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CENTRAL LIMIT THEOREM FOR AN INFINITE LATTICE
SYSTEM OF INTERACTING DIFFUSION PROCESSES

By JEAN-DOMINIQUE DEUSCHEL
Eidgendssische Technische Hochschule

A central limit theorem for interacting diffusion processes is shown. The
proof is based on an infinite-dimensional stochastic integral representation of
smooth functionals of diffusion processes. Exponential decay of correlations
and the equation of the fluctuation field are also obtained.

1. Introduction. Consider an infinite-dimensional diffusion process X =
(X/, 0 <t<1),; of the form

X;=gi+f0‘bi(xs)ds+ Wi iel,

where I = Z¢ is the d-dimensional lattice and (W), ., is a collection of indepen-
dent Wiener processes. Such systems have been considered recently by several
authors [for conditions to guarantee existence and uniqueness, see, e.g., Doss and
Royer (1979), Shiga and Shimizu (1980), Fritz (1982) or Leha and Ritter (1984)].
We shall suppose that (b),.; is a stationary family of smooth drifts with
bounded derivatives and that the process starts off with a translation invariant
ergodic measure on R’. The purpose of this paper is to derive a central limit
theorem for a class of smooth functionals on the trajectory space C[0,1]. More
precisely, let F be a Fréchet-differentiable functional on C[0,1]/, ®¢ the usual
shift transformation and V,, the cube [ —n, n]? in Z% Then we show that the law
of the standardized sum

SX(F)=|V,|"/* ¥ (F®' - E[F])

ieV,

is asymptotically normal with variance ¢%(F) = ¥,cov(F, F@"). In particular we
derive the distribution-valued stochastic differential equation associated to the
Gaussian field of fluctuation [see, e.g., Holley and Stroock (1978) or Itd (1983)].
Similar results have been obtained for a mean-field interaction [cf. Shiga and
Tanaka (1985) and Sznitman (1983)] and for some short range interacting
spin-flip processes [cf. Holley and Stroock (1979, 1981)]. However, in this paper
we restrict ourselves to finite time and it would be interesting to investigate the
limit procedure when the time is speeded up simultaneously with the averaging
over space as in Section 6 of Holley and Stroock (1979) or along hydrodynamical
limes [cf. Rost (1983)].

The proof of the central limit theorem is based on an infinite-dimensional
version of the Haussmann formula which gives an explicit representation for
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smooth functionals of diffusion processes as stochastic integrals [cf. Haussmann
(1978, 1979), Davis (1980) and Ocone (1984)]. This representation also provides
information on the rate of decay of covariance similar to that obtained by the
Dobrushin contraction technique [cf. Deuschel (1987)].

In Section 2 we introduce the gradient process associated to the diffusion (X,
0 < ¢ < 1) and apply the method of variation of parameters to a linear perturba-
tion of X. In Section 3 we show the Haussmann formula for finite dimensions
with a perturbation argument using the Girsanov transformation [cf. Bismut
(1981) and Blum (1986)]. Section 4 contains a proof of the central limit theorem
by standard martingale techniques. In Section 5 we determine the equation of
the fluctuation field.

2. Diffusion process with smooth drift. In this section we review the
basic properties of the solution of an infinite system of stochastic differential
equations with differentiable drifts.

Let us first introduce some notation. I = Z¢ is the d-dimensional lattice,
(®%), <, the shift operation on R’ For x € R’ put |x|, = L,x’|, respectively,
x|, = sup;|x‘|, and define as usual )

lP(I) = {(xi)iEI: |x|p < 00}’ p= 1’ 0,

and
. o 1/2
(@) = (e oo = (Bate)” < o)

where (a');c; is a positive sequence in I(I). Let (W}, 0 <t<1),c; be a
collection of independent real-valued Wiener processes on a probability space
(2, 0, P). Denote by (%,,0 < t < 1), #,=o(W},0 < s < t, i € I), the filtration
generated by (W, 0 < ¢ <1),., and by || || the supremum norm on C[0,1].
Consider a diffusion process X = (X}, 0 < ¢ < 1), of the form

