in the light of our theorem for two-color processes, is that the
de Finetti measure for a nondeterministic ¢-color exchangeable urn process is
either a Dirichlet or a point mass. The following example shows that this
conjecture is false. We do not know the correct characterization.

m+n’m+n’" m+n

ExaMPLE. Consider an urn which initially contains 1 red, 1 black, and 1
green ball. At each stage, a ball is selected at random. If it is red, it is replaced
and another red ball is added. If the ball is black or green, it is replaced and
another black or green is added depending on whether a fair coin falls heads or
tails. This scheme corresponds to the urn functions

X, + X3

h(x) =3, h(®) = hix) = 2=

The resulting urn process Y is easily seen to be exchangeable with de Finetti
measure Q specified as follows: @ is a measure on S; = {0 = (6,,0,,0,): X0, =1,
0,>0,i=1,2,3}; under @, 0, is beta (1,2) and, given 8,, 0, = O, = ;(1 — 6,).
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