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UNIVERSAL DONSKER CLASSES AND METRIC ENTROPY!

By R. M. DUDLEY
Massachusetts Institute of Technblogy

Let (X, &) be a measurable space and & a class of measurable functions
on X. & is called a universal Donsker class if for every probability measure
P on &, the centered and normalized empirical measures n'/?(P, — P)
converge in law, with respect to uniform convergence over %, to the limiting
“Brownian bridge” process Gp. Then up to additive constants, # must be
uniformly bounded. Several nonequivalent conditions are shown to imply the
universal Donsker property. Some are connected with the Vapnik—
Cervonenkis combinatorial condition on classes of sets, others with metric
entropy. The implications between the various conditions are considered.
Bounds are given for the metric entropy of convex hulls in Hilbert space.

0. Introduction. When £ is a universal Donsker class, then for indepen-
dent, identically distributed (i.i.d.) observations X,..., X,, with an unknown
law P, for any f, in &, i=1,....,m, n VY f(X)+ - +f( X)) i<i<m 18
asymptotically normal with mean vector n'/%((f,(x)dP(x)},<;<,» and covari-
ance matrix [f;f;dP — [f,dP[f;dP, uniformly for f; € #%. Then, for certain
statistics formed from the f,(X,,), even where f, may be chosen depending on the
X,, there will be asymptotic distributions as n — . For example, for x?
statistics, where f; are indicators of disjoint intervals, depending suitably on
X,,..., X,, whose union is the real line, X2 quadratic forms have limiting
distributions [Roy (1956) and Watson (1958)] which may, however, not be x?2
distributions and may depend on P [Chernoff and Lehmann (1954)]. Universal
Donsker classes of sets are, up to mild measurability conditions, just classes
satisfying the Vapnik—Cervonenkis combinatorial conditions defined later in this
section [Durst and Dudley (1981) and Dudley (1984) Chapter 11]. The use of
such classes allows a variety of extensions of the Roy—Watson results to general
(multidimensional) sample spaces [Pollard (1979) and Moore and Stubblebine
(1981)]. Vapnik and Cervonenkis (1974) indicated applications of their families of
sets to classification (pattern recognition) problems. More recently, the classes
have been applied to tree-structured classification [Breiman, Friedman, Olshen
and Stone (1984), Chapter 12].

The use of functions more general than indicators gives additional potentially
useful freedom in constructing statistics. For example, there may be advantages
to procedures based on spaces of smooth functions, which contain no nontrivial
indicators. Le Cam, Mahan and Singh (1983) give a rather general extension of
the Chernoff-Lehmann approach to “quadratic forms, or related objects.”

Or, if % is an (infinite-dimensional) ellipsoid, the square of the supremum of
an empirical measure over % is a sum of squared integrals, approximable by
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finite sums, thus easier to compute than suprema over most families of functions.
Ellipsoids seem difficult to obtain as symmetric convex hulls of classes of
indicators.

The present paper will give no specific statistical procedures, but rather a
general approach to sufficient conditions for the universal Donsker property.

First, some terminology and previous results will be recalled. Most appeared
in Dudley (1984). Let (X, &, P) be a probability space. Let P(f):= [fdP for
each integrable function f. Let Gp be a Gaussian process indexed by
2% X, o, P) with mean 0 and covariance EGp(f)Gp(g) = P(fg) — P(f)P(8)
for all f and g in 2% Let pp(f,8) = (E(Gp(f)— Gp(g))*))/*. Such a
process will be called coherent if each sample function Gp(-)(w) is bounded and
uniformly continuous on % with respect to pp. A class #C & 2 will be called
pregaussian or P-pregaussian (formerly called GpBUC) iff a coherent Gp
process exists on %. Let (X*®, &%, P*) be the countable product of copies of
(X, o, P), with coordinates x(1), x(2), ... . Let P, == n" %8, + -+ +8,.,), the
nth empirical measure for P. Let v, := n'/*(P, — P). Let (2, &,Pr) be the
product of (X%, /%, P*) and the unit interval with Lebesgue measure. For any
real-valued function G on % let |G| &= sup{|G(f)|: f€F}. Call F a
functional Donsker class for P iff on ©, there exist independent coherent Gp
processes Y;, Y,,. .., such that for each ¢ > 0,

lim Pr*{n_l/2 max |[k(P, — P) — Y, — -+ = Y| o> e} =0.
k<n

An alternate definition, due to Hoffmann-Jergensen (1984), is that % be
P-pregaussian and for every bounded || - || -continuous real function h on the
set of all bounded functions on %,

f‘h(p,,) dPr— [h(Gp)d Pr;

this definition is equivalent to the previous one according to Hoffmann-
Jorgensen (1984), Talagrand (1987) and /or Dudley (1985), Theorem 5.2. Thus, if,
in addition, A(»,) is Pr-measurable, it converges in law to A(Gp). We have
uniform convergence of Eh(»,) to ER(G,) for A in any uniformly bounded,
|| - || #-equicontinuous family of functions A for which h(»,) are measurable, as
follows from an extended Wichura theorem [Dudley (1985), Theorem 4.1].

A collection ¥ of sets is said to shatter a set F iff every subset of F is of the
form BN F for some B € ¥. The supremum of cardinalities of finite sets
shattered by % will be called S(%). A collection % is called a Vapnik-Cervonenkis
(VC) class iff S(¥) < oo. _

A measurable space (S, #) will be called standard iff there exists a metric d
on S for which (S, d) is a complete separable metric space and # is the Borel
o-algebra. A measurable space (Y, %) will be called Suslin iff % is countably
generated and separates points of Y and there is a standard space (S, %) and a
measurable function from S onto Y. Given a measurable space (X, &), a
collection % of measurable functions on X will be called image admissible
Suslin via (Y, %, T) iff (X, ) and (Y, %) are Suslin and T is a function from Y
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onto % such that the function (x, y) = T(y)(x) is jointly measurable. Here,
equivalently, (Y, %) can be taken to be standard.

For a measurable space (X, &), a collection % of measurable real-valued
functions on X will be called a universal Donsker class iff it is a functional
Donsker class for every probability measure (law) P on 7. If % is a collection of
indicators of sets, #= {11 B€ ¢}, and a universal Donsker class, or' even
pregaussian for all P, then ¢ must be a Vapnik—Cervonenkis class [Durst and
Dudley (1981) and Dudley (1984), Theorem 11.4.1]. Conversely, an image admis-
sible Suslin VC class is a universal Donsker class [Dudley (1978), Section 7, and
(1984), Theorems 11.1.2 and 11.3.1]. The measurability hypotheses cannot be
completely removed [Durst and Dudley (1981) and Dudley (1984), Theorem
11.4.2]. The question remains open as far as I know: What (measurability)
conditions on a family of sets, together with the VC property, are equivalent to
the universal Donsker property?