(2.1) Xi=¢i+ f‘bi(xs) ds+ Wi, iel,
0

where (bY); < is a stationary family of differentiable drifts. More precisely, the
b, i € I, are real-valued functions defined on some Hilbert space I%(y), y € {}(I),
to be specified later, which satisfy the following Conditions:

1. The family is stationary with respect to the shift ®* on R/,
b *(x) = b(®*x) foralli,k eI

2. For each i € I, the function b' is differentiable with respect to the norm | |,
on [°(I): For all x € I%(y) and h € I*(]),

bi(x + k) - bi(x) = T a,b(x)h? + ri(x, h),

where db%(x) = (3;b(x));<; is a continuous linear mapping on [*(I) and
|r(x, h)] = O(|h|%7®) for some 0 < § < 1.
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3. For each i € I, the norm of db(x) is uniformly bounded in x,

sup|d;b(x)| < a*/ with |a|, < .
X

REMARK 2.2. (i) Conditions 2 and 3 are naturally satisfied by a family of
smooth drifts of finite range with bounded derivatives. Take b' € C{ R ® RNY),
where N(i) is a finite neighborhood of i. Then

bi(x + ) —bi(x)= Y 9b(x)h/+L YL 9;0,b(y)h'R*
JENC() J, REN()

for some y between x + h and x. '
(ii) Condition 1 implies the stationarity of (b%); <,

(2.3) 3,0 H(x) = 9;b%(O%x) foralli, j,kel.
(iii) We could as well introduce diffusion coefficients to our system (2.1),
Xi=¢+ [V(X,)ds + [o(Xi)dW,, i€l
0 0
and obtain the same kind of results as long as o2 is a strictly positive differentia-

ble function with a bounded derivative.

By the mean value theorem we have
(2.4) |bi(x) — b(y)| < Ea"’]xi — 3yl = (a*|x —y])°
. J

for all x — y € [°(I). Following Leha and Ritter (1984) we define the strictly
positive sequence (Y*), < ; € IX(I),

0
y = Z d*n/Kn,
n=1
where @ is a strictly positive sequence with ¢* > a™* and |a|, < K. Since v is

superharmonic with respect to the kernel /K, d@*y < Kv, inequality (2.4)
implies

b(x) = b(¥))F,, = Lv1bi(x) — b ()
13
< lal, X y'a iz’ = y/)* < |a|,K|x = y13 5,
i,J
i.e., the mapping b: x — (b¥(x)),; defines a Lipschitz continuous function from
1%(y) to I2(y). Rewriting (2.1) as an /?(y)-valued stochastic differential equation,

(2.1) X, =¢+ [b(X,)ds + W,
0
we have by Theorem 3.3 and Remark 4.6 of Leha and Ritter (1984)

PROPOSITION 2.5. Assume Conditions 1-3. Then for each ¢ € I*(y), (2.1)
has a unique strong solution X = (Xj(¢, W), 0 <t<1),.; € C(0,1], I%(y)),
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which satisfies
(2.6) EP[Zyk|Xf|2] < oo0.
k

REMARK 2.7. (i) The stationarity of (b‘),.; and the uniqueness of the
solution imply the stationarity of X(£, W),

O*X(¢, W) = XO*(¢, W), Pas.forallkel.

(i1) Using Doob’s inequality we can generalize inequality (2.6),

(2.6) EP[ZYkllxkllz] <w
k

We shall now see how the smoothness of the drifts implies the smoothness of
the solution of (2.1). Note that, although the mapping b: (x%),.; = (b'(x));<; is
Lipschitz continuous with respect to | |, ,, it is not necessarily differentiable
with respect to | |, ,. In order to cover such examples as in Remark 2.2(i), we
have to introduce the norm | |,. This makes the extension of finite-dimensional
results more delicate. Denote by B({*(I)) the space of bounded linear operators
from [°(I)to [°(I) and by || ||z the operator norm. The matrix (3jb"(x))(j, helel
can be considered as an element of B({*(I)) with
(2.8) 196(x)l5 < lal,
by Condition 3. Let ® = (®/X(X), 0 <s < ¢ < 1) 4)ces be the fundamental
solution in B(I*(I)) of the linear equation

