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MAXIMAL INCREMENTS OF LOCAL TIME OF A
RANDOM WALK!

BY NARESH C. JAIN AND WiILLIAM E. PRUITT

University of Minnesota

Let (S;) be a lattice random walk, ie, S;=X; + --- +X;, where
X,, X,,... are independent random variables with values in Z and common
nondegenerate distribution F. Let {t,} be a nondecreasing sequence of
positive integers, ¢, < n, and L; = max, ;. ,-,(Lj, — L;), where L, =
X7 11(0)(S), the number of times zero is visited by the random walk by time
n. Assuming that the random walk is recurrent and satisfies a more general
condition than being in the domain of attraction of a stable law of index
a > 1, the following results are obtained:

(i) Constants B, are defined such that limsup LX8;! = 1 as.

(i) If limsupnt;! = oo, then constants y, are defined such that
liminf L*y, ! = 1 as. If limsup nt; ! < oo, then liminf(L}/y,) = 0 or oo for
any choice of y, and a simple test is given to determine which is the case.

(iii) If limlog(nt,)/logon = o, then B, ~ v, and im L¥B,! =1 as.
Also, the normalizers are found more explicitly in the domain of attraction
case.

1. Introduction. Let X, X,,... be independent identically distributed ran-
dom variables on a probability space (£, F, P) taking values in the one-dimen-
sional integer lattice Z with the common distribution function F. The partial
sums

(1.1) S=0, S,=X+---+X,, n=x=1,

define a random walk. The local time L, at 0 up to time » is the number of visits
to 0 by the random walk between times 1 and n (inclusive), i.e.,

n
(1'2) Ln = E 1{0)(Sj)’ n= 1, LO = 0’
Jj=1

where 1, denotes the indicator function of A. If the random walk is recurrent,
then L, —» oo a.s. We will be concerned only with recurrent random walks here.
Let {t,} be a nondecreasing positive integer sequence with ¢, = 1, £, < n, and
let

(1.3) Ly, = Os%a;zx—t,,(Lj”" - Lj)

be the maximum number of visits to zero by the random walk over a time span
¢, up to time n. Note that L; , = L, if ¢, = n. To simplify notation if {¢,} is
fixed in a given context we will drop the subscript ¢, and write Lj for L}, , . Our
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1462 N. C. JAIN AND W. E. PRUITT

aim here is to study the almost sure asymptotic behavior of L} for a very
general class of recurrent random walks. This is possible because of the very
general large deviation probability estimates for the lower tail of partial sums of
i.i.d. nonnegative random variables obtained in [6].

The class of random walks we consider here is the same one that we
considered in [5] where some other aspects of the local time were explored. To
describe this class, for x > 0 let

(1.4) G(x) = PUX| >}, K(x) =27 [ *dF(),
(1.5) Q(x) = G(x) + K(x).

Our basic assumption is

(A1) liirls:p % <1 and EX, =0.

The first condition implies E|X;| < oo, so the second condition is to ensure
recurrence. If X, is in the domain of attraction of a stable law of index «, then

i G(x) 2-a
x—?:o K(x) B o ’

so that our assumption includes all distributions in the domain of attraction of a
stable law of index a > 1 which have zero mean.

In the next section we will give some basic notation and preliminary results.
In Section 3 we define a real sequence {B,} such that limsup, B, L} =1
a.s. In Section 4 the liminf behavior of L} is analyzed. Here we obtain a
dichotomy: If limsup,nt ! = oo, then there exists a real sequence {v,} such that
liminf,y, !L¥ = 1 as., and in the contrary case for any real sequence {y,} either

n

liminf, (L} /v,) is 0 a.s. or oo a.s. In Section 5 we show that if {¢,} satisfies

log(n/t,)

1.6
(1.6) n—l-{rolo loglogn

then in fact with {8,} as in Section 3
(1.7) lim B;'L¥ =1 as.

n—oo
An example in Section 6 shows that the lim sup and lim inf behaviors of L} may
be different if (1.6) is not satisfied. In this section we specialize the results to the
domain of attraction case and give more explicit forms for 8, and 7v,, the
normalizers for lim sup and lim inf, respectively.

. Results of this type were obtained earlier by Csaki and Foldes [1], motivating
the present work. These authors consider only the case when X; has zero mean
and finite variance, and ¢,7 o0 and either satisfies (1.6) or for some ¢ > 0,
t, = clogn. For {t,} we assume only that it is nondecreasing. For other refer-
ences and related work we refer to [1].
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We will assume that the random walk satisfies
{J: P{S, =J for some n} > 0} = Z;

since the random walk is recurrent, this amounts to a rescaling of the state
space. If the random walk is periodic (as a Markov chain), p will denote the
period. :

In the sequel it will be convenient to use the notation a, = b, for two
nonnegative sequences {a,} and {b,} to mean that there exist two positive
constants c,, ¢, such that

ca, <b, <ca,, n21.

¢, C with or without suffixes will be positive constants whose values will change
from one context to another. The values of these constants are not important,
but their dependence on certain parameters may be; when that is the case such
dependence will be emphasized. As usual if x is real then [x] will stand for the
largest integer < x. To simplify matters we will follow the convention that if a
subscript should be an integer but is a real number x then it should be
interpreted as [x]; e.g., L, for ¢ > 0 should be read as L ,;. This should cause no
confusion.

2. Preliminaries and probability estimates. In this section we derive
some basic probability estimates which will be needed to prove the main results
in the following sections. The first lemma gives some basic properties of the
function @ defined in (1.5). For the proof see Lemma 2.4 of [8].

LEMMA 2.1. The function Q defined in (1.5) is continuous and strictly
decreasing for x > x, = sup{y: G(y) =1} where G is defined in (1.4). The
* function x2Q(x) is nondecreasing for x > 0 and under (A.1) there exist x, > 0
and \ € (1,2) such that x*Q(x) is decreasing for x > x,.

We define @, y > 0,bya,=1for0 <y <y, =(QQ1) "' and
(2.1) Q(a,) =y, fory>y,.
The function a, is nondecreasing, tends to oo as y — o0, and if (A.1) holds then
by Lemma 2.1
(2.2) ady 'y, aly't, y > some Y.
We will frequently use (2.2) in the form: There exist positive constants ¢, C such
thatfor0 <k <n
n+ 1WA
k+1,

The sequence {a,} plays an important role because under (A.1) the sequence
{a,S,} is stochastically compact, i.e., it is tight and contains no subsequence
that converges to a degenerate law ([2] and [4]); furthermore, it satisfies an
approximate local limit theorem [4].

k'+1]1/2
n+1] °

(2.3) a, < ca, , Q< Can[
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We introduce the sequences
(2.4) u, = P{S, = 0}, n>1, uy,=1;
(2.5) r,=P{S; #0,...,8,#0}, nx=1, rg=1.
The next few results will give asymptotic relations among these sequences and

some other probabilities of interest.

LEMMA 2.2. Suppose (A.1) holds. Then
(2.6) u, = 0(a;?).

Furthermore, if p is the period of the random walk, then there exist ¢ and n,
such that

(2.7) u,,2ca,}, nxn,.