For classes of functions a quantitative condition characterizing the universal
Donsker property up to measurability is not known (to me). Several nonequiv-
alent extensions of the VC property to families of functions will be shown to be
sufficient (under suitable measurability), but not necessary.

The remaining sections of the paper are: 1. Statements of conditions. 2. The
easier implications. 3. Small non-VC hull classes and dual density. 4. Stability
properties. 5. Metric entropy of convex hulls in Hilbert space. 6. Sharpness of the
conditions. 7. Notes on weighted processes.

1. Statements of conditions. Here is a first result. For any real function f
let diam( f) = sup f — inf f.

(1.1) PROPOSITION. For any universal Donsker class %,
sup diam( f) < oo.

feF

Proor. If not, take x,=x(n)€ X, y,=yn)€ X and f,€F with
fn(xn) - fn(yn) > 2" for all n. Let

o0

Pi= Y (8my + 8ymy) /2",

n=1

a law on all subsets of X and thus on 7. Then for P,
E(f, ~ Bf,)* 227" inf {(£,(x,) = €)* + (ful(3) = )’}

=2 f(x5) — 1)) > 2 m=12,.

Thys, for the pp (standard deviation) metric, # is unbounded, so not a Donsker
class for P [Dudley (1984), Theorem 4.1.1] and not a universal Donsker class. O

Say a function h on % ignores additive constants if h(f)= h(f+ ¢)
whenever f €%, ¢ is a constant and f+ce€%. Let Y be a coherent Gp
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process. Then if f €% and f+ c €% for a constant ¢, pp(f, f+¢) =0 so
Y(f)= Y(f + c). Then Y is consistently extended to the set #+ R of all
functions f+ ¢, fE€F, c €R, setting Y(f+ c) = Y(f). This extension is
coherent, so %+ R is pregaussian.

Now let & be a functional Donsker class for P. Note that each k(P, — P)
is defined and ignores additive constants on %+ R. Extending each Y;
in the definition to #+ R as above, we have ||a||# g = |la||# for each a =
k(P,— P)-Y,— -+ —Y,. Thus, #+ R is a functional Donsker class for P.
Hence, if % is a universal Donsker class, so is %+ R.

Any subset of a functional Donsker class for P is also, thus any subset of a
universal Donsker class is a universal Donsker class. For an arbitrary real
function c¢(-) on %, & is a universal Donsker class iff {f — ¢(f): f € #} is. Let
bF:= {bf: f € F) for a constant b # 0. Let U(bf ) == bY(f), f € #,for ¥, as
in the definition of a functional Donsker class Then each U, is a coherent G P
process on b, so that replacing # by b# and Y, by U; we see that b¥ is a
functional Donsker class iff Z is, and thus a universal Donsker class iff Z is. So
in finding sufficient conditions for a class # to be a universal Donsker class, it
will be enough to consider uniformly bounded classes of functions [letting
c(f) = inf f ], where we can also assume 0 < f < 1 for all f € #.

Now several conditions to be shown sufficient for the universal Donsker
property will be defined.

DEFINITIONS. Let % be a class of functions on X with f(x) > 0 for all
feZF and x € X. Let ¥ be a class of subsets of X.
For each f € # and t € R, the set {x € X: f(x) > t} will be called a major
set of f and of #.1 call # a major class for € iff all the major sets of # are in
" &.If % is a VC class, then I call # a VC major class (for €).
The subgraph of the function f > 0 will be defined as

sub(f) = {(x,t) e X X R:0 <t <f(x)}.

For a class 2 of subsets of X X R, say & is a subgraph class for 2 iff
sub(f) € 2 for all f € #.1f 9 is a VC class, then I call # a VC subgraph class
(for 2). [VC subgraph classes have previously been called “VC graph” classes
[Alexander (1984, 1987)] or “Polynomial classes” [Pollard (1984), pages 17 and
34, and (1985), Section 6].]

Given a class Z of functions and 0 < M < oo, let H(#, M) be M times the
symmetric convex hull of #, that is, the class of all functions g such that for
some k<o, f;€% and real t, j= , k, Ek_1|t|sM and g(x) =

lt fi(x) for all x. Then let H (.97 M) [sequentlal closure of H(¥#, M)] be the
smallest class ¢ of functions including H(#, M) such that for any g, € ¢ with
g,.(x) = g(x) as n - oo for all x, we have g € . Say that F is a hull class for
% (a class of sets identified with its class of indicator functions) iff % C H(%, M)
for some M < co. Then & will be called a VC hull class if S(¥) < .1 call # a
VC subgraph hull class if #c H(%, M) for some M < oo and VC subgraph
class 9. [The “secondary VC graph difference classes,” for which Alexander
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(1985b), Theorem 2.2, proves extended Kiefer inequalities, are VC subgraph hull
classes.]

For any metric space (S, d) and ¢ > 0 let D(¢, S) = D(¢, S, d) := sup{m: for
some X,,...,%, €S, d(x;,x;)>¢efor 1<i<j<m} Given a law @ on
1<p<oo and £>0 let D(”)(s, F,Q) = D(¢, F, eq ,), where eg (f,8) =
(fIf — &P dQ)"/?. Let DP)e, F) = supg D®)(e, #,Q), where the supremum is
over all laws @ concentrated in ﬁmte sets. [These definitions are due to
Kolé&inskii (1981) and Pollard (1982).] Say that # satisfies Pollard’s entropy
condition iff
(1.2) [ (1og DO(e, #))"* de < oo.

0
Let D(W)(ey ‘o}‘) = D(£7 '9;-, doo)’ where doo( f: g) = Supxl(f - g)(x)l'

Then clearly D@(e, ) < D®) (e, F).

Note that for any uniformly bounded class # of measurable functions,
M < o and any law @ on &/, H(%#,M) is dense in H(%F, M) for eq, p»
1 < p < o0, as will be used for p = 2.

Some other conditions to be considered are as follows:

(1.3) Forsomer < oo, D®(e, F)=0(e"")asel0.