(2.9) Opk =50k 4 f Za V(X0 kdu, (i,k)el®l,

respectively, in operator form,
(2.9') o,,= E+ [9b(X,)9, , du
S

where E denotes the identity. The matrix ®, , is given by ®, , = Z,Z', where
(Z,, 0 <t <1) is the solution of

Z,= E+jab(X)z du
and Z;' is the inverse of Z, [cf. Daleckil and Krein (1974)]. Note that (2.8)
implies
(2.10) 19, (X)llp < el
moreover, by (2.3), @, , is stationary,
;) k(X)) = 0 F(®/X) foralli,k, je I
Thus defining the positive coefficients
c¢"*(s) =sup sup |®;}(X)],

X s<t<l1
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by (2.10) we have

(2.11) Y ck(s) < el®h=9),

k
The process (I>t‘ ¥ plays the role of the gradient of X/ with respect to X%. If we
interpret ci~ k(s) as a weight of the influence of the kth coordinate on the
trajectory of (X/, s <t <1), inequality (2.11) roughly says that the total
influence remains bounded. If we have nonconstant diffusion coefficients
(0(x%)); < 1, the gradient process is of the form

Ok =0tk + [ 0,b(X,) 00 fau+ [T(X)0LkaW), (k) elsT,
s J

7|

We conclude this section with an application of the variation of parameters
method to the following linear perturbation of X.

Let U= (U% 0 <t <1),.;€ C(0,1], I°(I)) be an (%,)- adapted process of
the form

and c*(s) should be replaced by

cki(s) = supEP[ sup |}k

s<t<l

UF=Uf+ [utds, kel
0

such that
(2.12) EP(IU1L?] = k(U, 8) < o,
with ||U||,, = sup,||U¥|. Denote by X(¢) € C([0,1], I2(y)) the solution of
(2.13) X,(e) = ¢+ fo ‘b(X,(e)) ds + U, + W,
LEMMA 2.14. The following inequalities hold:
(2.15) EP[||X(a) X|ILF] < & 0k(U, 8)eC el
(2.16) EP[I1X(e) — X — e¥|,,] = o(e),

where ¥ = (V}F, 0 < t < 1), is the process given by
¥, = 0,0, + [, u,ds.
0

PROOF. Let 7= (n%0<t<1),.;€ C(0,1], 1°(I)) be the positive solution
of the linear equation

t
me= [axn,ds+elUj.
0
By (2.4), X(&) — X satisfies the inequality
t
X () = X) < [ax1X(e) = X,| ds + el U];
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hence, n — | X(e) — X| is in the cone of the nonnegative functions C([0, 1], I2(¥y))
[cf. Daleckil and Krein (1974)), i.e., X(¢) — X € C([0,1], I*(I)) with

1X(e) = Xl < lInlloe < e'*MU ||,

This implies the first inequality by (2.12). For the second inequality, note that
¥ e C([0,1], (1)) is the solution of the inhomogeneous equation

¥, = Uy + [9b(X,)¥,ds + [u,ds
0 0
[cf. Daleckii and Krein (1974)]. Put { = X(e) — X — &¥; then EP[||{||,] < oo by
(2.12) and (2.15) and
o= [[9b(X,)8,ds + Ry(e)
with
t
R(e) = ['(b(X,(e) - B(X,) = 3b(X,)(X,(e) ~ X,)} ds.