Proor. This is an immediate consequence of Theorems 1 and 3 in [4]. O

LEMMA 2.3. Suppose (A.1) holds. Then
(2.8) Y rn=a,=(n+1)r, and Y u,=(n+1)a;.
k=0 k=0

Proor. Decomposing according to the last visit to zero before time n and
using (2.7) and the monotonicity of a, and r, gives (even if p > 1)

n n
(2.9) 1= Y ur,_p=ca,' Y r.
k=0 k=0

Similarly,
n
Y u,>ca;l(n+1).
k=0

By (2.6) and (2.3),

Yu,<CY a;’

k=0 k=0
1A
(2.10) n _1{n+1}
<C
I,EO“" E+1

=(n+1)a;'.
Next, by (2.6), (2.9), and (2.3) for ¢ < 3,

n

en
Y wp<Ca' Y,
k=(1-¢)n k=0

< Cla;laen =< C281/29
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where C, is independent of e. Thus ¢ may be chosen to make this sum less than
L Then by (2.9) and (2.10)

1 (1—¢e)n (1—-¢&)n

_2_S E Uply 1 S Ten Z Up
k=0 k=0

< Cr,nagl,, < Ce'rena].
This gives the hardest inequality needed for the first assertion in (2.8). The final

bound follows trivially from the monotonicity of r,. O

COROLLARY 2.1. Suppose (A.1) holds. For ¢ > 0 we have

acn = an’ rcn = rn'
The constants in these relations depend on c.

Proor. The first is immediate from (2.3) and then the second follows using
(2.8).0

LEMMA 2.4. Suppose (A.1) holds. Then there exist 0 < ¢ < C such that if
(m, n] contains a multiple of p, the period of the random walk, we have

ca,_na,' < P{S;=0 for somej € (m,n]} < Ca,_,a;".

n—m

Proor. Note that by (2.7)

n n-m-—1
P{S;=0forsomeje€ (m,n]} = Y wur,_;jzca;’ ¥ 7
J=m+1 Jj=0

and then use (2.8) to estimate the sum. The same argument provides the upper
bound if m > n/2; in the other case the trivial upper bound of 1 suffices. O

COROLLARY 2.2. Suppose (A.1) holds. Given n € (0,1) there exists n, such
that for n > n,

P{SJ = 0 for somej € (nn, n]} = 1.
PROOF. This follows from Lemma 2.4 and Corollary 2.1. O

We will also need estimates for the probability that S, has no zero in an
interval. But for these we also need to include events giving information about
the local time.

LEMMA 2.5. Assume (A1) andlet A C Z,0 < k < m < n. Then there exists
C ‘'such that

P(Lt€A,S;#0form<j<n} <Crr;'P(L} € A}.

REMARK 2.1. The lemma also applies to L, since one may take ¢, = k.
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ProOF. The bound is obvious if m > n/2 since then r,, = r,. Thus assume
m < n/2 and let
U = max{j < m: S;=0}.
Then we have for j < &
P(Lt €A, U=j,8;+#0form<i<n}
=P{L}, €A, S;=0}r,

-J
<l ta'P{L}, €A, 8=0}r,_;
=1y P{L; € A, U=},
whilefork <j<m
P(Lt €A, U=j,8;+#0form<i<n}
=P(L;€A,S=0}r,_;
ST tmP{L} €A, S;=0}r,_;
<t _atnP{L; €A, U=j}.
Summing over all j < m then gives the result since r,_,, = r, in this case. O
The lower bound analogous to Lemma 2.5 is not valid in general. But we will

prove it when L} € A is replaced by L, < x. But first we need some information
about the time intervals between successive zeroes of S,. Let
T, = min{j > 0: S;= 0},
2.11 e
( ) Tk=mln{]>0: ST1+"’+T/¢_1+j=O}’ k> 1.

The random variables T}, Ty, ... are independent and identically distributed. Let
F, denote their common distribution and G,, K,, and @, the corresponding
functions defined in (1.4) and (1.5). Then we have

LEMMA 2.6. Assume (A.1). The distribution F, of T, satisfies the stochastic
compactness assumption, i.e.,

Gl(x)
2.12 lim su < o0.
( ) x—»oop Kl(x)
We also have the bounds
(2.13) E(T, An) =nr,=a, sothatET, = x,

and there exist 0 < ¢ < C such that forallx >0, n >0,

(2.14) cl(x+)r, A1l < P(L,<x}=P{T, + - +T.,, > n}

<Cl(x + 1)r, A 1].
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Proor. For0 <e<1,
n’K,(n) > f y2dF,(y) = e®n®P{en < T, < n}
(en, n]
=en’(r,, - 1,)
and by (2.8) and (2.3) ’

(2.15) T 2 cy(en) 'a,, 2 cy(en) 'a,e
> cyre YA > 2r,,

for appropriate ¢ and large n. Thus

n’K,(n) > e2n’r, = 2n%G,(n),

which proves (2.12). Next,

E(TlAn)= ZP{TIZk}= Zrk—lzanznrn
k=1 k=1

by (2.8). For the upper bound in (2.14), we have
(x +1)E{T, A (n+1))
n+1

P{(T, + - +T,,,>n} < = (x + Dr,.

For the lower bound we use
J
(Ty+ -+ + Ty, >n}y > U (Tp>n),
k=1
with j = (x + 1) A r,; 1. By inclusion-exclusion,

J
P( U {7 > n}) > jr, — 35(J — D7
k=1
=Jjr(l = 3(G = r,) = ir,
which completes the proof. O

Now we can prove the lower bound somewhat analogous to Lemma 2.5.

LEMMA 2.7. Assume (A.l). For x >0, 0 < k < m <n, there exists c > 0
such that

P(L,<x,8+0 form <j<n}2cr,r,"P{L, <x}.

Proor. We let _
F(i, j; kym,n) = {Ty + - +T,<k, T, + --- + T, > k,

‘ Ty+ - +T<m, Ty + - +T;,, >n}.

Then we have

P(L,<x,8#0form<j<n}= 3 } P(F(i, j; k,m,n)).

i=0 j=i
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By (2.15) we can find C so that
(2.16) P{k<T,<Ck} =r,— 1o, >r,/2.
Now if m < 2Ck we simply use
P(F(i,i; k,m,n)) =P(T,+ --- +T,<k, T, + -+ +T,,, > n}
>P(T,+ - +T,<k, T, , > n} |
=r,P{T,+ --- +T, < k}.
By (2.14) each such term will be at least c,r, if i < c,r; !, so summing on i leads
to
P{L,<x,S;#0form<j<n}>cr((x+1)Arg?)
= r,r,'P{L, < x}
by (2.14) again since r,, = r;, in this case. If m > 2Ck, then by (2.16)
P(F(i, j; k, m,n))
>P{T,+ - +T,<k,k<T,, <Ck,
T+ +T,+ Ty + - +T, < m/2}r,

> c4rkrnP{T1 + o+ T <k, Ty + - +T_; <m/2}.
Now using (2.14) this exceeds c,r,r, provided that i < cgr;?!, j < cgr,, " Since
T, < TI'yop < T'op, < I'p/2 in this case we will obtain

P{L,<x,S;+0form<j<n}

> csrph((x + 1) A cgryVeg(rnt — i)
> it ((x + Dy A1) = r,r ) 'P(L,, < x},

which completes the proof. O

COROLLARY 2.3. Assume (A.1l). For x > 0,0 < k < m < n, we have
P{L,<x,S+#0form<j<n}=rr'P{L,<x}=rr'((x+1)r,Al)
and
P(S;+ 0 form <j < n} =r,r.t,
where the constants are independent of x, k, m, and n.

