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SPREADING AND PREDICTABLE SAMPLING IN
EXCHANGEABLE SEQUENCES AND PROCESSES!

BY OLAv KALLENBERG

Auburn University

Ryll-Nardzewski has proved that an infinite sequence of random variables
is exchangeable if every subsequence has the same distribution. We discuss
some restatements and extensions of this result in terms of martingales and
stopping times. In the other direction, we show that the distribution of a
finite or infinite exchangeable sequence is invariant under sampling by means
of a.s. distinct (but not necessarily ordered) predictable stopping times. Both
types of result generalize to exchangeable processes in continuous time.

1. Introduction. A finite sequence of random variables ¢ = (£,,...,£,) is
said to be exchangeable, if every permutation has the same distribution, i.e., if

(1.1) (gk,""’gkn) = (415, €,)

for every permutation (k,...,%,) of (1,...,n). For infinite sequences, we
require the same property for every finite subsequence. It is easy to see that
exchangeability of an infinite sequence £ = (£, §,,...) implies that

(1'2) (£k1»£k2»~“)=d(51»§2s~-), k1<k2<

A sequence satisfying (1.2) is said to be spreadable. (Kingman [13] calls (1.2) the
selection property, while Aldous [1] refers to (1.2) as the property of spreading-
invariance.)

de Finetti’s [3] celebrated theorem states that an infinite exchangeable se-
quence is mixed i.i.d., in the sense that its distribution is a mixture of distribu-
tions of i.i.d. sequences. Ryll-Nardzewski [14] noticed that the same conclusion
follows from the weaker assumption of spreadability. Both results are in fact
simple (though remarkable) corollaries of the mean ergodic theorem. (Yet the
latter is somewhat deeper than the martingale convergence theorem which the
standard proofs use.) In Proposition 2.1, we shall show that the same argument
yields an even stronger result.

We proceed in Proposition 2.2 to restate the preceding results in terms of
stopping times and martingales. In particular, a sequence ¢ is spreadable iff
0®, 0 & =, & for every Z,-valued stopping time 7 (extensive use of this result was
made in [10]), or equivalently, iff the prediction sequence

(1.3) m,=P[O,°¢€ 7], neZ,

is a measure-valued martingale. Here %= (%,, #1,...) is the filtration induced
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SPREADING AND PREDICTABLE SAMPLING 509

by £ (so %, is trivial), stopping times are defined with respect to % and
0,, ©,,... denote the shift operators on R*.

The preceding stopping time condition characterizes exchangeability in terms
of certain randomly selected subsequences. More generally, one may look for
conditions on the random indices 7, 7,,..., such that

(1.4) (&1-1’ ‘512"") =d(£1’ ‘52"")

implies that £ is exchangeable. Another instance when (1.4) implies exchangeabil-
ity (for stationary £) is that of thinning, where the elements of ¢ are selected
independently with a fixed probability p € (0, 1). This result (Proposition 2.3) is
closely related to a result in point process theory (cf. [12]), where mixed Poisson
processes are characterized in terms of thinning.

Section 3 deals with the converse problem of finding general conditions on
Ti» Tgy+-., such that (1.4) holds for a given exchangeable sequence ¢. If ¢ is
infinite and ii.d., we may, e.g., take 7, 7,,... to be any strictly increasing
sequence of predictable stopping times. (Recall that a stopping time 7 is
predictable if T — 1 is a stopping time in the usual sense.) This result is well
known to gamblers (or at least it ought to be). The first formal proof appears in
Doob [4]. Our main result in Section 3 states that (1.4) is true for arbitrary a.s.
distinct predictable stopping times 7, 7,,..., whenever ¢ is a finite or infinite
exchangeable sequence. Note in particular that the 7; may form a random (but
predictable) permutation of the indices of £, since no requirement is made on the
order.

The preceding result, which generalizes Theorem 5.1 in [10], has the most
surprising consequences for finite games (e.g., card games, lotteries, sampling
from finite populations), as shown by examples in [11]. For the sake of applica-
tions (but also for the proof), it is useful to introduce the associated allocation
sequence o, o, ..., given by

(1.5) ap=inf{j: =k}, k=12,....

(Here inf & means oo, as usual.) Note that the finite values of a,, a,,... are a.s.
distinct and that «, is %#,_,-measurable by assumption for each k. Informally,
the element £, is moved to a new position a,, which is only allowed to depend on
the past history (£,,..., §,_,). Note that §, is discarded for the new sequence if
a, = oo.