(1.4) & is a sequence {f;}; ., of measurable functions on X with
' diam( f;) = o((log j)™*/*) as j — co.

(14)°  Fc H,({f), M), where M < oo and { ;} satisfies (1.4).
Condition (1.2) with sup instead of L% norm becomes

(1.5) fol(log D)(x, .9'4"))1/2 dx < o0.

Most of the rest of the paper is devoted to showing what implications hold
between the various conditions just defined, all of which imply the universal
Donsker property. Figure 1 illustrates the implications, where h) requires some
measurability conditions. Some implications which are obvious (given others) are
not indicated. Most of the cases are handled by Theorem 2.1 below; “a),” “b),”
etc. in Figure 1 indicate parts of Theorem 2.1. The condition

(1.6) log DA(s, #) = O(e72), asel0

VC major @vc hul| Zz> VC subgraph hull (1.6)

Prop. Prop.
N S )\e o
VC class .
(1.5) h) _ Universal
,ff sets\ Th. 3.1 &/ T) (|12)')X——> Donsker
@) VC subgraph 1.3 “~4) Tk)
C subgrap z:,:?( ) yeo

o), A(I4
7

Fic. 1.
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is shown in Section 6 to be a sharp (Proposition 6.3) necessary condition
(Proposition 6.2) for the universal Donsker property but not sufficient (Proposi-
tion 6.4). These facts and Theorem 2.1h) show that D® comes close to char-
acterizing the universal Donsker property, but does not. [On (1.4) see Theorem
2.10).] Some of the stronger conditions are often easier to check and apply. Also,
they may imply stronger inequalities or speeds of convergence, which may vary
notably even between VC classes of sets, according to Beck (1985). A statistician
has some freedom of choice in the class of functions.

2. The easier implications. This section will prove most of the implica-
tions and nonimplications in Figure 1 relatively easily.

(2.1) THEOREM. Let & be a class of measurable functions f on X with
0 <f(x)<1 forall x, and ¥ a class of measurable subsets of X.

a) If all the major sets of F are in €, then ¥ is also a hull class for €.
Thus, every VC major class & is also a VC hull class.

b) There exist VC hull classes # which are not VC major classes [i.e.,
{{x: f(x)>t}: fE€F, tER}isnota VC class].

¢) (Pollard) For every VC subgraph class &, (1.3) and (1.2) hold.

d) For any VC class € of sets, its set of indicator functions is both a VC
subgraph and a VC major class.

e) There exist classes ¥ of functions satisfying (1.2) and not (1.3).

f) There exist VC major (thus VC hull) classes which do not satisfy (1.3),
thus are not VC subgraph classes.

g) There are VC subgraph classes [thus satisfying (1.3) and (1.2)] which are
not VC major.

h) (Pollard) If ¥ satisfies (1.2) and is image admissible Suslin, it is a
universal Donsker class. _

i) If & is a functional Donsker class for P, then so is H(%#, M) for any
M < 0.

j) There exist sequences {f;} satisfying (1.4) but not Pollard’s entropy
condition (1.2).

k) (Paulauskas and Heinkel) If F satisfies (1.4) or (1.4)°°, then ¥ is a
universal Donsker class.

m) Condition (1.5) implies (1.2). :

n) (1.5) does not imply (1.3), thus does not imply that % is a VC subgraph
class.

o) An infinite collection of indicators of sets is never included in H(%, M)
for any M < oo and class % satisfying (1.5) or sequence = {f;} satisfying
1.4). '

p) (1.5) does not imply that F is a VC major class.

q) (1.3) does not imply that F is a VC subgraph class.

REMARK. As noted, if % is the class of indicators of sets in ¢, then up to
measurability conditions, the universal Donsker property of % is equivalent
to the Vapnik-Cervonenkis property of %, and hence to the intermediate
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conditions in Figure 1, namely the VC major, VC hull and VC subgraph (hull)
properties of % as well as (1.2) and (1.3) [that (1.2) implies (1.3) for classes of sets
may be surprising]. Some of these equivalences can be seen directly (without
measurability assumptions). Conditions (1.4) and (1.5) do not join in the equiv-
alence.

PROOF. For the examples in parts e), j) and q), A(r) will always be
independent sets with P(A(n)) =1/2, n = 1,2,..., for some law P, specifically
Lebesgue measure on [0, 1].

a) Let % be a major class for €. Given f € % let

n

1 n—1 j
fo=— X Ypsim= X S lu/m<rsGro/my:
nJ—I j—O

Then f,— f as n — oo (even uniformly), so &% is a hull class for % [this
argument was used previously in Dudley (1981), Theorem 1.9].

b) Let X = R? with usual Borel o-algebra. Let € be the collection of all open
lower left quadrants

{(x,¥y):x<a,y<b}, ac€R,beR.

Then € is a VC class [S(¥) = 2, see Wenocur and Dudley (1981), Proposition
2.3, and Dudley (1984), Corollary 9.2.15]. Let

Fi= { i Lony/2™: C(n) € ‘6}.

n=1

Then % is clearly a hull class for € (this did not depend on the particular choice
of ¥). The sets {f > 0}, f € F, are exactly the countable unions of sets in %.
These are all the open “lower layers” in the plane [e.g., Dudley (1984), Section
7.2] and do not form a VC class. For example, their intersections with the line
x + y = 1 shatter any finite subset of the line.

c) See Pollard (1984), page 27, Lemma 25, with F = 1, and page 34, Lemma
36.

d) ¥isa VCeclassin X iff {B X [0,1]: B€ ¥}isa VCclassin X X R: “if” is
straightforward, and “only if” is a special case of Assouad (1983), Proposition
2.5b, and Dudley (1984), Theorem 9.2.6, for X. The class of major sets for
{1,: A€ %}is U {2, X}, a VC class iff ¥ is.

e) and n) Let Lx:=max(l,logx) and f,=1,,;/Ln. Then the sequence
F={f,}, > satisfies (1.4), (1. 5) and (1.2). For each subset F of {1,..., n} choose
a pomt

x(F) € ﬂA(f)n N X\A().

jeF j&F, j<n

Set @ = 27"Lp8, ). Then A(j) for j=1,..., n are independent for @ with
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probability 1/2. We have for i <j < n,
2 2 2
U= 1) d@= [£2+1?d@ - 5

1 1 + 1 1 1 1
== -] = > B
2\(Li)*  (L)* Lili| "~ 2(Lj)’ "~ 2(Ln)’
So D®P(e, #,Q) = exp(1/2/%¢) — 1 for 0 <e <1 and (1.3) fails, proving n)
and e).

f) Let % be the set of all nondecreasing right-continuous functions f on R
with 0 < f < 1. Then & is a VC major class, since half-lines [x, oo[ or ]x, o[,
— 00 < x < o0, form a VC class € with S(¥) = 1. To show that (1.3) fails for &,

first note that for any measurable f and g and law @, the L? distance

eo(f, 8) = eq o, 8) = [If — £1dQ, so DP(e, F) = DV(e, F), & > 0.