ProoF. Use Lemmas 2.5-2.7. For the last statement, let x = c0. O

Next we obtain a bound analogous to (2.13) for the delayed return times to
zero for S,,. Let {¢,} be a nondecreasmg sequence of positive integers with ¢, < n
and deﬁne 75 = 0,

(2.17) Tp = mln{jZTk_1+ tn: ISJ=O}, §k='rk—‘1'k_l, kZ 1,
and let
b, = at,,a;lnt;l-
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LEMMA 2.8. Assume (A.l). For k > t, we have
P(¢, >k} = it P{¢,>n} =r,r =67,
E(¢ An) =nb;' = nr,r '
Furthermore, there exist positive constants c,C and \ € (1,2) such that -
e(nst,) " < 0,; < C(n/t,)">.
If n < 2m, then there exists C, > 0 such that

(2.18) 6, < C8, uniformlyink €[m,n].
If, in addition, t, < 2t,,, then
(2.18a) 6, = 6,, uniformlyfork e [m,n].

Proor. The first two statements follow immediately from Corollary 2.3 and
Lemma 2.3. Then using Lemma 2.3 again

n—1

E(,an)= ¥ Pt 2k} <t,+ T Pl& > k)

k=1 k=t,

n—1 n—1

-1 -1 -1

<t,+CY rgr, <C Y Iply, = nnI, .
k=t, k=0

For the lower bound, if ¢, > n/2, then
E(¢, An)>t,>n/2=nb;",
since 8, = 1 in this case. If £, < n/2 then

n—1 n—1
E(¢,An)> Y P, >k} >c ) rr !
k=t,

k=t,

> crr, (n—t,) = nr,r; .

The bounds for 6, follow immediately from (2.3). For (2.18), we have

T, r, r, T,
¢, L, 1 t
b, —=-—">—-"+>-—"
T r, Ty Tn

and r,r,;! = @, while r,r,' = 6, under the additional hypothesis. This proves
the lemma. O

The main results of this section are estimates for the upper tail of the
distribution of L, and both tails of the distribution of L}. Note that an estimate
for the lower tail of the distribution of L, has already been obtained in (2.14).
We let

(2.19) a =min{j: P{T, =j} >0}, q=P{T, =a}.
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Next define for s > 0

(2.20) 9(s) = Ee™,  g(s) = —9'(s)/9(s),

h(s) = —(&(s)) 'logp(s) — s.
One can easily check that g |, 21, and
g0+) =0, glo)=a, R0O+)=0, k()= —-a'logg.

The general form of the upper tail of the distribution of L, is really in
Theorem 2.1 of [6], which will now be converted to a form appropriate for our
application. Since this theorem was proved in complete generality, we do not
need assumption (A.1) here but only recurrence of {S,}.

THEOREM 2.1. Let t,1 oo be an integer sequence and p, a positive sequence
such that p,t, > cc. Let

(2.21) B,=[(t,-1a '] +1, ifp,> —a 'logg,

(2.22) B, =t./8(\,), ifp, < —alogg,

where \, is the unique solution of h(\,) = p,. Then B, — oo and given ¢ > 0,
0 < g m <1, there exists n, such that forn > n,

(2:23) log P{L,, > cB,} < —ct,p,(1 — ),
(2.24) log P{L,, > c(1—¢)B,} = —ct,p,(1—¢)(1+n).

ProoF. To show that B, = oo, we only need to consider the case when
B, = t,/8(\,) and then only for A, — 0 along a subsequence. But then

tn h(An) tnpn
= > -1, = - - 00,
&(r,) log p(A,,) log p(A,)
along the subsequence since ¢,p, = o0, ¢(A,) = 1.

For the bounds, it suffices, by looking at subsequences, to consider separately
the two forms for B,. To prove (2.23), let a, = [¢8,] + 1. Then

B,

ct,
P(L. >cB,} = P{T1 + 4T, < a,,——}.

n

If B, is given by (2.21), then ct,a,! < a so the probability is zero. In the other
case when B, is given by (2.22), we have ct,a,! < t,B,' = g(\,) and so by
Theorem 2.1 of [6]

log P(L,, >cB,} <log P{T,+--- +T, <a,g(A,)} ~ —a,h(7,)g(A,)

= ¢ npntnﬁn_1 = —CPput,-

The factor of 1 — 7 is to allow for the ~ .
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To prove (2.24), we abuse the notation slightly by letting

a, = [(1 - E)cﬁn] + 1.
Then

ct,
P{L,, > c(1-¢)B,} = P{Tl + oo+ T, < a,,—}.

If B, is given by (2.21), then
ety ~ (L—¢) 't,Bt ~ (1 —¢) 'a,
so that ct,a,! > (1 + ¢)a for large n. Thus for 5, € (0, €] N (0, 1)
log P{Lc,n >c(1 - é),Bn} > log P{Tl ++T, < a,(1+ nl)a}
~ —a,h(A)g(A),
where g(A) = a(1l + 7,) by Theorem 2.1 of [6]. Then
a,h(N)g(A) ~ (1 - e)eBh(N)a(l + ny)
~ (1 = e)et, A(N)(1 + m,)
< (1 -¢)et,(—a"loggq)(1 +m,)
< (1 - &)et,p,(1 +my),
which is sufficient for this case. Finally, if B, is given by (2.22), then
cta;l~(1—¢) 't B!
= (1-¢ 78\,

so that
cta, ' 2 8(N,),

for large n. Thus, again by Theorem 2.1 of [6],
log P(L,, >c(1—¢)B,} 2log P{T, + --- +T, <a,g(A,)}
~ —a,h(A,)g(N,) ~ —(1 - e)cp,t,.
This completes the proof. O

We close this section with the bounds for the distribution of L}. We start
with an easy intermediate result.

LEMMA 2.9. Define

Then for every ¢ > 0 '

(225) P{L,>x} <P{L;>x}<([e']+1)P{Lyspn>x—1}.
Also, if (A.1) holds, there is a positive ¢ such that

(2.26) cP(L,<x} <P{L; <x} <P(L,<x}.
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Proor. For the upper bound in (2.25), use
[« 1] ’
{Lr: > x} c kU {Ln+(k+l)sn - Lken > x}'
=0

Then to estimate the probability, start over at the first zero after ken. This
reduces the number of zeros by 1 which is the reason for x — 1 in the bound. For
the lower bound in (2.26), use

P{L,<x,8;+0forn<j<2n} <P{L; <x}
and apply Lemma 2.7. The other bounds are trivial. O

The probability estimates for L} can now be given in terms of 6, and
P(L; > x}.