Sections 4 and 5 deal with the corresponding problems in continuous time. A
process X defined on I =[0,1] or R is said to be exchangeable if X, = 0, if X
is continuous in probability at every ¢ € I and if the increments of X over an
arbitrary set of disjoint intervals of equal length form an exchangeable sequence.
In that case, we may (and will) choose a version of X which is right-continuous
with left-hand limits. If I = R_, the analogue of de Finetti’s theorem states that
X is a mixture (again in the distributional sense) of Lévy processes. For
I =[0,1], we have instead the more general representation (cf. [8])

(1.6) X,=at+ 0B, + i Bi(1{r; <t} —¢t), telo,1]
Jj=1
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(1{-} denoting the indicator function of the event within brackets), where B is a
Brownian bridge, while 7, 7,,... are ii.d. random variables uniformly distrib-
uted on [0, 1] and «, 0, B8, B,, ... are arbitrary random variables satisfying ¢ > 0
and 232 < o0, the three objects B, (7, 7,...) and (a, 0, 8;, B,, . ..) being inde-
pendent We shall wrlte B for the point process ):83 and say that X is directed
by the triple (a,d?, B). Note that X is a mixture of ergodic exchangeable
processes (1.6), where a, 62 and B8 are nonrandom.

Exchangeable processes will be seen to be semimartingales. In Section 4, we
shall essentially characterize the exchangeability of a semimartingale X in terms
of its local characteristics (as defined in [6,7]). If X is exchangeable and
integrable, the latter will be absolutely continuous, with densities which form
martingales with respect to the filtration induced by X. Conversely, a semi-
martingale X on R, with the preceding property can be shown to be exchange-
able, provided that X has stationary increments, and a similar result (related
also to Theorem 3.3 in [10]) will be proved for processes on [0,1]. A related
characterization of mixed Poisson processes has been obtained independently by
Heller and Pfeifer [5].

The continuous time counterpart of the predictable sampling theorem of
Section 3 is stated in Section 5 in terms of stochastic integrals. More precisely,
the allocation sequence in (1.5) is now replaced by an allocation process V, which
is predictable and a.s. measure preserving, at least on some suitable subinterval
J of the index set I. (Thus AV"! =X on J as., where A denotes Lebesgue
measure.) Given X and V, we may define a new process XV~ on J by

(1.7) (XV‘I),=/11{Vsst} dX,, ted.

The main result of Section 5 (which generalizes Theorem 5.2 in [10]) states that
X and (a suitable version of) XV~! have the same distribution on </, whenever
X is exchangeable. As in the discrete time case, there are some rather surprising
applications of this result, which are discussed in [11]. The result has also proved
useful in establishing representations of stable integrals, but this will be dis-
cussed elsewhere.

We now turn to discuss some technical extensions. Our first point concerns the
choice of filtration. For many purposes, one needs to introduce some more
general filtration % than that generated by the sequence or process under
consideration. Following [10], we shall then say that a sequence ¢ is %
exchangeable if £ is adapted to & and if @, - £ is conditionally exchangeable,
given %, for every n € Z,. The latter condition means of course that the
shifted sequence should a.s. be exchangeable under the conditional probability
law. It is easy to check that an Fexchangeable sequence is exchangeable and
that the two notions are equivalent in the case when % is induced by £. Most of
the results previously described extend without effort to the more general setting
just described. In particular, this is true for the predictable sampling theorem,
where one may hence allow for independent randomizations in each step in the
construction of (a;).
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The continuous time case is similar. For technical reasons, we shall only
consider standard filtrations % , satisfying the usual conditions of right-continu-
ity and completeness (so that %, = %,, for all ¢, while #, contains all null sets
in a completion of % = V%,). In particular, the filtration induced by X is
defined as the smallest standard filtration making X adapted. Defining %#-
exchangeability as before, we have the same relationship to the usual notion of
exchangeability (cf. [10]).

A second point concerns the predictable sampling theorem already discussed.
In many applications, the sample size is random, and there may be no obvious
way of extending the given sequence of stopping times to a sequence of fixed
length. In that case, we can still prove that the sampled sequence n can be
embedded in distribution into the original sequence £ (which we denote by
n C4 & cf. [10]). This means that n can be continued, by randomization or
otherwise, to a sequence 1’ of the same length as £ and such that ' =, £ A
corresponding extension exists in the continuous time case, with a similar
definition of embedding. Note that the preceding construction of 7’ may require
an extension of the original probability space.