The next steps use some facts about lower layers [Dudley (1984), Section 7.2].
For Lebesgue measure P on [0,1],

DW(e, F,P) = D(e, £%, ,,d,), 0<e<]l,

where £, | is the set of all lower layers in the unit square I? in R® and d, is
the Lebesgue measure of the symmetric difference of sets in I% Thus, for some
¢ >0, DV(g, F, P) > e as £|0. For each & with 0 < & < 1, there is a law @
with finite support and D®(e, F) > DV(e, F,Q) = e/ — 1, so (1.3) fails,

proving f).
g) and p) These will follow from Theorem 3.1, but here are short proofs. Let
f,=n"l+n% By N =12,..., where B(n) is any sequence of measurable

sets. Then f, |0, so the subgraphs of f, also decrease. Being linearly ordered by
inclusion, they form a VC class ¢ with S(¢) = 1 [Wenocur and Dudley (1981),
Corollary 2.2, and Dudley (1984), Theorem 9.2.4). So %= {f,},., is a VC
subgraph class. We have { f, > 1/n} = B(n), and the B(n) need not form a VC
class, so % need not be a VC major class, proving g). Now # has D™)(e, #) <
2+ 1/efor 0 < & <1, so F satisfies (1.5), proving p).

h) This essentially follows from a theorem of Pollard (1982), proved with the
specific “image admissible Suslin” measurability condition in- Dudley (1984),
Section 11.3, with F = 1.

i) For any subset % of a real vector space V and real function Yon &%, call Y
prelinear iff whenever Y™ ,a; f; = 0 for real a; and f; in &, then X[ ,a,Y(f;) = 0.

(2.2) LEMMA. For any coherent Gp process Y on some ¥ there is such a
process Z on the pp-closed convex symmetric hull X of % with all sample
functions of Z prelinear on X and a.s. Z =Y on %. Thus, almost all sample
functions of Y are prelinear on %.

PROOF. See Dudley (1985), Theorem 5.1, in whose proof the three-series
theorem should and need only be applied when f € #. O

Let % be a uniformly bounded functional P-Donsker class and =
{h: for some f, € #, f(x) = h(x) for all x}. Each k(P, — P) is continuous for
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bounded pointwise convergence, and each coherent Y; in the definition of
functional P-Donsker class extends naturally to s#. For each a = k(P, — P) —
Y, — .-+ =Y, we have ||a|| = ||a|| z. Thus, 5# is a functional P-Donsker class.
Hence, so is ¥:= H(%, M), we have ||a||¢ = M||a]| &, and i) follows.

j) An example will be based on one in the proof of Dudley (1967), Proposition
6.10. Let a, = a,(Ln)"'/2 where a, |0 slowly; specifically, a, = (LLn)"/2
Let f, = a,l,,) Then for each n, taking @ asin the proof ofe), for1 <i <j<n
we have

J(t= 1) dQ = 3{a(Li) " + «X(Li) " - aya,(LiLj) ™)
> ta¥(Lj) " > €

for j < n if a2 > 2¢2Ln, or, equivalently, LnLLn < 1/(2¢2). Let n(e) be the
largest n for which this holds. Then as €0, LLn(e) ~ 2L(1/¢), so Ln(e) ~
(4e®L(1/¢))" Y, and [J(Ln(e))/?de = + 0. So { f;}, ., satisfies (1.4) but not (1.2),
proving j).

k) By part i), we may assume (1.4), then apply a central limit theorem in the
Banach space c, stated by Paulauskas (1980), Corollary. Heinkel (1983), Theo-
rem 1, gave a relatively long proof. Here is a direct proof.

By an inequality of Hoeffding (1963), (2.3) of Theorem 2, for any measurable f
with0<f<1 n=12,..., and any law P,

Pr{r,(f) >y} < exp(—2y?), for each y > 0.
Considering 1 — f, we have
Pr{|n,(f)| >y} < 2exp(-2y?).

Let a; := diam( f;) = a,;(Lj) /% so that a; > 0 as j > co. We may assume that
0 < f; < a;> 0. Then for any ¢ > 0,
Pr{|n.(£;)| > ¢} = Pr{|n( f/a,)| > ¢/a;} < 2exp(~2¢%/a})
= 2exp(— (2£2Lj)/a]2~)
= 2j72¢/20) where a( j) = a;, j > 3.
Since ¢2/a? > 1 for j large, |

EPr{ v £,)] > e} converges, uniformly in n.
J

If f;=f; as. for P, then »,(f;) = »,(f;) as. for P®. Thus, {f;};,, form a
functional Donsker class [by the proof of Theorem 5.2.1 of Dudley (1984)],
proving k). '

m) follows easily from the definitions.

Recall that n) was proved with e) and p) with g).

For o), recall that the convex hull of a totally bounded set is totally bounded
[by Mazur’s theorem, e.g., Dunford and Schwartz (1958), page 416].
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q) Take %= (1,,,/n},; Then for 0 <e <1, D@ F) < D) (e, F) <
1+ 1/¢, so (1.3) holds. For m = 1,2,..., the sets A(1),..., A(2™) shatter some
set B with m elements [Assouad (1983), 2.12 and 2.13b, and Dudley (1984),
Theorem 9.3.2, which lacks the Assouad reference]. Then the class 2 of all
subgraphs of functions in & shatters {{(x,27™ '): x € B}, so S(2) = +oo,
proving q) and Theorem 2.1. O

3. Small non-VC hull classes and dual density. This section will show
that there are sequences converging to 0 in supremum norm like any power of n
which are not VC hull classes. The proof applies the notion of dual density
[Assouad (1983)].

(3.1) THEOREM. There exist sequences %= {b,1 sn)}p»1, SPecifically with
b, = 1/n® for any positive integer v, which satisfy (1.3), (1.4) and (1.5), and
there exist VC subgraph classes 9, such that # and 9 are not VC hull classes.