THEOREM 2.2. Suppose (A.l) holds and that t, < n/4. Then there exist
positive constants ¢,, ¢,, C,, and C, such that for x > 0, n > 1, we have

(2'27) cl(anpn(x) A 1) < P{L: > x} =< Cl(anpn(x) A 1),
and
(2.28) cz{lo;:’('—ixT) A 1} <P(L}<x}< 02{%% A 1},

where p(x) = P(L; > x} and 0, = a,a;'nt;".

Proor. Define 7, and £, as in (2.17) and let
Jp= O?Jgn(l'fﬁjﬂn - Lf,,+j)’ k>0,
N, = max{k: 7, + 2¢t, < n}, M, =max{k: 7, <n}.
Note that the J, are identically distributed with the distribution of L; and that
for any &, {J;: i <k} is independent of {J;: i > k}.

(i) Upper bound in (2.27). Since
[>2]
{(L:>x}c U {Jp>x, M, >k},
k=0

we have

0

Y P{J,>x, M, > k}
k=0

0

Y, P{J,>x, T, <n}
k=0

gojp{Jk > %} P{r, < n)

=p,,(x)k>°fOP{M,, > k) = po(x)(EM, + 1),

P{L* > x}

IA
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Now M, + 1 is a stopping time and

M,+1
Y (§pAn)<m +n<2n,
k=1

so by Wald’s identity
E(M,+ 1)E(¢, A n) <2n.

Applying Lemma 2.8 gives E(M,, + 1) = O(8,) which completes the proof of the
upper bound in (2.27).

(ii) Lower bound in (2.27). For this bound we will use inclusion—exclusion. For
0<d8<1,let

B, = {k: kisevenand 0 < k < 8(0n A {pn(x)}ul)}.
Then

P(L*>x) > P( U (J,>xN,> k})
ke B,

> ) P(Jy>x,m<n—-2t}— Y P{J>x J,>x}

keB, Jj keB,
J<k
> p(x) ¥ P(r, < n/2} - }pi(x)Card(B,)[Card(B,) - 1].
keB,

Now by Lemma 2.8
k
P(r,>n/2} =P Y (¢,An)> n/2} < 2kn"'E(& A n) < ck;'.
j=1

Thus if § < (2¢)~!, we have P{r, > n/2} < 1 for all k2 € B, so
P(L}; > x} > }p,(x)Card(B,)(1 - p,(x)[Card(B,) - 1])

> 2pu(®)(0, 7 () )1 - 0).

This is adequate for the lower bound in (2.27).
(iii) Upper bound in (2.28). For n fixed, let z, = [k{ pn(x)} 11. Then z,_, <
2, k>1,and
(2.29) P{L* <x}= Y P(L} <x,2,_,<N,<z,).
k=1

Letting B = {J; < x for i < z;_,}, and
B; = {Ji<sxfori#j—2,j—1,i<2z,,},
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we have

P(L}<x,2, ,<N,<2z)} <P, >n-2t, J<xfori<z, }

SP{i(§j/\n)>n/2,Ji5xf0riSzk_l}
j=1 _

< Z f(s A n)dP

Z/(g A n)dP

z,E(¢, A n)P(B))

;|l\:> :lm\

Ckﬂﬂebn(x)—(k—l)/?
6, pn(x)
1-p,(x
< Ce _.__(_) e k/2
0, p,(x)
since

(1 = p(x)) 'P(B;) < (1 — p,(x))* 72
< exp(~p()((k - D){p,(x)} - 4)/2)

by discarding the oJ;’s with odd indices to achieve independence. Summing over %
and recalling (2.29) completes the proof.
(iv) Lower bound in (2.28). Define

={Jp<x,0<k<j,&>n}.
Then we use

j-1
P(F) = P{¢;>n} — ¥ P(J,>x, &> n).
0

For k <j— 2, J, and §; are independent but for the last two terms we need to
use Lemma 2.5. By startmg over at T;_,, we have

P(d,_,>x,£>n) = P{L," > x, & > n}
=P{L; >x,¢ <2, £ > n)
+P(L; >x, & > 2t,, §,> n}
<P{L; >=x,S;+ 0for3t, <j<n}
' +P(L, >x, £ >n)
< C8;'P(L; > x} + P{L, > x}P(¢, > n}
< C, 'p,(x).
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Similarly
P{(J,_,>=x,&>n}=P(L; >x,% >n)
=P{L, >x,8;+0fort,<j<n}
< CO,'P(L, > x} < CO, 'p,(x).
Thus we have by Corollary 2.3

P(F,) > 2¢6;" ~ jCO; 'p(x) = cb;,
for j < cC~Y{ p,(x)} L Since

P(F;F,) < P{§;>n,§,>n} <C4, %,
we have by inclusion-exclusion that if j, < cC~ Y p,(x)} !

P{L* <x} > P( U Fj) > jocbyt — jiC,6, 2
J<Jo
=Jjyel, (1 — jeT'CH;Y).
Thus by taking j, = c4(0, A {p,(x)} !) for appropriate c; we obtain
P(L} <x} > 04(1 A {0npn(x)}_1).
In making this estimate we have tacitly assumed that
0, A {pa(2)} ' > 5t
For the remaining case we use Lemma 2.7 to obtain
P(L} <x}>P{L, <x,¢ >n}

(2.30) > 0, 'P{L, <x} = cl; (1~ p,(x)).

Then if p,(x) > ¢, we have p,(x) = 1 so this bound suffices while if 6, < c;,
D, (x) < c3, then (1 — p,(x)) > c5(1 — ¢3) so the bound in (2.30) is adequate in
this case also. O

COROLLARY 2.4. Assume (A.1) holds, 0 < & <1, and t, < en/4. Then there
exists a positive constant C, such that
P(L} <x} < P{L}, , <x} < CyP{L} <x}.

en,t, —

Proor. Since p,(x) depends-only on x and ¢, but not on n itself, this
follows from Theorem 2.2 and Corollary 2.1. O

Now we may state the probability estimates for L} in the form in which they
will be used.
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THEOREM 2.3. * Assume (A.1l). Then for every & > 0, there exist positive
constants c,, c;, C,, C; such that forx > 0, n > 1,

(2.31) cy(6,9,(x) A1) < P{L} > x} < Cy(6,9, () A 1),
1 - g,(x) . 1 - q,(x)
(2.32) Cs m-)— ALl <P{L} <x} <C; W A1},

where q,(x) = P(L, > x}, q, (x) = P{L.,; >x—1}.
REMARK 2.2. These bounds are valid even if ¢, > n/4.

Proor. This follows immediately from the bounds in Theorem 2.2, Lemma
2.9, and (2.30) if ¢, < n/4.If ¢, > n/4, then 6, = 1 and (2.31) is essentially the
same as (2.25). Also, in this case, P{L} < x} = 1 — q,(x) as in (2.26) which gives
the upper bound in (2.32). It also is sufficient for the lower bound since if
g.(x) > 3, then g,7 (x) > § and so the lower bound in (2.32) is =1 — g,(x). On
the other hand, if g,(x) < 3, then 1 — g,(x) = 1 which also exceeds the lower
bound in (2.32). O

3. Lim sup behavior of L%. The main result of this section is Theorem 3.1
which shows that under condition (A.1) there exist constants B8, such that
limsup,(L;/B,) = 1 as. First we take care of the case when {¢,} is a bounded
sequence.