A simple way of proving the embedding n C, § is to construct on some
suitable probability space, a sequence ¢ =, ¢ and a Z,-valued random variable
v/, such that

(1’8) (5{”£;’) =d n,

where the left-hand side should be interpreted as £ when »’ = c0. In continuous
time, it is convenient first to extend the definition of the sampled process Y,
originally given on some random interval [0, {), by putting Y, =39 for ¢ > ¢,
where 0 denotes an auxiliary coffin state. We may further define the killing
operators k, by

fes s<tel,
a, s>tel,

(k)= {

defined for functions f on I =1[0,1] or R, and for numbers s € I U {o0}. In
order to prove that Y C, X, it is then enough to construct, on some suitable
probability space, a process X’ =; X and a random variable {’ =; {, such that
ko X' =,Y.

The preceding statements are simple consequences of the following randomi-
zation lemma.

LEMMA 1.1. Let ¢ and n be random elements on some probability space
(2, P) and taking values in the spaces S and T, where S is separable metric
while T is Polish. Assume that £ =, f(n) for some measurable function f:
T — S. Then there exists some random element 7' =; 1 on (£ X [0,1], P X A),
such that £ = f(v') a.s. P X A.

Proor. It is enough to prove the result for T' = R, since it will then extend
immediately to the case of linear Borel sets, and next, by Borel isomorphism (cf.
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[1], page 50), to arbitrary Polish spaces. For T = R, we may choose a regular
version of the conditional probabilities

p,=Plne€ -If(n) eds], seS8,
and define

nl(wyx) =Sup{y: nu‘E(w)(_oo’ y] Sx}’ wEQ,xE [0’1]

It is easy to check that 7’ is measurable and satisfies (£, v) = 4( f(n), ). Since S
is separable, the diagonal in S? is measurable, so we get

1{g=1f(n)} =41{f(n) =f(m)} =1,
which shows that £ = f(7') as. O

Let us conclude with some remarks on literature. Though the present paper is
formally self-contained as far as exchangeability theory is concerned, we recom-
mend Kingman’s paper [13] and Aldous’ lecture notes [1] for introductory
reading. Some further background on the continuous time theory may be found
in [8-10]. Standard results from stochastic calculus and weak convergence
theory will often be used without explicit references and for these, the reader
may, e.g., consult Jacod [6, 7] and Billingsley [2].

2. Spreading characterizations. Let us first show how de Finetti’s and
Ryll-Nardzewski’s results follow easily from the mean ergodic theorem. Assume
that £ = (§,, §,,...) is spreadable and let the functions f,, f,,...: R = R be
bounded and measurable. Write .# for the shift invariant o-field in R* and let p
be a regular version of P[¢, € -|¢~'#]. Then

k R (1 n k
ET14(t) = ET1 {— 5 fj<s,-,,+i)} L EBTuf,
J=1 J=1\ Ty J=1

as n — oo, by the L, ergodic theorem (where the convergence is clearly uniform
under shifts) plus dominated convergence. Here and to follow, uf = [fdu. The
proof is completed by a monotone class argument. (Essentially the same proof
yields the usual conditional forms of de Finetti’s theorem; cf. [1].)

We shall use the same method to prove the following stronger result.

ProPosITION 2.1. Let £ = (&, £,,...) be a stationary sequence of random
variables satisfying

(2‘1) (gl""’gn’ gn+2) =d(£1""’£n’ gn+1 )’ nEZ+'
Then ¢ is exchangeable.

FIrsT PROOF. Extend £ to a doubly infinite stationary sequence ...,
§_1,%0, &, ... and conclude from (2.1) that

(”"gn’£n+2) =d(""gn’gn+l)’ nEZ’
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Iterating this result yields
(""‘En"fn+k) =d(“"$n’£n+l)’ nEZ,kE N.

Letting g and f,, f,,... be bounded measurable functions on R* and R, and
writing §7= (..., §_,, £), we get by the L, ergodic theorem,

k k—1 1 k+n-1
Eg(g_)jL—Ilfj(gj) = Eg(¢7) I:Ilf,(‘f,)(; g:k fk(gi))

- Eg(¢” )l_[f( ):“'fk

Since p is ¢ -measurable by the law of large numbers, we may continue
recursively until we get, after & steps,

k k
Eg(¢7) I—Ilf,(gj) = Eg(¢7) l_Ilﬂfj-
J= J=
Thus the conclusion follows as before. O

We may also give a simple martingale proof, in the spirit of Aldous ([1],
page 22).