Condition 2 and (2.15) yield )

EP[IR(e)ll.) < KEP[IX(e) - XII°] = O(e'*?).
Hence, by (2.8), we obtain

E* sup [{,/,| ds + O(e'*?),

O<u<s

t
sup [§,],| < lal, [E”
O<usxt 0

which implies (2.16) by Gronwall’s lemma. O

3. The infinite-dimensional Haussmann formula. Let F be a measur-
able functional on C[0,1]7 with EP[F?(X)] < co. Then, since X = X(¢, W)is a
strong solution of (2.1), F(X) can be written as

1. . .
(3.1) F(X) = EP[F(X)%] + L [hidW,
il

where (h:, 0 < ¢ < 1), is a sequence of (.%,)-adapted processes with
1 )
£*|(F(x) - EF[FOR))] = £ [B](5)] as

[cf. Hitsuda and Watanabe (1976)]. The purpose of this section is to generalize
the Haussmann formula for infinite dimensions which gives an explicit represen-
tation for the integrands (A‘);,o; of a smooth functional F in terms of the
gradient process ® and the derivative of F [cf. Haussmann (1978, 1979) and
Blum (1986)].

Consider C([0,1], [*(I)) as a Banach space endowed with the supremum norm
Il llo- We introduce the class €' of real-valued functionals F on C([0,1], I2(y))
which are Fréchet-differentiable with respect to the norm || ||, on C([0, 1], *(1)):

4. For all X € C([0,1], %(y)) and H € C([0,1], I*(1)),

F(X+H)-F(X)= Zl)jF(X)Hf + R(X, H),
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where DF(X) = (D;F(X));c; is a continuous linear functional on
C([0,1], I°(I)) with norm uniformly bounded in X and |R(X, H)| =
O(||H||%"?) for some 0 < § < 1.

REMARK 3.2. The D,F(X), j € I, denote the partial derivatives of F with
respect to X’. By the Riesz representation theorem there exists a (signed-)
measure D;F(X, dt) on [0, 1], such that

DF(X)H/ = fo 'D,F(X, dt)Hj.

The total variation of D;F(X, -) equals the operator norm of D,F(X) and is
uniformly bounded in X,

|D,F| = St;pIIIbF(X, Myar < 00,

with |DF|, = ¥,|D;F| < co by condition 4.
The mean value theorem implies the Lipschitz continuity of F,
(3.3) IF(X) - F(Y) < %:ID,-FIIIXj— Y;
hence, F(X) € L%(P) as
E[F*(X)] < 2IDF|, LIDFIE[IX/)?] + 2F%(0) < oo,
J
by (2.6") and (2.7). Lemma 3.4 is an immediate consequence of the chain rule.

LEMMA 3.4. Let X(¢) be the solution of the perturbed equation (2.13) and
F € €', then the function F(X(¢)) is differentiable in L\(P) with respect to
e €[0,1], with

(3.5) disEP[F(X(s))] .—o = EP[DF(X)¥] = EP[zf()lz)jF(X, dt)¥/

Proor. By Condition 4 we have
F(X(e)) - F(X) =eDF(X)¥ + DF(X)(X(e) — X — &¥)
+R(X, X(e) - X).
Thus

EP[|F(X(e)) — F(X) — eDF(X)¥|] < [DF|,E*[||X(e) — X — e¥]|,,.]
+KEP[||X(e) — X|IL7],
which implies (3.5) by (2.15) and (2.16). O

We can state the main result of this section.

THEOREM 3.6 (Haussmann formula). Let F be in the class ¢'. Then
37 F(X)=EF[F(X)%] + ¥ [[E?[DF(X)0;i%] aw,
i Y0
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with -
. 1 ..
DF(X)®ri=Y f D.F(X, dt)®p.
j S

Proor. We follow the argument of Bismut (1981) using the Girsanov trans-
formation. Assume E P[ F(X)|#,] = 0. Then (3.7) is equivalent to

(3.8) EP[F(X)Zi:fOIu; dW;‘] = EP[fO‘zijDF(X)@;;u;ds]

for all adapted (u!, 0 < s < 1), ; with bounded ¥, [}(u’)? ds. By (3.1) and It&’s
formula we have

EP[F(X)ZfluidWs"] = Ep[flzhgugds],
i °0 0
which implies k% = E[ DF(X)®/|%,] by a standard projection argument. The
(Wie), 0 < t < 1), satisfy
dWi(e) = dW; — euidt, i€ I

Then (Wi(e)),c; is a collection of independent Wiener processes under
(2, 0, P®), where P® is given by the Girsanov transformation

dP® = G(e) dP,

with G(e) = exp(eX; [qul dW, — 1%, [N(u!)? ds) [cf. Theorem 4.1 of Hitsuda
and Watanabe, (1976)], i.e.,

(3.9) EP[F(X)G(e)] = EP[F(X(e))].