ProrposiTION 3.1. If {t,} is a bounded nondecreasing sequence, i.e., t, = k
for all n sufficiently large, then
P{L} + Bi.o.} =0,
where B= B, =[(k—1)a 11+ 1 and a is defined in (2.19). In particular,
lim (L}/B,) =1 a.s.

ProoF. Recall that {T}}, the time intervals between successive zeroes of S,,
are independent, identically distributed random variables. Thus, with probabil-
ity one, there will be 8 — 1 consecutive T}’s equal to a. Once this occurs, L} = 8
from that time on. O ,

To state the theorem, we first define 8,. Let {a,} be the sequence defined by
(2.1) and let

(3.1) 0,=a,a;'nt;".

By (2.3) we have 8, > ¢ > 0 for all n. Let

(3.2) p,; = ¢, Y(log 6, + log,n)

and if 0 < p, < —a~logq, let 0 <A, < o0 be the unique solution of
(33) h(X,) = pn,
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where h is defined in (2.20). [Here a and q are defined in (2.19).] We then define

= |(t,—1)a | +1, ifp,> —a'loggq,

(34) B.=[(t, — Da?] q
= tn/g(An)’ if Pp < —a—llog q,

where g is defined in (2.20).

THEOREM 3.1. Suppose (A.1) holds and {t,} is a nondecreasing sequence of
positive integers. If {B,} is defined by (3.4), then limsup,(L}/B,) =1 a.s.

Proor. Since 6, > ¢ > 0, if {¢,} is bounded then p, = o so B, is given by
the first expression in (3.4) for n sufficiently large and this agrees with the
definition of B8, in Proposition 3.1. Thus the theorem is an immediate conse-
quence of Proposition 3.1 when {¢,} is bounded. For the rest we assume ¢, 1 .

First we prove the upper bound. Let 0 < ¢ < 1 be given and let n(0) = 1,

n(k)=min{j>n(k—1): ;> (1 + &)t} A2n(k—-1), k21

For each k we either have n(k) = 2n(k — 1) or t,,)> (1 + &)ty If we
consider & = 1,2,...,2r, one or the other of these must occur at least half the
time so either n(2r) > 2" or n(2r) > t,,,) = (1 + €)'t;. In either case, there
exists ¢ > 0 such that for all 2 > 1

(3.5) ck < log n(k) < log2*.
Let
n(k)—1
= U {L: >+ 8)3ﬁn}-
n=n(k-1)
Then

2, € {Lhgy-r > (1+ €)*Bugay)

. {L;(k)—l,(l+e)tm(,,) >+ 5)3Bm(k)} =2},
where m(k) € [n(k — 1), n(k)) is such that
Buy = min{B,: n(k — 1) < n < n(k)).
By Theorem 2.3, for all & sufficiently large
P(z) < Con(k)_IP{L(m)z,mm >(1+ e)“’/sm(,,)}
and then by (2.23) with = ¢(1 + ¢) !
P(Z3) < Cﬂn(k)_lexp{ -1+ s)tm(,,)pm(,,)}
= Cly sy 100, “(log m(R)) ™",

Since ¢,z)-1 < (1 + €)¢,,) we have 0,y = 0, by (2.18a) and log m(k) = k
by (3.5). Thus P(Z}) = O(k~!~¢) and so LP(Z,) < . By the Borel-Cantelli
lemma, this implies limsup,(L%/B,) < (1 + ¢)? as. for any ¢ > 0.
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We now consider the lower bound. Let 0 < & < 1 and for any integer n let
n’ = [(1 — 38¢)n]. In particular, ¢, =[(1 — 3e)t,]. For a positive integer ¢ <
(1 — &)n we write

Ly (e) = max (L;+t Lj)'

en<j<n—t

We will continue to write L} for L} ,. Let n(j) =2/,0<9<1, &< n/3, and
L= Lk () > L= 1Buy}-

For the lower bound it suffices to show that for any 0 < n < 1 there is an & such
that P(I; i.0.) = 1. Since this probability is 0 or 1 by the Hewitt-Savage
Zero-one law, it will be enough to prove (see Proposition 3, page 317 of [9]) that
there exists C > 0 such that for N > 1

(3.6) LP(T) =
and
N
Y P(LT,) < C Z P(F)P(Fk)
J, k=1

By Lemma 3.1 below and then Theorem 2.3 and Theorem 2.1 with ¢ =1 — 3¢
P(T}) = cP{Li, ) > (1= 1)Buii)
2 clan(J)P{ thy = (1- ")ﬁn(j)}

> clﬂn(j)exp{ (1 - n*)(log 6, , + logzn(j))}

= 010;:'(2;‘)(103 n(]))_ o >cj Y,

for large j where (3.5) has been used at the last step. Thus the first condition in
(3.6) is satisfied. To check the second condition, we have for (j, k) such that
n(j) < en(k)

P(T;T,) < P(T}, S, # Ofor i € (n(J), en(k))}
+P(T;, S; = 0 for some i € (n(Jj), en(k)), I,}
< P(L}, 0, > (1= 0By, Si # Ofor i & (n(J), en(k)))}
+P(T; )P{ okt > (1 — "I),Bn(k)}
< CP(L)) 1oy + CP(T;) P(T),

where we used the Markov property of {S,} at the se;cond step and Lemmas 2.5
and 3.1 at the last step. This bound is adequate for the second condition in (3.6)
since

~ i~k — o9U-Ba-A1
Ten(tyTn(i) = @@ o(2 )

by Lemma 2.3 and (2.3). O
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It remains to prove

LEMMA 3.1. Assume (A.1). For 0 < ¢ < } there exist n, and C such that for
allx, t < (1 —3¢)n, andn > n,

P{L} (e) >x} < P{(L} ,>x} < CP{L} [(¢) > x}.

PrROOF. The first inequality is clear. For the second,
P(L; ,>zx} < P{L:,t(e) >x}) + P(L}, . .> x)
and then by Corollary 2.2 we have for n > n,
P(L},,,,> x} < CP(S; = 0 for some j € (en,2en]}P{L%,,, ,> x)
< CP{L:’t(e) > x}
by starting over at the first zero in (en,2en]. O

4. Liminf behavior of L}. Unlike the limsup case, we cannot always find
normalizers vy, such that

(4.1) liminfy,L* =1 as.

Indeed, in Theorem 4.2 we will show that if limsup nt,! = oo, then a sequence
{v,} can be found which satisfies (4.1). On the other hand, if limsup n¢;! < oo,
then for any choice of vy, the right side in (4.1) is either 0 a.s. or c a.s. and we
give a simple test to determine which is the case. This gives a complete answer to
the problem except that the definition of y,, assuming only limsup nt;! = o, is
not very satisfactory. In Theorem 4.1 we will show that if a stronger condition
holds, namely that

(4.2) i(no,,)-l < w,

then the y, can be defined essentially in the same manner as in the lim sup case.
This will allow a comparison between 8, and vy, (Section 5) to show that in fact
lim(y,/B,) = 1 under an additional condition [see (5.1)]; it will also lead to more
explicit expressions for these normalizers in the domain of attraction situation
(Section 6).