SECOND PROOF. It is convenient to reflect the index set in the origin, so we
may assume instead that ¢ is stationary and satisfies £ =, (£,,0,0§). By
iteration and stationarity, we get

Gk—1°£=d(gk’ no‘f) =d(£1’®n°£)’ kSn,
SO

E[{(£)10,°¢] =, E[{(£,)10,°¢] = E[f(£,)10,°¢], k<n,

for any bounded and measurable function f. By Lemma 3.4 in [1], the left
equality must also hold in the a.s. sense and we get as n — o,

E[{(£)10,°¢] = E[[(£)T] = uf as,

where J denotes the tail o-field of £ Letting f,..., f, be bounded and
measurable, we hence obtain by iterated conditioning

E[klfllf(sk) 9‘] - E[,}fllE[fk(ﬁk)|®k°£] f] - E[klf[lufk

which proves that £ is conditionally i.i.d., given 7. O

-7] = n#fk,
k=1

It is useful to restate the previous conditions in terms of stopping times and
martingales. For the sake of simplicity, these will here be defined with respect to
the induced filtration

37;=o(§1,...,£n), nez,.
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Define the measure-valued processes (,) and (A,) by

and note that these formulas remain true when r is a finite stopping time. All
functions that follow are assumed to be measurable.

PROPOSITION 2.2. Let § = (§;) be an infinite sequence of random variables
and define (m,) and (A,) by (2.2). Then properties (i), (ii) and (iii) are equiv-
alent:

(i) £ is spreadable.
(ii) ©, c £ =, £ for every finite stopping time T.

(iii) (m, f ) is a martingale for every bounded f: R® — R.

Properties (i), (ii’) and (iii’) are also equivalent:

(1") £ satisfies (2.1).
(ii") &,., =, &, for every finite stopping time .
(iii") (A, f ) is a martingale for every bounded f: R — R.

The fact that (ii) with a general filtration .# is equivalent to Fexchangeabil-
ity was noted with a direct proof in [10], Theorem 2.1. Condition (iii") is
interesting mainly because of its analogy with the continuous time conditions of
Section 4.

Proor. Condition (iii) means that
E[f(8,.,°8); Al = E[f(8,°¢); 4], AeZ,neZ,
for bounded f: R* — R. By a monotone class argument, this is equivalent to

(sl""’gn’£n+2’£n+3"") =d ¢ nEZ+’
from which (i) follows by iteration. Thus (i) « (iii). Condition (iii) is further
equivalent to
Ern f= En,f

for bounded f: R* — R and for finite stopping times 7. This may be rewritten
as

Ef(,°£) = Ef(£),

which is equivalent to (ii). Thus (ii) « (iii), so (i)—(iii) are equivalent. A similar
argument proves the equivalence of (i")-(iii’). O

It should be noted that Proposition 2.1 is false without the hypothesis of
stationarity. For a simple counterexample, let £, &,,... take the values 0 or 1
and choose P{£, = 1} = . Let us further assume that £,, £;,... are condition-
ally i.i.d., given &, with

Pl¢, = 1] =4+ 36, n>1L
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Then

o n=0,
E[¢, 7] =1 |
n+1n é+§§1, n>0,

is a martingale and hence so is (A, f ) for every f: {0,1} — R. Thus (2.1) holds by
Proposition 2.2. But £ is not exchangeable since P{¢, = £, =1} = 1 while
P({, =&, =1} = .

We turn to the thinning characterization of exchangeability mentioned in the
introduction. For a formal definition of thinning, let ¢ be an infinite random
sequence and let the random variables x,, x,,... be i.i.d. and independent of ¢
with

P{x;=1} =1-P{x;=0} =p, i€N,

for some p € (0,1]. Then the random variables

k
1-j=inf{k€N: Zui=j}, JEN,

i=1
are a.s. finite, so the sequence
n=(%,%,...)
is a.s. well defined and will be called a p-thinning of &.

ProposITION 23. Fix p € (0,1) and let ¢ be a stationary sequence of
random variables with p-thinning n. Then £ is exchangeable iff £ =, 7.

FIRST PROOF. By iteration, we get the same property with p replaced by p”,
n € N, so we may take p arbitrarily small. Fix m, n € N with m < n and note
that

P[ﬁ (=%

Qi Tm+1=n+1}=(;;)*,

for all k, < --- <k, < n. Letting f,,..., f,: R > R be bounded, we get as in
Kingman ([13], page 188),

lim E L:l_"}[l fi(n;)

n—oo

m
Tpe1 = N+ 1] = El—[l”fj’
j=
where pf = E[ f(£,)|#]. Since 7,,,, 2> poo as p — 0, it follows that

E ﬂ fj(gj) = EH fj('ﬂj) = EE[I_[ fj('ﬂj) Tm+l:l - E H .“fja
Jj=1 Jj=1 . Jj=1 Jj=1

which implies that ¢ is exchangeable. O

For readers aquainted with random measure theory, we shall outline an
alternative proof, exhibiting the relationship with thinning of point processes.
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Here and for the remainder of this section, we shall use the terminology and
notation of [12].