ProoOF. Two lemmas will be proved.

(3.2) LEMMA. Let A,,..., A, be jointly independent events in X with
P(A)=1/2, j=1,...,n. Let B,,...,B, be any events and set D:=
Ui<j<n A;4B;. Then the algebra # generated by B,,..., B, has at least
2™(1 — P(D)) atoms.

Proor. Forany F C {1,...,n}, let
JjeF J€F, j<n
and likewise define By. The atoms of # are those By which are nonempty. For
each F, P(Ap) = 1/2". If a point of Ay is not in D, it is also in By, which is
then nonempty. Since D can include at most 2"P(D) of the 2" events Ap, the
lemma follows. O

(3.3) LEMMA. Suppose A; = A(j) are independent events with P(A;) = 1/2
for all j, and ¥ is a class of events such that for some K < o0 and u < o0, for
each j there is an event D; such that P(A; s D;) < n;, where D; is in an algebra
generated by at most Kj* elements of € and ¥ ;m; < 1. Then € is not a VC class.

ProoF. By Lemma 3.2, for each m = 1,2,..., the algebra 2 generated by
D,,..., D, has at least 2™a atoms, where a := 1 — ¥ n; > 0. On the other hand,
9 is generated by at most )

Y K*<K(m+1)""/(u+1)

. 1<j<m
sets in €. Now, for a VC class €, according to Assouad (1983), 1.3d and 2.13e,
there is some ¢ < o0 and a C < o such that the number of atoms of the algebra
generated by & elements of € is at most Ck’. Then 2™« is bounded above by a
polynomial in m [of degree (u + 1)t], a contradiction. O
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Now to prove Theorem 3.1, let A(m) and P be as in the proof of Theorem 2.1.
Suppose the class #= {1,,,/m"},, ., were a VC hull class for some ¥. Clearly,
D™)(g, ) < m for the least m such that 1/m® <, so m < ¢~ /* + 1. Thus,
(1.4) and (1.5) both hold for & as stated. _

Suppose P(A) =1/2 and that a + b1, € H(%, M) for some a >0, b> 0
and 0 < M < . Replacing a by a/M and b by b/M, we can assume that
M=1. If S(¢)=r< o, then for any w > r there is a constant C < o
such that D(e, %,dp) < Ce™™ for 0 <e <1 [Assouad (1983), Proposition
4.3, and Dudley (1984), Theorem 9.3.1], where dp(B,C) = P(B a C). Take
w=r+1 Given 0 < g <1, take C(j) € € and ¢; with X ¢ <1 such that
P(la + b1, — L;tlg) < B. Choose D;:=D(i) € ¢, i=1,...,m, such
that for each j, P(C;aD,) < B for some i:=i(j), with m < C8~""'. Then
P(la + b1, — f|) < 2B, where f =¥ t1p; . Let B:= {f>a+ b/2}. Then B
is in the algebra generated by D,,..., D,,, and P(B 2 A) < 48/b. We apply this
to A = A(k) for each &, with a = a(k) =0, b= b(k)=1/k® and B = B, =
1/(8%2**). We obtain sets B := B(k) and m = m(k) < Nk* for some N < oo
and u = (r + 1)2 + v) < o0. To apply Lemma 3.3, let n, == 1/(2k?), giving a
contradiction if ¥ is a VC class. We obtain a VC subgraph class ¢ as in the proof
of Theorem 2.1g), letting a == a(k) = 1/k and b := b(k) = 1/k2. So Theorem
3.1 is proved. O

Notes. The counterexamples in the proofs of Theorem 2.1b), e), f), g), j), n),
0), p), q) and Theorem 3.1, all are, or can be taken to be, image admissible Suslin.

It is not settled here whether classes satisfying (1.5) are necessarily VC
subgraph hull classes.

4. Stability properties. Some of the properties treated above are preserved
by some operations. If # is a major class for %, then so is {¢f: f € #, ¢ > 0},
clearly. The property of being a subgraph class for some 2 is not necessarily
preserved by taking constant multiples, but it is for many of the classes 2 in
applications.

(4.1) ProposITION [Assouad (1983), Proposition 2.15]. Let € be a VC class
and let & be its closure for pointwise convergence of indicator functions. Then &
is also a VC class, with S(&) = S(‘f)f

Proor (for completeness). Let F be a finite set, A € &, and let A(a) be a
net of sets in ¥ with 1,,,(x) = 14(x) for all x. Then for some a, A(a) N F =
ANF, so ¢ and & give the same intersections with finite sets and shattered
finite sets. O

Sometimes, to preserve norms for empirical measures and /or for measurabil-
ity, it may be useful to consider subsets of the closure, such as the sequential
closure. Given ¥, its monotone derived class will be the class 2 of all sets D c X
such that for some C, € ¥, either C, 1 D or C, | D. If # is a VC major class for
%, then the sets {x € X: f(x) > ¢}, fE€EZF, t >0, are in 2, so they can also be
assumed to be in € without increasing S(%).
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(4.2) PROPOSITION. If & is a major class for €, # is the set of all
nondecreasing functions from R into [0,1], and

Y={(hof: fEF, heit},

then 9 is a major class for the monotone derived class 9 of €. Thus, if ¥ is a
VC major class, so is 9. '

ProOF. Given A€ and ¢t >0, let s:= inf{y: h(y) > t}. Then
h~1(J¢t, o) =1s, o[ or possibly [s, co[ if A has a jump just to the left of s,
h(s™) < h(s).So for f € ¥,

(ko f)'(Qt,00[) = F¥(1s, [) € ¢c 2

X ([s,[) € 2. O

For any VC class ¥, if we set
(4.3) =%V {X\A: A%},

then & is also a VC class [e.g., by Vapnik and Cervonenkis (1971), Theorem 1].
Thus, in Proposition 4.2 if J# is replaced by the set of all monotone functions
from R into [0,1], % is a major class for the monotone derived class of & and
thus still a VC major class. Here is a further extension:

(4.4) PROPOSITION. Given 0 < M < oo let V), be the set of all functions from
R into itself with total variation < M. Let ¥ be a major class for €, a
functional Donsker class for P. Then ¢:= {hef: h€e Vy, f€ %} is a func-
tional Donsker class for P.