We assume (4.2) first, and define a nonnegative sequence {s,} which satisfies
s, — oo and for every ¢ € (0,1)

(4.3) Y(nb,) sk <0, X (nb,) skt = oo,
n n
and given ¢, > 1, there exist a € [0,1], C,, and C, such that
sn scn sn ‘
(4.4) C,—- <—<Cy—, forl<ec<cy,n=>1.
07— O, o;

It is always possible to find such an {s,} sequence. If we set

. { k)";n(kok)“}_l,
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then (4.3) is satisfied and (4.4) is also with a = 0, C, = 1, since

s [con] 2[con]
L <140 ¥ (k8)7] X (k6) ) <C,
Sn k=n k=[cyn]

by (2.18).

REMARK 4.1. We would like to note that other choices of s, are possible and
we will use this flexibility in the next two sections. In particular, if 6, >
log nlog,n - - - (log,n)'*? for some & and 8 > 0 (where log, stands for the &
times iterated log), then we can take s, = 6,/log nlog,n - - - log,n. It is easy to
check that s, satisfies (4.3) and (4.4) with a = 1 in this case.

To state Theorem 4.1 we assume (4.2) and choose {s,} satisfying (4.3) and
(4.4). Then let

(4.5) p, =t logs,
and

v, = |[(t,-Da"'| +1, ifp,> —a loggq,
e (ta D

=t,/8(%,), ifp,< —allogg,
where g, h are defined in (2.20) and if §, < —a~'log g then Xn is the unique
solution of A(A,) = p,.

THEOREM 4.1. Suppose (A.l) holds and ¥(nf,)~! < co. Then nt;'! >
and if the sequence {v,} is defined by (4.6)

liminf(L}/y,) =1 a.s.
Proor. First observe that |

2n

Y (k8,) " = b}

k=n
by (2.18), so 8, = o and then so does nt,' by Lemma 2.8. Fix 0 <n < 1 and
choose 8 > 0 small enough that

(1+28)% QA +9) " =p<1,
with A as in (2.2). Then define n(k) = [(1 + 8)*] and m(%,0) = n(k),
m(k: J) = min{l > m(k! J - 1). ti > (1 + n)tm(k,j—l)}: J = 1:

and let j, = max{j: m(k, j) < n(k + 1)}. Now for & large and 0 <j < j,, we
have by (2.2)

. . 1/2
Ok, j+1) _ (m(k, j+ 1))1/2 Ak, j) {m(k, J+t 1)} /

. Ok, i) Q(k, j+1) (m(k, )2\ m(k,J)
1/A 1-1/A
(4.7) 5 Ltm g (tme, ) { bk, j) }
(tm(k,j+ 1))1/}‘ atm(k,j) t”'(k,f"' 1)

<(1+28)1+79) " PV=p<1



LOCAL TIME OF A RANDOM WALK 1481

Now we define

Jr
A ={ min L¥/y)<1-— }c A,
k n(k)sn<n(k+1)( /Yn) 1 jL=JO k,Jj

where
Ay, j= {L;fu(k,j) <(1- n)Yy(k,j)}
and v(k, j) € [m(k, j), m(k, j + 1)) is such that
Yok, jy = max{y,: m(k, j) <n<m(k,j+1)}.
[Here we let m(k, j, + 1) = n(k + 1) so as to keep »(%, j) € [n(k), n(k + 1))
for all j.] Now by Theorem 2.3

P(Ak,j) < Cé, (k j)Qk Jj?
where by Theorem 2.1 with ¢ = (1 + 1) ! we have

Qr,; = P{Ltm(h,j) > (1 - n)YV(k,j)}

2 P(Lainy e, > (1= 1%, )
2 exp{ _(1 - "12)103 sv(k,j)} = (sv(k,j))—(l—" ),
Thus by (2.18), (4.4), and (4.7)
Jk
P(A,) < X P(Ak,j)
j=0

—a(l-92)p—1+a(l—
<C Z Suih! 1) b8 " i 55 ™
Jj=0

i
1-n2 pg-a(l—n2 —1+a(l—72
< Clsn(kn+1)0n(z(+1)n D> 0m(k,‘;)( ™
Jj=0

<C sn(k+1)0 (k+1)
since the series behaves like a geometric series. Finally, by (4.4) and (2.18) we
have
n(k+2)—1

Y (n6,) st

n=n(k+1)
n(k+2)—1

-1
—a(l- 1-a(l—-7%
>clsn(k+1) n<2‘+1)"’ > (non « n))
n=n(k+1)

n(k+2)—1

1-n2 p-1 -1

2 Co8pkr 1nck+1) Y n
n=n(k+1)

1-92 -1
2 38,04 1tk + 1)
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Then using (4.3) we see that ¥P(A,) < oo and so
liminf(L}/v,) >1 -7 as.
by the Borel-Cantelli lemma.
To establish the upper bound, let n(k) = 2* and for ¢ > 0
L= { ey < (L+¢) Yn(k)}

We will show P{T, i.0.} = 1 for all ¢ > 0 by checking (3.6) for the events I’ in
the present context. By Proposition 3.1 we may assume £, 1 0o and then y, - oo
by Theorem 2.1. By Theorem 2.3, for all & sufficiently large

where
Dbp= P{L iy (1+e) Yn(k)}

pPr= P{L(1+e)t,,(,,) >(1+ E)Yn(k)}'
By Theorem 2.1 with n = &1 — &)(1 + ¢)~}, for all % sufficiently large

P <DPi < exp{ —(1 + &?)log sn(k)} = s,
Thus p, — 0 and so for all sufficiently large %
P(Fk) > C( n(k)o (k) A 1)

To show LP(T,) = oo, it suffices to check that Zs},(*,:) b = . Ifa(l + %) <1,
then by (4.4) and (2.18)

n(k)—1
2, -
Y st(n6,)
n=n(k-1)
n(k)—1
2 2
< Csrlz(Jrke)a (z()1+e ) Z n—lan—1+a(1+e )
n=n(k-1)
n(k)—1
1+
= Clsn(ke) k) )y '<C sn(k) n(k)
n=n(k— 1)

If, on the other hand, a(1 + €2) > 1 then a similar argument shows that
n(k)—1

1+€¥ -1 1+e2 p-1
Y. si*f(n6,) < Csple—1y0nck-1)-

n=n(k—1)

Thus in either case the series diverges by (4.3). We will now check the second
condition in (3.6). For j + 1 < k, we have

P(T;T,) < P(I}; S, = 0 for some n € [n(j), n(k — 1)], T}
+P{T; S, # 0for n € [n(j), n(k - 1)] }.
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We use the Markov property of {S,} and Corollary 2.4 on the first term and
Lemma 2.5 on the second to obtain

P(Fjrk) < P(I‘J')P{L:;(k—l),t,,(,,) <@+ E)ZYn(k)} + CP(I‘j)rn(k—l)rn—(})

< CP(T;)P(T}) + CP(T) e Ty '
This bound is enough for the second condition in (3.6) as in the proof of Theorem
3.1. 0

We now prove the general theorem.