SECOND PROOF. Introduce the marked point process
- o0
=) 8(1,€,~)
j=1

and construct another point process 7, from £ by a p-thinning followed by a
scale contraction by a factor p~!. Note that the successive marks of i, are given
by n =mn,. Let us further construct {, by a p~l-contraction of the random
measure p§. As before, we may let p — 0 along a sequence. By the ergodic
theorem, we get §p —, 1 X A a.s. for some random probability measure p on R,
so Theorem 8.4 in [12] yields %, —, 7', where 7" is a Cox process directed by
p X A. It follows by continuous mapping that § =, 1, —, 7', where 7’ is the
sequence of successive marks of #’. It remains to notice that 7’ is conditionally
iid. p. O

We conclude this section by stating an analogous point process result, which
follows easily by a similar argument. Recall that a marked point process on R,
is exchangeable (in the sense of Chapter 9 in [12]) iff it is a mixture of stationary
Poisson processes.

PROPOSITION 24. Fix p € (0,1), let ¢ be a stationary marked point process
on R, and let n be obtained from § by a p-thinning followed by a scale
contraction by a factor p~'. Then ¢ is exchangeable iff ¢ =, n.

3. Predictable sampling. Here we shall prove the fact, already mentioned
in the introduction, that the distribution of an exchangeable sequence is in-
variant under predictable sampling. To facilitate access, we begin with the
special case when the sampled sequence has fixed length. Fix a filtration %=
(ZFos Fiseeo )

THEOREM 3.1. Let ¢ be a finite or infinite Fexchangeable sequence with
index set I and let 7,..., 7, be a.s. distinct I-valued predictable stopping times.
Then

(3.1) (Erveeer ) =a(Ersens 1)

PrOOF. Let us first consider the case when ¢ = (&,,...,&,) is finite and
k =n. Let a,,...,a, be the allocation sequence associated with ..., 7,, and
note that the two sequences are inverse random permutations of the integers
1,..., n. Define for each m € {0,..., n} another random permutation («,,;) by
putting a,,; = a; for j < m and then recursively,

amj=min(N\{al,...,aj_l}), j=m+1,...,n.

Note that a,; is %, ,-measurable for each ; and that «,;=a, ;=@
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whenever j < m. Using the exchangeability of £ we get for any bounded
measurable functions f,,..., f,,

= B[ fa (68| TL o (8)

‘g‘-m—l]

= Ejl_[ fam_l_j(sj)E[ n fam,l'l-(gj)
<m j=m

gm—l]

=E I_[ fam,l_j(gj)'
Jj=1

Summing over m = 1,..., n and noting that a,; = a; while a,; = j, we hence
obtain
n n n
El—llfj(gf/) =E 1_[1f¢,j(§j) =E I_[lfl'(gj)'
J= Jj= j=

The assertion now follows by a monotone class argument.
If instead k& < n, we may extend the sequence (7;) by putting, recursively,

Tj=min(N\{'rl,...,1'j_1}), j=k+1,...,n.
The assumptions are then fulfilled by the extended sequence, so
(g-r], ey g"’n) =d(€1s L] gn)3

which implies the same result for the first £ components.
Let us finally assume that ¢ is infinite. We then define the predictable
stopping times 7,,, forn € Nand j=1,..., k, by

7 H<n,
T:

n+j, > n.

J?

(3.2) T, =

nj

Since ,,,...,T,, are as. distinct and bounded by n + k, we may apply the
result in the finite case to the subsequence (£,,..., £, .), to obtain

(£, e bn) =a(Err s )

But then the same relation must be true for 7,,..., 7, since 7, — 7; for each j,
aswelet n > c0. O

We turn to the general result, where the length of the sampled sequence is
allowed to be random. Recall that the graph of a random time 7 is the random
set {t < co: t = 7). Recall also the definition of C, from Section 1.

THEOREM 3.2. Let £ be a finite or infinite Fexchangeable sequence with
index set I, and let 7, ,,... be (I U {o0})-valued predictable stopping times
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with a.s. disjoint graphs. Put v = inf(j > 0: 7., = 0}. Then
(3.3) (6,-058,) Ca &

Note that the left-hand side of (3.3) should be interpreted as the infinite
sequence ($,1, $,2,...) when » = 0. The preceding result was obtained for
increasing (7;) in Theorem 5.1 of [10] by a cumbersome direct argument.