ProOF. By subtracting constants which do not matter, as noted after
Proposition 1.1, we may consider just functions A in V;,; with h(x) —» 0 as
x — —oo. For each such h, we have h = u — v for some nondecreasing functions
u and v, each with total variation < M, also going to 0 at — 0. Let ¢ be the
class of all functions u o f, where u is nondecreasing, f € % and 0 < u < 1. Then
by Proposition 4.2, ¢ is a major class for 2, the monotone derived class of #. By
Theorem 2.1a) and its proof, ¢ is a hull class for 9, with ¥ ¢ H(2,1). It follows
that #c H(92,2M) c H(%,2M). Thus, Theorem 2.1i) gives the result. O

If % is a finite-dimensional real vector space of measurable functions on X,
then either it contains the constants or the vector space W spanned by # and
constants has dimension one larger. The class of sets

{({x: f(x)>t}): feZ,teR} = {{x: g(x) >0}: g W}

is a VC class ¢ with index S(%¥) equal to the dimension of W [Dudley (1978),
Theorem 7.2].

Let % be a VC major class which is image admissible Suslin via (Y, %, T').
For example, % may be any finite-dimensional real vector space of measurable
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functions on X. Let ¥:= {{x: f(x) > ¢t}: f €%, t € R}. Then € is a VC class
and is image admissible Suslin via (Y X R, X &, T"), where # is the Borel
o-algebra and T'(y, t)(x) = 13, o,((T(¥)(x)). Then for V), in Proposition 4.4, the
given class of compositions is a universal Donsker class. On some possible
applications and related results see Pollard (1985), Section 6.

Next, classes of products of functions will be considered.

(4.5) PROPOSITION. Let % and ¥ be classes of real functions on X and €
and 2 classes of subsets of X. Let

¢nNn9={ANB: A€ ¥, Bec D}

If for some K and M, #C H(%,K) and $C H(2, M), then {fg: f € F,
g€ 9 c H(¥N 9, KM).

Proor. Suppose Ljs| < K, L] <M, A(i) € ¢ and B(j) € 2. Then
(lellA(l)z.’tle(l)) = Zi,jsitle(i)nB(j) and Zi’j|s,-tj| < KM. Taking limits Of se-
quences then gives the result. O

Recall that if € and 2 are VC classes, then so is ¥ 2 [Assouad (1983),
Proposition 2.5b, and Dudley (1984), Theorem 9.2.6]. Thus, if # and ¢ are VC
hull classes, so is their set of products fg.

(4.6) PROPOSITION. There exist VC major classes & and ¢ such that
«Kx, y) = f(x)g(y): fE€EF, g € 9} is not a VC major class. Both F and &
can be taken as the set of increasing functions on R.

PrOOF. Let g be a fixed positive, continuous, strictly increasing function on
R, say g(y) = e”. Let h be any continuous, strictly decreasing function. Let
f(x) == 1/g(h(x)). Then f is positive, continuous and strictly increasing. We
have f(x)g(y) = 1 on the graph y = h(x). Thus, f(x)g(y) < 1for y < h(x) and
f(x)g(y) > 1 iff y > h(x). But the class of all sets where y > h(x) for A
continuous and strictly decreasing is not a VC class; it shatters all finite subsets
of the line x + y = 0, for example. O

Thus, the VC hull property, with more stability, and which follows from the
VC major property, may be more useful. Inequalities for suprema over VC
subgraph hull classes, as good as those for VC classes € of sets [Alexander (1984)]
extend immediately to VC subgraph hull classes, as near the end of the proof of
‘Theorem 2.1i). In this sense VC subgraph hull classes are “just as good” as VC
classes of sets despite the failure of several converse implications in Figure 1.

.5. Metric entropy of convex hulls in Hilbert space. Let H be a real
Hilbert space. For any subset B of H let co(B) be its convex hull.

(5.1) THEOREM. Suppose ||x|| <1 for all x € B and for some K < « and
A < o0, D(e, B) < Ke™* for 0 <e < 1. Let s := 2\ /(2 + A). Then for any t > s
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there are constants C, and C,, depending only on K, X\ and t, such that
D(e,co(B)) < Ciexp(Coe™t), O0<ex<l.

Proor. We may assume K > 1. Choose any x; € B. Given B(n):=
(... %4}, n =2, let d(x, B(n)) = inf, cp,lx — y| and §, =
sup, < gd(x, B(n)). If 8,>0 choose x, € B with d(x,, B(n)) > 8,/2. (The
estimates to be proved in general will also hold in case B is finite, so that 8, = 0
for some n.) Then for all n, K(2/8,)* > D(5,/2, B) > n, so 8, < Mn~'/ for all
n where M = 2K '/,

Let 0 < ¢ < 1. Let N := N(e) be the next integer larger than (4M/e)*. Then
8y <¢/4. Let G = B(N). For each x € B there is an i=i(x) < N with
|l — x;|| < 8. For any convex combination z = ¥, p2,x, where z, > 0 and
Y,ep2,=1let zy =X pz,%x;,). Then ||z — zy| < 8y < &/4, s0
(5.2) D(e,co(B)) < D(&/2,co(G)).

To bound the latter, let m :== m(e) :== [¢~*] (integer part). Then for each i
with m < i < N, thereis a j:=j(i) < m such that
(5.3) ll; = 2,0 < 8,y y < Me*/2,

Let A, ={{AM}icj<m: Aj20, i_jcnA;=1}. On R™ we have the [,
metrics

o) ) = Z - y,.|p)‘/",

l1<j<m
Let vy = ¢/6 and & := y/(2m'/2). The §-neighborhood of A, for p, is included in
a ball of radius 1 + § < 13/12. We have D(28, A,,, p,) centers of disjoint balls of
radius 8 included in the neighborhood. Comparing volumes of balls gives
D(y, A, p,) < D28, A,,, py) < 13™"m™/ %™

< exp(m{L(1/¢e) + (Lm)/2 + log(13)})

< exp(Ce°L(1/¢)) < exp(Ce™), 0<e<]l,
for some constants C;, C,.