THEOREM 4.2. If limsupnt,' = oo, then there exists a sequence {v,} such
that (4.1) holds. If limsupnt;' < co, and {v,} is any sequence of positive
numbers, then

liminf(L}/y,) =0 a.s. or o a.s.
More precisely, let 2 < m(k) < 2%*! be such that
Ymcry = Max{y,: 2% < n < 2k+1};
then
2 Yty tmy < © (= o0) implies limninfL,";/y,, =0 (=0) a.s.

Proor. We first observe that by Lemma 2.8 the condition lim sup(n/¢,) = o
is equivalent to the condition limsupf, = co. Let {n(k)} be an increasing
positive integer sequence such that 6, ,, > 2% k> 1. Let

ﬁn(k) = t;(}e)l‘)g 0n(k)‘

We then define vy, ;, by (4.6) with n = n(k) and §,, as defined above, and
Yn = Yn(xy for n(k) < n < n(k + 1). By Proposition 3.1 we may assume ¢, 1
and then y, — oo by Theorem 2.1. For ¢ > 0, by Theorem 2.3 we have

l-¢g
2 k
PLigy < (1+ &) v} 2 c{ s A 1},

for all sufficiently large k, where by Theorem 2.1
9, = P{L(1+s)tn(k) >(1+ E)Yn(k)}
< exp{ —(1 + *)log Oty = 05",
s0 (1 — q,)/0,1,2% = 0,§fk)/2 — o0. Thus for all £ sﬁfﬁciently large we have
P{L,";(k) <@+ s)zy,,(k)} >c.
It follows that
P(Ly < (1 + ) Yp i0) 2 ¢ > 0.
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By the Hewitt-Savage 0-1 law
liminf(L*/v,) < (1 + &) as.,
for any ¢ > 0. For the lower bound, for any & > 0, by Theorem 2.3, for all large %

C
P <(1-9v, ,
{ n(k) = (k)} an(k)qk
where by Theorem 2.1
= P{ Lty > (1- s)yn(k)} > exp{ —(1 - ¢%)log 6 (k)} 05t

’I‘herefore, for all & sufficiently large
P{L% 4y < (1 = ) Vny) < Clry < C27%,

by the choice of ,,,. Since for ¢ > 0 we have 2,2 ~k¢ < o0, by the Borel-Cantelli
lemma

P{Li(k) <(1- E)Yn(k) i.o.} =0,

S0 liminf(Ln(k)/yn(k)) >1—eas. Since L} 1, for n(k) < n < n(k + 1) we have
Ly /Yy = Ly /Ynky = L)/ Yuery» @nd so liminf(L;/v,) > 1 — & as. for every
e > 0. This proves the first part of the theorem.

We now assume limsup 6, < o0, so 6, = 1. As observed earlier there exists
C > 0 such that

(4.8) t,<n<Ct,.

Suppose =Y,k Tmky < ©- Then Y, )Ty = 0 and by (2.14), for any M > 0 we
have with n(k) = 2%

P{L} ) < My, < P{L, IS MY iy} < oMYty

n(k)

< c3Mym(k)r (k)

where (4.8) and Corollary 2.1 are used at the last step. By the Borel-Cantelli
lemma we have a.s. L}, > My,,, for all k sufficiently large. Since L; 1, this
implies that liminf(L} /y,) > M as. for every M, so liminf(L} /v,) = o a.s. in
this case.

Now assume 2 Y,y = - Then by (2.14) we have

P{Lm(k) < er(k)} 2 P{Lm(k) < EYm(k)} 2 C1&mk)m (k)

so the probabilities sum to co. This shows the first condition in (3.6) holds with

= {Lp k) < &Ym(k))- The second condition in (3.6) is checked very much along
the same lines as before, so we delete this argument. Thus liminf(L}/y,) < e a.s.
for every & > 0, and the theorem is proved. O

5. Limit behavior of L*. The main result here, Theorem 5.1, says that if ¢,
does not get too close to n, then B, ~ v,,, where B, are the normalizers for the
lim sup behavior in Section 3 and vy, the normalizers for the lim inf behavior in
Section 4. Thus in this case we have lim 8 !L* = 1 ass.
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THEOREM 5.1.  If the sequence {t,} satisfies the condition
(5.1) limlog(nt,!)/log,n = oo,

then we have
imB 'L} =1 a.s,
n

where the sequence {f,} is defined by (3.4).

REMARK 5.1. If condition (5.1) is not satisfied, it will be shown in the next
section that the limsup and lim inf behaviors may be different.

Proor. By Proposition 3.1 we only need to consider the case ¢, 1 o0. By
Lemma 2.8 the condition in (5.1) is equivalent to

(5.2) lim (log 8,,/log,n) = o
In view of this, by Remark 4.1 we take s, = 8,/log n. Then g, in (4.5) is defined
by
B, = t,'(log 6, — log,n).
We use this definition of , to define vy, by (4.6). Also, by (3.2)
P, = t;I(IOg 0n + lOan)’
which is used to define 8, via (3.4). By (5.2) we have p,p,! - 1 as n - o0. By

Lemma 5.1 below, we have B8, ~ v,; the theorem then follows from Theorems 3.1
and 4.1.0

LEMMA 5.1. Suppose that B,,v, are defined by (3.4) and (4.6), respectively,
and p, ~ p,. Then B, ~ v,

Proor. If {¢,} is bounded, then both p,, 3, = o so B, =y, for large n.
Thus we may assume £,1oo. If, along a subsequence {n;}, we have p, >
—a~'logg, then B, ~ a‘lt and also liminfg, > —a~'loggq. Then even if
Pn, < —a ~log g we "have p Pn, 'S —a ~llog q so that 5\ — o0 and g(f\n ) > a;
thus in any case v, ~ a‘lt also. Since the same argument apphes it P, =
—a~lloggq fora subsequence {nk} we may assume that 0 < p,, §, < —a~'loggq
for the rest of the argument. It suffices to consider those n for which g, < p,. By
the generalized mean value theorem there exists £,, A, < £, < A, such that

h(A,) —h(R,) _ K(§) _ loge(4,)
e\) -g(X,) &) &)
where ¢ is given by (2.20). Therefore
[A(\) = B(R,)]8(£,)  logo(£)

[z(\,) —a(R)[R(E) ~ R(E.)a(t,)
-1
T 1+ £,0(8,) log 9(£,)]

(5.3)

-4
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since g | so that
X
logg(x) = [ - &(s) ds < —g(x)
and so

0<1+¢,8(¢)[loge(£,)] " < 1.
Therefore
g(X,) —g(\,) _ B, - A(A,)
&(¢,) h(¢,)
since p, ~ ,. Thus g(A,) ~ &(A,) and so B, ~ v,. O

0<

-0,

REMARK 5.2. Note that in Theorem 5.1 we can take p, in the definition of 8,
to be ¢ 'log ,. This is clear from Lemma 5.1.

6. Domains of attraction context. In this section we consider the special
case when X, is in the domain of attraction of a stable law of index a. Our basic
condition (A.1) implies 1 < a < 2 and that EX, = 0. There are recurrent random
walks in the domain of attraction of a Cauchy law (a = 1), but that case has to
be excluded in the present context.