PROOF. We may clearly assume that 7, = oo for j > ». Consider first the case

when § = (£,,..., &,) is finite. Define a new allocation sequence (a},) recursively
by
ay, a;, < o0,
ak_{max({l,...,n}\{a{,...,a;_l}), a;, = o0.
The inverse permutation (7/,..., 7,), given by

(= k) = {wh=s)s  Sk=Lim,

will then satisfy the requirements of Theorem 3.1 and, moreover, 7/ = 7; for
J < v, s0 we get

(g"l""’ gn, s-r‘fﬂv-', 57;') =d(£13"-’ gn)3

proving (3.3).
It remains to consider the case when ¢ is infinite. Defining 7, ; as in (3.2), we
get by Theorem 3.1,

(3.4) M= (4, 06 ) =a &
Let us further write

v,=inf{j>0:7,,>n}, neN,
and note that », — ». Note also that

(3.5) (Mt eer My p 05,500 ) = (s,l,...,g,m, 3,d,...),

since 7,; =7 for j <, The sequence of pairs (n,,7,) is trivially tight in
R* X N, so (0, v,) =, some (7, »") along a suitable subsequence, where 7’ = ¢
by (3.4). Letting n — o0 in (3.5) and noting that
(%, X953 ) > (x),...,%,,0,0,...)
defines a continuous mapping from R® X N to (R U {3})®, we get in the limit
(ni,...,n;/, a, 3,...) =d(£‘l’[""’£‘l’,,’ a, a,..¢),

with the usual interpretation in case of infinite » or »’. Thus (3.3) holds by
Lemma 1.1. O

4. Martingale characterizations in continuous time. The main purpose
of the present section is to discuss a continuous time counterpart of condition
(iii") in Proposition 2.2 and its bearing on the exchangeability of a process on
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[0,1] or R,. Recall from Propositions 2.1 and 2.2 that (iii’) is equivalent to
exchangeability for a stationary sequence of random variables.

Before indulging in the main theme, we remark that most methods and results
related to the notion of spreadability carry over rather easily to the context of
processes on R_. In particular, the continuous time ergodic theorem yields an
easy direct approach to the continuous time analogue of de Finetti’s theorem
(though under the assumption of measurability). Much deeper is the spreading
characterization of ergodic exchangeable processes on [0,1] in Theorem 3.3 of
[10], whose proof employed some martingale techniques akin to those that
follow.

Recall (e.g., from [6]) that a process X on some interval I is a semimartingale
(with respect to a standard filtration %) if X is right-continuous and adapted
and if X = M + V for some local martingale M and some process V with locally
finite variation and V;, = 0. Moreover, X is a special semimartingale if V can be
chosen to be predictable. In that case, the preceding decomposition is unique and
will be called the canonical decomposition of X. Associated with a semi-
martingale is a marked point process £, and a continuous increasing process o2,

given (for Borel sets A € R with 0 ¢ A) by

(4.1) §A =Y 1,(AX,), ol =(X, X%, tel,

s<t

where X¢ = M* is the unique continuous component of the martingale part M.
The compensator (dual predictable projection) of ¢ will be denoted by £. For
special semimartingales, the processes V, o2 and £ will be called the local
characteristics of X. (Note the slight deviation from common practice, in our
definition of the first characteristic V.)

The continuous time counterpart of condition (iii’) is to assume that X is a
special semimartingale, whose local characteristics are absolutely continuous in
time with respect to Lebesgue measure A and such that suitable versions of the
associated densities form martingales. (For brevity, we shall then say that V, o2
and £ are absolutely continuous with martingale densities.) In case of £, this
means that

(4.2) £Aa= [pads, tel,
0

for some measure-valued process p, such that u,A is a martingale in ¢ for every
fixed A. All martingales in this section are with respect to a fixed standard
filtration # and we shall always choose their right-continuous versions.

Our plan for this section is first to show in Theorem 4.1 that the preceding
condition is fulfilled for an exchangeable process, under suitable moment condi-
tions. (We shall actually prove slightly more, in preparation for the next section.)
We then show in Theorems 4.3 and 4.4 that the stated condition is also sufficient,
under appropriate additional assumptions, for a process on R, or [0, 1], respec-
tively, to be exchangeable. As in the case of Proposition 2.1, the sufficiency
assertion fails without such extra conditions.
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In what follows, we shall avoid using the explicit representation of exchange-
able processes stated in Section 1, since the results of this section will then
provide a martingale approach to the basic representation formula, at least
under moment restrictions.