For each j=1,...,m, let A(j) consist of x; and the set of all «x,

i=m+1,..., N, such that j(i) =j. Take a maximal set S = S(e) C A,, with
p(x, y) > y for any x # y in S. For a given A = (A;,...,A,) €S, let

F, = {x €co(G): x = ) p,y,wherep, > 0and
y€G

Y m,=Ajforall j=1,..., m}.
yEAW) )

For any x € co(G), and p, as in the definition of F), thereis a A € S and
z € F, with ||z — x|| < y. Thus,

D(e,co(B)) < D(e/2,00(6)) < D(v, U F,|
(5.4) Aes
< card(S)mflx D(y, F,) < exp(C,e™?) max D(y, F,).
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To estimate the latter factor, let A € S. We may assume A; > 0 for all j. For
any x € F), let x):=% _, \n 3. Let Y; be a random variable with values in
A(j)and P(Y; = y) = p,/A; for each y € A(j). Then EY; = x)/A; = z,. Take
Y,,..., Y, to be independent and let Y:=%, _ ;_,A,Y.. Then EY = x and

2
LAY -z)| = X MEN, -z
1<j<m

1<j<m

E|Y-x|*=E

since Y; — z; are independent and have mean 0.
Now the diameter of A(j) is at most 2Me*/* by (5.3), and z; is a convex
combination of elements of A(j). Thus, *

E|lY; - zj||® < 4M%e?/*
and for any set F C (1,...,m},

2 A (Y- 2)

JjEF

2
E < T RAM2%e/* < 4AM*(max), )e?/A

JEF JEeF

and

< 2M( maxA -)1/288/".

JEF 4

E“j‘e;p}\j(Yj - z;)

The following argument is based on an idea of Maurey, see the proofs of Pisier
(1981), Lemma 2, and Carl (1982), Lemma 1. Let Y, Y,,..., Y, be independent
with the distribution of Y;, with Y;; also independent for different j. Then

NENE

JeF i=1

E

1/2

_ s/\ /p1/2
< 2M(I}?}(A’) e/ RV,
Thus, there exist y; € A(j), i = 1,..., k, such that

1 £ 1/2
A= |-z 2M A s/NJp1/2,
EF ’((k Zy,,) Zf) < (’f’é‘}‘ ;) e

i=1

(5.5)

Take v > O such that s + v < t. Let F(0) == {j < m: A; > ¢"}. Let k(0) be the
smallest integer k& such that

k > 6400M2e~2+25/X = 6400M 2%,

Then the expressions in (5.5) are at most ¢/40.
Let r be the smallest positive integer such that £°/4” < (¢!~*/*/(80M))2 For
u=12,...,r,let

F(u) = {J <m:e/4* < }\j < 8"/4“_1}’

and let k& = k(u) be the smallest integer % such that 22~ “Me*/* /kY/2 < ¢/(40r),
ie., k > 100M2%44 %r2¢=2+2s/X Thus, for some constant C;, k(u) <
1 + Cs47%e~%(L(1/¢))%. The y,; for F = F(u) will be called y{* (they depend
on x).
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Let F(r + 1) :== {jS m: \; < e°/4"}. Let k(r + 1) = 1. For F = F(r + 1) and
k= k(r + 1), (5.5) is bounded above by /40. Let y{*" = x;, a single choice for
each J.

Combining terms for u=0, 1,...,r + 1, we see that each x € F, can be
approximated within 3¢/40 < ¢/12 by a convex combination determined uniquely
by the k(u)-tuples (y5,..., y%0.)) J € F(u), u=0,1,...,r + 1. Each A(j)
has at most N elements S0 that for given u < r and j < m, there are at most
N* ways of choosing the ). Now card(F(u)) < 4"/¢", so the number of ways
to choose the y{* for given u <r is at most exp{(log N)4%s * +
Cse™*"°L(1/€)?)}. Thus, the total number of ways to choose all the y (“) gives
D(£/6 F)) < exp(C4{e™*"°L(1/€)* + L(1/e)4"/e}) for some C;. By deﬁmtlon of
r, 47/e* < C,e?*/2=2 = C,e~* for some C,. Thus, D(e/6, F}) < exp(Cge™*) for
some Cj. Comblmng with (5 4) completes the proof of Theorem 5.1. O

(5.6) REMARK. The exponent s = 2A/(2 + A) in Theorem 5.1 is sharp, as
shown by Dudley (1967), Proposition 6.12, where B = {+n~%e,},., and {e,)}
is an orthonormal basis. More generally, Carl (1982) treats Banach spaces of type
2 in place of Hilbert space.

(5.7) COROLLARY. If 9 is a uniformly bounded class of measurable func-
tions such that for some K < o and 0 <A< oo, D %)< Ke ™™ for
0 < e <1, then for any t > s = 2\ /(2 + A), and for the constants C, and C, of
Theorem 5.1,

D®(e, H(9,1)) < Ciexp(Cpe™?), for 0 <e<1.

(5.8) COROLLARY. If F is a VC subgraph hull class, then % satisfies
. Pollard’s entropy condition (1.2).

PROOF. Let #c H(Y, M) for M < o, where ¢ is a VC subgraph class.
Theorem 2.1¢) gives condition (1.3) for ¢, so Corollary 5.7 applies, with s < ¢ < 2,
and (1.2) for & follows. O

(5.9) EXAMPLE. Let € be the collection of all intervals Ja, b],0 <a < b < 1.
Let G be the space of functions f satisfying |f(x)| < 1/2 and |f(x) — f(¥)| <
|x — y| for all x, y €]0,1], f(x) = 0-elsewhere. Functions in G have total
variation at most 2 (at most 1 on the open interval ]0,1[ and 1/2 at each end).
As in the proof of Proposition 4.4, each such f = g — h, where g and h are each
nondecreasing and 0 for x < 0 and df = dg — dh is the Jordan decomposition of
the signed measure df. Thus, g and A& have equal total variations <1 and
G c H(%,2). Next, D®(¢, G) > exp(c/¢) as €0 for some constant ¢ > 0, by
considering Lebesgue measure P on [0, 1] (or finite approximations to it), noting
that the L?(P) norm is larger than the L'( P) norm, and applying Dudley (1984),
Theorem 7.1.10. Here since S(%) = 2, the exponent A can be any number larger
than 2 [Assouad (1983), Proposition 4.3], so for s = 2A/(2 + A), A |2, ¢ can be
any number larger than 1. So the exponent s of Theorem 5.1 is also sharp for
this example.
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6. Sharpness of the conditions. How sharp are the various sufficient
conditions for the universal Donsker property in Figure 1? First note that all but
(1.4), (1.4)*° and (1.5) hold for every universal Donsker class of indicators of sets,
since such classes of sets are VC [Durst and Dudley (1981) and exposition in
Dudley (1984), Theorem 11.4.1]. So we have sharpness when restricted to classes
of indicators. Thus, we have:

(6.1) REMARK. Let € be a class of measurable sets. If either every uniformly
bounded major class for €, or the convex hull of the indicators of sets in €, is a
universal Donsker class, then € is a VC class.