We now assume EX, = 0 and that X, is in the domain of attraction of a
stable law of index a, 1 < a < 2. The following facts about G and @ [see (1.4)
and (1.5)] can be found in [3]. There exists a slowly varying (near infinity)
function ¢ such that as x - oo

(6.1) G(x) ~ ——x~%(x),
and

2
(6.2) Q(x) ~ ;x“"{’(x).

Furthermore, if X, is in the domain of normal attraction, then £ may be chosen
to be a positive constant c,, and

6.3) ¢, = EX? =02, whena=2.
( 0 1

Recalling that a, is defined by the equation n@(a,) = 1, we conclude that there
exists a slowly varying function #; such that

(6.4) a,=n*(n)

and in the domain of normal attraction case

(6.5) a,= (2c0a'1)1/an1/°‘, a<2.
In particular, .

(6.6) a, =on'?, whena=2.

Let G, K,, @, be the functions associated with the distribution of T}, the
time of first return to 0.
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ProrosITION 6.1. If X, is in the domain of attraction of a stable law H of
index a,1 < a <2, EX, =0, then T, is in the domain of attraction of a stable
law of index B =1 — a~'. More specifically, as x > o

x B (x)
YOT(BIT( - B)’

where ¢, is the slowly varying function appearing in (6.4), and y is the density
of the stable law H.

(6.7) G(x) ~

Proor. We use a Tauberian argument. For any n > 1
1= i Tn—kUps
k=0
therefore
T—i—; =R,(s)U(s), 0<s<l,
where R (s) = LL_,r,.s%, U(s) = T¥_,u,s”. By the local limit theorem (it is not
necessary that the random walk be strongly aperiodic, i.e., p = 1)
ug+ « - +u, ~ $(0)nf/Bty(n);
hence by Theorem 5 ([3], page 447) we have
U(s) ~ ¥(OT(B)/(1 = 8)°4,(1/(1 = 5)) ass?l.
It follows that
4(1/0-s)) 1
yOT(B) (1-s)'*
Since r, |, by Theorem 5 ([3], page 447) again
1
™ Y(O)T(B)I( - B)

Since G(n) = P{T, > n} = r,, and G, is monotone, it follows that G, satisfies
(6.7)as x = 00.0

R(s) ~

n~P¢(n).

THEOREM 6.1. LetB=1-1/a and
b = ;4B log(n/t,) + log,n).
Let .
3 [(¢,- )a~t] +1, ifp,> —alloggq,
tn/8(X,), if p, < —a~'logg,
where A\, is the unique solution of h(\,) = p,. Then
limsup(L*/B,) =1 a.s.

B
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If, in addition, lim ,[log(n/t,)/log,n] = oo, then
lim(L:/B,) =1 a.s.
n

In particular, if t, = clog n for some c > 0, then there exists ¢, > 0 such that
B, ~ c,t,, where ¢, =a ' if c'B > —a 'logq, otherwise c; = g(A\y)~", where
A, is determined by h(\,) = c¢~'B. Furthermore, B./t, = 0 iff t,'logn — 0, in
which case
_ $(0)T(B)t8[ B log(n/t,) + logyn]'~*

BR(1 - B)' P4 B(1 — B)(Blog(n/2,) + logon) 't,)

(6.8) B,

REMARK 6.1. As a very special case, if a« = 2, ¢; = o, i.e,, the case of normal
attraction to the Gaussian, and ¢, = n, then L} = L, and the theorem says that

limsupL,/(2nlog,n)"? = 671,
n

a result of Kesten [7]. The theorem also contains the results of [1] for various
choices of ¢, when a = 2 and ¢, = o (the only case considered there).

Proor. To show that limsup(L}/B,) = 1 or lim(L}/B,) = 1, it suffices to
check that the p, of the theorem and the p, of (3.2) are asymptotically
equivalent, and then the result follows from Lemma 5.1 and Theorem 3.1 or
Theorem 5.1. Recalling that a, = n'/%/,(n), we have

v ()

tn
and using the representation theorem for slowly varying functions (corollary,
page 282, [3]) we easily see that

log6, ~ Blog(n/t,) asn— oo,

which gives the asymptotic equivalence of the two p,’s.
The assertion when ¢, = clog n follows immediately from the definition of 8,.
Finally, B,/t, — 0iff g(A,) = o iff X, - 0iff A(A,) = p, = 0. Now

p, = {B(logn — logt,) + logyn}t,* - 0,

iff £, 100 and {Blogn + log,n}t,! — 0 iff ¢ ;'logn — 0. It only remains to
establish (6.8).
In the notation of Proposition 2.1 [6]

R(A) 1-8
= —— ~ —A\ A - 0.
h(A) g(\) B ash =0
Therefore
B B Blog(n/t,) + log,n
(6.9) A, ~ I—:—Bh(}\n) =1= 3 : .
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Again by Proposition 2.1 [6],

&(\,) ~ BT(1 = B)G(1/A,)A;!
and using (6.7) we get

BT(1 — BN, (1/A,)

g(A,) ~
(6.10) Y(0)T(B)T(1 - B)
B -1

Since 8, = t,/g(A,) when A, — 0, (6.8) follows from (6.9) and (6.10). This proves
the theorem. O

In the next example we show that the lim sup and lim inf behaviors of L} may
be different if (5.1) does not hold.

EXAMPLE 6.1. Suppose EX, =0, EX2=1. Let C > 2 and ¢, = n/(log n)C.
Then

log(n/t
g(n/t) _

log,n
so condition (5.1) does not hold. However p, in Theorem 6.1 equals (C + 2) X
(log n)Clog,n/2n, which tends to 0 as n — co. Therefore by Theorem 6.1
(B=1390)=@n) "% ¢, =1)

B, ~ n/2(log n)~“*((C + 2)logyn} .

On the other hand, since (4.2) is satisfied we can use Remark 4.1 and Theorem
4.1 and take

’

) llog(n/t,) — logon (€ — 2)(log n)Clogzn
o, = =
t 2n

n

’

which again goes to 0 as n — o0, so (as in Theorem 6.1)
9~ n/%(log n)~“*((C — 2)logyn}'”,

and we have limsup(L}/B,) = 1, liminf(L} /¥,) = 1 by Theorems 6.1 and 4.1,
respectively. Thus the two behaviors are different. By letting C depend on n and
approach 2 it is clear that one may make B,/9, = 0. But we may examine the
rate for some well behaved {¢,} sequences of this type. For example, let

t, = n/{log n(logzn)lﬂ}z,
for some ¢ > 0. Then

6, = (n/t,)"? = log n(log,n)'**
so that (4.2) is satisfied. By Theorem 6.1,

2(nlogyn)'’?
1+e°

" log n(log,n)
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On the other hand, by Remark 4.1 we may take
[

t,lelogsn
= sn‘l{log n(logzn)1+”}zlog3n
and so (as in Theorem 6.1)
(2enlogzn)'?
"~ logn(logyn)*’
Thus B, /9, ~ (2log,n/¢log,n)/2,
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