THEOREM 4.1. Any exchangeable process X on [0,1] is a semimartingale,
such that ¢% and £ are absolutely continuous. If, moreover, E|X,| < oo, then X
is a special semimartingale on [0,1), such that X — V is a martingale on [0, 1),
while V is absolutely continuous with a martingale density on [0,1). If EX? < oo,
then even o and £ have martingale densities on [0,1) and X — V is an
L,-martingale on [0,1], while E( [|dV])* < oc.

We shall need the following simple lemma.

LEmMMA 42. If X is Fexchangeable on [0,1], we have for any Borel set
ACRuwith0 & A, ’
E[£{A1%] < 0 a.s, te(0,1].

Proor. This is trivial for ¢ = 1, so we may fix a ¢ € (0,1). Letting £ € Z_ be
arbitrary, we get

E[£A4;6A =k]

Y nP{¢£A = n}(Z)tk(l — )"k

n>k
<Y n(Z)(l -t)"*= Y a,< o,
n>k n>k
since
a, n%(1-¢)
PR CE )Ry B
Hence
E[E[t,A17 ]|t A] = E[§,Al5,A] < o as,
)

P[E[£,A1%] < wlt,Al =1 as.
and the assertion follows by taking expectations on both sides. O
PROOF OF THEOREM 4.1. Let us first assume that E|X,| < co. Write M for a
right-continuous version of the process
M,=E[X, - X|#]/(1-¢t), te]o,1).

Letting s <t with 1 —s and 1 — ¢ rationally dependent and using the ex-
changeability of X, we get

E[M)#]=E[X, - X)%]/(1 - t) = E[X, - X|%]/(1 - 5) = M,,
which extends by right-continuity to arbitrarily related s and ¢ Thus M is a
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martingale on [0, 1). In particular,
E[Xt - Xs‘daz;] = (1 - S)Ms - (1 - t)E[Mtl‘Z] = (t - S)Ms:
0<s<t<l
Writing
(4.3) v, = ftMsds, tefo,1),
0

and noting that

¢ ¢

E[|M,ds = ['EIM,|ds < tEIM) < 0,  te [0,1),

0 0

since |M| is a submartingale, it is further seen that

E[V,- V|#] =E[f‘M,,du

50;}=(t—s)Ms, 0<s<t<l.

Thus X — V is a martingale on [0, 1). Since V is predictable, this shows that X
is a special semimartingale on [0,1] with canonical decomposition X =
(X-Vy+V.

Let us next assume that EX? < oo. By Jensen’s inequality,

t
EM? <E(X,-X,)’/(1 - t)’ = Ea® + I—_tE(o2 + Y82),
so by the Schwarz inequality,
1 z 1,1 1 12 .\
E(/O|dV|) —EfOfO|MsM,|cLsdts (/O(EM,) dt) < o.
Thus
2
supE(X,- V)’ < 2EX}, + 2E(f|dV|) < o0,
t

so X — V is uniformly integrable and extends to an L,-martingale on [0,1]. In
particular,

E[of + fx2$1(dx)] —E[X-V,X-V], = E(X, - V,)’ < o,

which implies that E£, A < co for Borel sets A with 0 & A.

The Fexchangeability of X is clearly inherited by the processes o2 and ¢,.
We may thus conclude as before that there exists a martingale M’ on [0,1)
making the process

My =ot - [Mids, te]o,),
0
a martingale. Since M” is continuous with locally finite variation, it follows that

M” = 0, which proves the desired representation for ¢2. Similarly, £, is com-
pensated by the process £, in (4.2), with u, chosen as the measure-valued
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martingale
(4.4) pA=E[£A-¢A17]/(1-t), te]o,1).

Let us finally turn to the general case when there are no moment restrictions.
Let us then assume that X is directed by some triple (a, 62, 8) and define a new
filtration ¢ by ¥, = %, V £, where # = o(a, 62, B). (The threefold meaning of ¢
should not cause any confusion.) Then X remains %exchangeable and, moreover,
E[X}#] < oo for all ¢, so it may be seen as before that X is a special
%.semimartingale on [0,1] with canonical decomposition X = (X - V) + V,
where V is now given by (4.3) with

M,=E[X, - X|9]/0-t), te]o,1).

Since %, C ¥, for all ¢, we may conclude from Theorem 9.19 of Jacod [6] that X
remains a semimartingale with respect to #. Note also that the process ¢? is
absolutely continuous, since this is conditionally true, given .£.

To see that £ remains absolutely continuous in the general case, fix a Borel set
A C R with 0 ¢ A, and let p,A be given by (4.4) for ¢ > 0. Then p,A < 0 as.

by Lemma 4.2 and we get, as before,

El¢A - £,Al17] = E[/‘uuAduﬂ;] = (t-s)mA, O<s<t<l,
S

which shows that
£A-£A= ftp.uAdu, 0<s<t<l.