In this sense “VC major (with enough measurability) implies universal
Donsker” is sharp in that “VC” cannot be replaced by any weaker condition on
families of sets. On the other hand, “VC major” is one of the strongest
conditions in Figure 1. It turns out that D® entropy conditions, much like and
because of the L? entropy conditions for Gaussian processes, come close to
characterizing, but do not characterize, the universal Donsker property. Note
that by Pollard’s theorem (2.1h) above), for any § > 0,

log D®(e, ) = O(1/¢*7%), asel0
is (with measurability) sufficient for % to be a universal Donsker class.

(6.2) PROPOSITION. log DP(e, F) = O(e2) as €0 is necessary for F to be
a universal Donsker class.

ProoOF. If not, there exists a universal Donsker class % and ¢, | 0 such that
log D®(e,, F) > k3/e2 for all k = 1,2, ... . Take probability laws P, such that

log D®(e,, F, P,) > k®/el, k=23,...,
and let P be a law with P > ¥, , ,P,/k®. Then for any measurable f and g,

, 1/2 \ 1/2
R AN
Ilet 8’2 = 8k/k. Then
log D®(8,, #, P) > log D(s,, F, P,) > k%/el = k/82.

Thus, % is not pregaussian for P [Dudley (1973), Theorem 1.1 (c)], so not a
universal Donsker class. O

An example will show that Proposition 6.2 is sharp. Let A(j) be disjoint,
nonempty measurable sets, j =1,2,.... For x = {x }J21 let ||x||y = (X;x7)/2
Let

&= ép({lA(j)}j>1) = {Zx Lacp: 1%ll2 < 1}

the ellipsoid with center 0 and semiaxes 1.

. (6.3) PROPOSITION. & is a universal Donsker class and
li%nli(}xf82log D(s, ¢) > 0.
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PrOOF. Let P be any probability law with p; == P(A())), j = 1,2,... . We
may assume that p; > 0 for all j, since the union of all those A(j) with p; = 0 is
a fixed set of probability 0 on which Gp and », can be taken to be identically 0
a.s.

Let ¢ > 0. For any k and n, let

1/2
1%l & = ( > v,,(A(j))‘”’) :
j=k

Then for all n,

Elvl3s< X p; >0 ask— oo

Jzk
Take k = k(¢) large enough so that
Pr{{|v,llz,» > ¢/3} <e/2.

If ||9,llg, 5 < /3, ||l < 1 and ||y||5 < 1, then

”n( Y (% - yj)lA(j))

Jj=k

< 2¢/3.

Also, Pr{||z,|l5, > 2/¢} < &/2.
Let 8 = 8(8) = (min1< kpj)£2/6' For each X = {xJ}le let fx = ijle(j).
Then if f,, f, € € and (J(f, — f,)?dP)"/* < 8, (T, < u(x; — 3)*)"/* < €%/6, s0

Y va(x; = 3)1acsy)

J<k

if ||»,llz,, < 2/e. Then except on one event with probability e, we have
[7a( f, = f,)| < e for all such x and y.

" Clearly, & is totally bounded in L?(P). Thus, & is a P-Donsker class [Dudley

(1984), Theorem 4.1.10] and since P was arbitrary, a universal Donsker class.
Now let 0 <8 <1. To bound D®(8, &) from below, let m = [1/(46%)]

(integer part). Let P = P™ be a law with P(A(j)) =1/m for j=1,..., m.

Then in L2(P), & is an m-dimensional ball of radius m~'/2. The balls of radius

26 with centers at a maximal set of points & apart in & cover the ball of radius

m~1% + §. Thus,

< [[Pall2,18%/6 < /3,

Do, 6,P) = (m/2+ 8)"/@0)" = (352 + 1))

2 (3)™ = (2)exp(log(2)/487),
and the result follows. O

(6.4) PROPOSITION. There is a uniformly bounded class & of measurable
functions, which is not a universal Donsker class, such that

log D®(e, #) < 3/(¢2L(1/¢)), aselO.

ProoF. Let B(j), j=1,2,..., be disjoint, nonempty measurable sets, a; =
1/(jLj)? and F:= (L, x1p; )y %;= ta; for all j}. Take ¢ such that
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L,p;=1 where p;= c(a;/LLj)>. Then T,a;p//? = + 0. Take a probability
measure P with P(B(j)) = p; for all j. Then .

Esup|Gp(f)| = EXa|Gp(1))]
feF J

/2 )
= Zaj(2/7r)1/2(pj(1 —pj))l > azajp}ﬂ - +oo,
J J

where a = (1 — p;)"/2/2 > 0. Thus, by the Landau-Shepp-Fernique theorem
[Fernique (1970)], & is not pregaussian for P, hence not a universal Donsker
class.

For any probability law @, r < 0, and x; = ta;,

2 172 1/2
(f( Z leB(j)) dQ) = ( E an(B(J))) <a,.
Jj=r Jj=r
Given ¢ > 0, take the smallest r = r(e) for which a, < e/2. Then
D@ (e, F) < 2" so log DP(e, F) < rlog2. As ¢l0, we have a, ~¢/2,
log(1/¢) ~ log(2/¢) ~ —loga, ~ log(r)/2 and &/2 ~ 1/(r(e)2L(1/¢)))/?, so
r(e) ~ 2/(e2L(1/¢)). O

Propositions 6.3 and 6.4 together show that there is no characterization of the
universal Donsker property in terms of D®. Pollard’s integral condition (1.2) is
not sharp in the example of Proposition 6.4. [ Added in proof: M. Talagrand has
shown that (1.2) is sharp.] On this point see also Giné and Zinn (1984), Section 5.

7. Notes on weighted processes. In Dudley (1985), for Theorem 6.3 I gave
. credit to “O’Reilly, Chibisov et al.” The “et al.” should include Csorg6, Csorgd
and Horvath (1986) and Csorg6, Csoérgd, Horvath and Mason (1986), who proved
parts e), f) and g) of that theorem, also removed the continuity assumption from
the weight function, and gave an example like Example 7.2 of my paper. So I
claim no priority (rather than “somewhat...perhaps”) for these matters. I am
very grateful to Miklos and Sandor Csorg for sending me their and co-authors’
reports (in 1983) and for pointing out their specific results. See also Alexander
(19854, b, 1987).

Acknowledgment. I thank the referee for useful comments.
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