Since L, [J(u’)? ds is bounded, we can differentiate the left side of (3.9) in the
expectation and obtain

d ‘ .
—EP[F(X)G(e)]] = E”[F(X)Z/lu;dWs‘].
de e=0 Y
By Lemma 3.4 the right side of (3.9) is differentiable with
d L
S EFIF(X())]| = EF[DF(X)¥] = E"{Z [DF(x, de) [ ‘<I>g~;u;ds]
de e=0 J,i 0 o

=EP

1 1 AN
. Jsi i
Z[O (g/ DF(X, dt)tl)t’s)usds]
by partial integration. O

The following example illustrates a potential theoretic approach to the
Haussmann formula [cf. Davis (1980)].

ExXAMPLE 3.10. Take a smooth function f of finite range with bounded
derivatives: f € CH R ® RV®), |N(i)| < co, and consider the %’-functional
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F(X) = f(X,). Let (P, 0 <t<1) denote the semigroup associated to (X,,
0 < t < 1) and define a space-time harmonic function v: (0,1) ® R/ — R,

(8.11) o(t, X,) = P_,f(X,) = EP[ f(Xl)W'—t]:

by the Markov property of (X, 0 <¢<1) [cf. Leha and Ritter (1984)]. By
Lemma 3.4, v(¢, x) is differentiable in x with

(3.12) d,0(t, X,) = EP[Za,-ﬂXl)@{;:m].
J

Computing the quadratic variation of the martingale (v(¢, X,), 0 < ¢ < 1) and
(W}, 0 <t<1),wehave

d(v, W%, = 3,0(¢, X,) dt.
Hence,

1 .
F(X0) = EP[H(X)WR] + L [ dio(t, X,) aW,
13
which is equivalent to the Haussmann formula (3.7).

4. Central limit theorem and decay of covariance. Let the process
X =(X/}, 0 <t<1),., start off with a measure p carried by /%(y) and let @
denote the law of X on C([0,1], /%(y)). Assuming that p is shift invariant with
respect to (©°), ¢ ;, ergodic and weakly mixing, then Proposition 2.5 and Remark
2.7 imply the shift invariance and ergodicity of @ [cf. Kornfeld, Sinai and Fomin
(1981)]. Moreover, for all F € L{(Q), we have

(4.1) lim |V,|7! )Y FO*=E®?[F(X)], Qas,
n—oo keV,

where V, = [ —n, n]? [cf. Wiener (1939)]. We shall derive a central limit theorem
for #'-functionals using the Haussmann formula and standard martingale tech-

niques.
For a measurable function F on C([0,1], I%(y)) with E®[F*(X)] < o, put

SH(F) = |V, 71/ kZV {Fo* - E°[F(X)]}.

Let L(RY) be the class of Lipschitz continuous functions on R,

£(x) = 1(3)] < T8 - 51 and Ta(f) <o,
where 8,(f) = sup{|f(x) — f(?)|/|x* — ¥'|: x* = y*, k # i}. We assume that the
central limit theorem holds for the initial measure p:

5. For all fe L(R"), S*(f)X,) converges in law to a centered Gaussian
random variable Y( f ) with variance

o (f) = Xeov,(f, [0%) > 0.
k

This condition is satisfied if, e.g., under p the X/, i € I, are positively associated
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[cf. Newman (1980) and Fessler (1986)] or weakly dependent [cf. Bolthausen
(1982) and Kiinsch (1982, 1984)]. Theorem 4.2 gives sufficient conditions for the
central limit theorem.

THEOREM 4.2. Let p. be a shift invariant ergodic measure satisfying Condi-
tion 5 and let F be an L*(Q)-functional on C([0,1], I%(y)) of the form (3.1)

F(X) = E[F(X)%] + £ ['ndW;,

such that
(4.3) PF(X,) = E?[F(X)\%] € L(R'),
(4.4) fOIEQ[(ng@-ﬂ)z] ds < 0.

Then S}(F) converges in law to a centered Gaussian random variable Y(F')
with variance

o?(F) = Y covy(F, F&*) > 0.
k
Proor. We show that S*(F') converges in law to
Y(F) = Y(PF) + [ IEQ[(Zh‘;@“')2]I/2 dB,,
where (B,, 0 <s<1) is a Wiener process lindependent of Y(PF). This is

equivalent to the preceding statement, since by (3.1) and (4.4),
Y covy(F, FO*) = ) cov,( PF, PFO*)
k k

+Y E®
k

(= ['nsaws])(x [wotamws|
i Y0 j o

= o3(PF) + ['E® Zhih;'@i‘f] ds = var(Y(F)).
0 i, J
Let ¢ > 0. By (4.4) we can choose m € N such that

(4.5) folEQ ( y |hg®—i|)2}ds <e

i€V,
Define a continuous martingale (M{™™, 0 < t < 1) by

Mt(m,n)=sn*(PF)(X0) + I‘/nl—l/2 E ft( Z hi@—i)@kdvvsk.
keV, 0 \iey,

Then by (3.1) we have for n > m,

82(F) = sp(PR)X) + 87 T ['wiaws)+ ¢ T ['niaw:]
iev, 0 i€V, 0

- e ey T

"ni dW;‘),
i€V, 0
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where R{™™ is given by

Rgm,n)= Iv'nl—l/2 E ( Z fht@k WH—k)

keV, \ieV,

m

ARGy ( )» /1h§®k—ide)

kev, \iey, 0

m

AR ( ¥ HO*{xy(k = i) - xy(k)) | aw,

k€d, (V)"0 \iev,
with 9,(V,) =V, — V,_,. Both R{™™ and S*X,.y [ohidW;) can be
neglected,
E°[(R ™) < 18,(V/1Val | EQ[(ZIh o ]dsnjwo

by (4.4). On the other hand we have

(Z fh‘dW‘) VAREED> Z[ Ri®F Wik,

i€V, keV, ieV,
Thus (4.5) implies

<IVITP T [E| L (hiOM R0 | ds <.
keV, "0 i, j&V,

It remains to prove the convergence of M{™™ as n — c. Computing the
quadratic variation of M(™ ™, by (4.1) we have

(Mmm), = V7t ¥ /‘( X hi@‘i)z(@kds

keV, 0 \iey,
2
- f’EQ ( ¥ hg@—i) ds, Q.as.
n—eC0 ieV,

This together with the convergence of M{™™ by (4.3) and Condition 5 implies
the convergence in law of M{™™ as n - o« to

| © ne )]Vzdﬁs

i€V,
[cf. Shiryayev (1981)] and we obtain (4.5) with m — oco0. O

Y™(F) = Y,(PF) + fEQ

As a direct consequence we obtain our main result.

COROLLARY 4.6. The central limit theorem holds for functionals of the class
%
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Proor. We first show the Lipschitz continuity of PF with the mean
value theorem. Take a path £(e) =x+ &y —x), 0<e<1, from x to y in
1%(y). Applying Lemma 3.4 with U=y — x and ¥, = ®, o(y — x), we have
(d/de)PF(£(¢)) = (d/de)EP[F(X(ﬁ(e), W)l =%, EP[DF(X(S))‘I’ dI(yt — %),
where E°[ DF(X(£))® 3] = EP[Z,[;D;F(X(¢), dt)®/] is bounded i in IY(I),

sup | EP[ DF(X(e))®:§] | < LIDFle/~¥0).

Hence by the mean value theorem, PF € L(R') with
(4.7) 8,(PF) < ) |D;F|c’~40).

J
Condition (4.4) follows immediately from the Haussmann formula,

(4.8) ®~| < LIDFIE"[|92]|1£]0F < LID;Fle’~(s).
J J
Hence
2
J, IEQ[(Zlhia—ﬂ) ]ds < [DFi(e™*h — 1)(2lal,) ™
0 i

by (2.11). O

The Haussmann formula also provides information on the decay of covari-
ances. Suppose that the following estimate holds:

6. |cov,(f, &) < Z; 10 f)d*(0)8,(8)
for f, g € L(R"), where (d*(0)), is a positive sequence in I!(I) [see, e.g.,
Kinsch (1982) and Follmer (1982)].
Put &*(s) == ¢ *(s) and define a positive sequence (d*), . ; € IX(I) by
d = &(0)xd(0)+c(0) + [ '&(s)wc(s) ds,
0
with [d|, < e21®|d(0)], + (e2!® — 1)2la],) " [cf. (2.11)].

PROPOSITION 4.9. The covariance of any two functionals F and G in ¢!
satisfies

(4.10) lcovg(F, G)| < Y |D;F|d*~|D,G].
Ik

Proor. By (3.7) we have
covg(F,G) = cov,(PF, PG) + IIZEQ[hiﬁi] ds,
0

with hf = EP[DF® %] and h. = EF[DG®{|#]. Since PF and PG € L(R"),
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we can apply Condition 6 and with (4.7) obtain
|cov,(PF, PG)| < Y.8,( PF)d'~¥(0)8,( PG)
il

IA

LD e (0)a'-(0)*10) DGl

Y ID;F|(£(0)4d(0)4c(0)* DG
ik
On the other hand, inequality (4.8) yields

[ e nE] o
0

IA

l

L DA / Yo i(s)ck(s) ds|DyG

1. k=j
LD ['e(s)ec(s) ds) DG,
J.k
This, together with the preceding inequality, implies (4.10). O

REMARK 4.11. Estimate (4.10) implies an exponential decay of correlation
[cf. Kinsch (1982) and Follmer (1982)]: Let r(i, j) = r(Ji — j|) be a shift in-
variant metric on I and put |x|,,=X,e”|x. If we suppose that both
lal.r; < oo and |d(0)],; < o, then |d|. , is finite with

|dler,1 < exp(2laler,)Id(0)l,r,1 + (exp(2lal,r,1) — 1)(2laler1)
Applying (4.10) and the triangle inequality for r, we obtain
(4.12) Y |covy(F, GO%)le™™ < |d|,- || DF|,- ,|DG|,- ;.
i

Finally we derive an estimate for the Laplace asymptotics,

A(F) = |V,|log| E©

exp( Yy F@k(X))}), Fe ¢,

kev,
which can be used for the identification of the rate of the large deviation of the
measure |V, | 'L, ¢y, 8e+ [cf. Stroock (1984)].

PROPOSITION 4.13. Assume that the initial distribution p satisfies
7. im, ,  A*(f) = A¥(f) forf e L(R").
Then the following estimate holds for F € %*:
(4.14) limsup AQ(F) < A*(PF) + 1|DF|3(e?%h — 1)(2al,) "

n—o0

Proor. Let F(X) be written in the form (3.1) and define the martingale
(MM, 0<t<1)
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M{™:= 3 PFO* X))+ Y (th‘ dW‘)@k
keV, keV, \ i

By (4.8) and (2.1), the quadratic variation of M ™ is bounded by
M),

dt
Hence Itd’s formula implies (4.14) as

< |V, IDFfje?eht=0),

E®[exp(M™)] sE"‘[exp(Mé"))]exp(I Vo |DF|[ Zlald-0) dt) ]

5. The fluctuation field. This section illustrates how the central limit
theorem can be applied to the derivation of the fluctuation field.

Let &, == $(R"") be the Schwarz space of rapidly decreasing smooth func-
tions on R"» and %/ :=%(R") the space of tempered distributions. Put
S = @, for the direct sum viewed as a nuclear space [cf. Yamazaki (1985)]
and S = ® 2 for the dual. We introduce a continuous %/-valued process

YO = (Y™W(), 0 £ < 1),e s,

YM(y) = Sr(¥)(X,) = V|72 ¥ {v8%(X,) - EQ[y(X,)]}.

keV,
The central limit theorem of the last section implies

PROPOSITION 5.1.  The process Y™ converges in law to a continuous &’-val-
ued Gaussian process Y = (Y(¢),0 <t < 1), s, With variance

otz(‘l’) = %con("P(Xt)’ ‘ng(Xt))-

PrROOF. Note that % C %', hence Corollary 4.6 implies the convergence of
the finite-dimensional distributions of Y(™. By Theorem 5.3 of Mitoma (1983), it
suffices to show the tightness of the laws of (Y(™(¢), 0 < ¢t < 1) in C[0,1] for
fixed y € &, . By Itd’s formula we have

(5.2) YO() = Y0 (y) + [YO(Ly) ds + M),

where Zy(x) = L,{b*(x)d,¥(x) + 1024 (x)} is the generator of the diffusion
(X,,0 <t<1)and (M{™(¢),0 < t < 1) is the continuous martingale,

MPW) = VI L L [990K(X,) dwi.

keV, i

We prove the inequalities

69 B ([ ) | < mione- o,

(5.4 g (@) | < ko - o
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for 0 < s <t < 1. This implies the tightness in C[0,1] by Theorem 12.3 of
Billingsley (1968). Note that

[ ¥ L¥) du = s,,*(j‘w(xu) du),
where [.#Y(X,) du is a ¥'-functional with

‘D(/:.%p(Xu) du)

< L19.(L9)]1t - 5.
1
Applying inequality (4.12) with r = 0, we obtain (5.3) as

EQl(sn*(jstw(Xu)du))z] <X con(/s‘w(Xu)du,/siw@k(xu)du)

< (Sla2w)l) e - sft

i

For the second inequality it suffices to see that the quadratic variation of
M™)(y) remains bounded in n,

2
supd( M™(y)) /e < ( L1041
(cf. proof of Theorem 4.4). O

From now on we sharpen Condition 2 to:

2. For all i € I there exists a finite neighborhood N(i) of i such that b'e
F(R ® RNW),

Then
L¥(x) = X {bM(x)d,9(x) + §039(x)},

k
2¥(x) = %3/@4/@"‘(9‘7)

define two linear operators from % to .

PROPOSITION 5.5. The process (Y,, 0 < t < 1) satisfies the linear stochastic
differential equation

(5.6) Y (¥)=Yy(y)+ /O‘n(z’xp)dw fo‘st(W), Ve,

where B = (By(¢),0 <t <1),cs isa %/-valued Wiener process with quadratic
variation

(B = [E[¥(X,)] ds.
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Proor. Take ¢ € % ; by (5.2) we have
(5-2) Y(y) = YP(9) = [Y(Ly) ds = [[dM(y).
0 0

Since ¥(X,) — ¥(X,) — [ELY(X,)ds € €', the left side of (5.2") converges in
law to

¢
Y(4) - Yy(y) = [Y(24) ds
by Corollary 4.6 and Proposition 5.1. By the ergodic theorem we have
¢
(M=), = [E(@u(x))] a5 Qas.

(cf. proof of Theorem 4.2). This implies the convergence in law of the martingale
M™(y) to the Wiener process B(2y) [cf. Shiryayev (1981)]. O

REMARK 5.7. Let ¢ € %,. Then the Haussmann formula yields
¢ .
(5.8) ¥(X) = Py(Xo) + L [[0.P-b(X,) AW,

where (P, 0 < ¢ < 1) is the semigroup associated to (X,, 0 < ¢ < 1) (cf. Example
3.10). Note that

2(P,_¥)(x) = %%Pt_stl/@"“(x)

is well defined as

|0,P,_®*| < I3 Yl k1 = (¢ - )

by (4.8). Applying Theorem 4.2 to (5.8), we obtain an explicit form for the
solution of (5.6),

— t —
¥(4) = Y(Py) + ['dB(9(P_ b)),
where Y, and (B,, 0 < ¢ < 1) denote L% Q)-completions of ¥, and (B,,0 < ¢ < 1).
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