Letting s — 0 and noting that éo = 0, we obtain the representation (4.2). O

We turn to the results in the opposite direction and begin with the case of
processes on R ..

THEOREM 4.3. Let X be a special semimartingale on R, with stationary
increments and with X, = 0 and E[ X, X], < . Assume that V, ¢* and £ are
absolutely continuous with martingale densities. Then X is exchangeable.

PROOF. Assume that X is compensated by the process V in (4.3), for some
martingale M. Then V is integrable and X — V is a martingale since
E[X, X]; < oo, so we get for s < ¢,

E[X,- X|%] = E[V, - V|Z#]

= E[_/:MuduZ} = /S‘E [M,|%] du = (t - s)M,.

In particular,
(45) E[X,.,-X,|9]=hE[X,,,-X|9], O<s<t, h>0,
where 4 = (%,) denotes the standard filtration generated by X.
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Let us now extend X to a right-continuous process X’ on R with stationary
increments and define

H=0(X! - X!_,,h>0}, s>0.

Let us further write & for the o-field generated by all shift-invariant functions
of the increments of X’ and note that ¥CJ# as. for all s. From the
stationarity of the increments, it is easily seen that (4.5) remains true with ¢,
replaced by ¥, vV 5, and hence also by 4/ = ¢, v &.

Applying the ergodic theorem to the right-hand side of (4.5) yields

E[X,,,- X,|9/] =hE[X,|#], s,h>0.

A similar argument shows that

Et,.0A - £,A19]] =RE[§,A12], s, k>0,

E[o - o2|9!] = hE[o2|¥], s,h>0

Thus the processes

X, —tE[X)¥], ¢A-tE[¢A2], t=0,
are ¥’-martingales, while

ol = tE[ofLV], t>0.

This means that X is a special ¢’-martingale with linear and %measurable local
characteristics. It then follows as in Theorem 3.57 of Jacod [6] (cf. [7]) that X is
conditionally a Lévy process, given . Hence X is a mixture of Lévy processes
and therefore exchangeable. O

We turn to the case of processes on [0,1]. Here the stationarity assumption in
Theorem 4.3 will be replaced by a suitable constraint at the terminal point. The
following result, in conjunction with Theorem 4.1, yields a complete martingale
characterization of ergodic exchangeable processes on [0,1]. The corresponding
characterization of finite exchangeable sequences is the martingale version of
Proposition 2.3 in [10].

THEOREM 4.4. Let X be a uniformly integrable special semimartingale on
[0,1] with X, = 0 and nonrandom X,, o2 and §¢,, such that V, 6% and £ are
absolutely continuous with martingale densities on [0,1). Then X is ergodic
Fexchangeable.

Two lemmas will be needed for the proof.

LEMMA 45. Let B be both a Brownian motion and an Fmartingale and let
§ be an Fadapted marked point process whose Fcompensator depends predict-
ably on & Then B and ¢ are independent.

PrROOF. It is clearly enough to show that Ef(B)g(¢£) = 0 for any bounded
measurable functions f and g with Ef(B) = Eg(¢) = 0. By Theorems 11.16 and
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12.23 in Jacod [6], there exist predictable processes V and W with

V2ds < oo, W2 _df, . < o,
/v JIwsd,

and such that f(B)= M, while g(¢{) = N,, where M and N denote the
martingales

M= [V,aB,, N=['[W, . dE-§),. =0

In fact, this is all true with respect to the filtrations generated by B and §,
respectively. But by assumptions, £ remains the Fcompensator of ¢ while B
remains an %martingale. Moreover, M is continuous while N is purely discon-
tinuous, so M L N, and we get

Ef(B)g(s) = EMooNoo = O' d

LEMMA 4.6. Let X be an exchangeable process on [0,1] directed by (a, 62, B).
Then [X, X], = 6%+ ZBJ-Z.

This result was obtained in [9] by cumbersome arguments. Here is a simple
martingale proof.

Proor. We may clearly take (a, 62, 8) to be nonrandom with a = 0. In that
case,
X, B,

1-¢ 1-¢

1{7- < t}

<ty —t i
- % M(0)
1 - t j=0 J

+ 2B

J=1

M(t) =

is an orthogonal decomposition of the L,-martingale on the left, and we get
0
[M’M]t = Z [Mp ]Wj]p
j=0

which yields a corresponding decomposition of [ X, X],. It remains to notice that
[B, B], = t, since B, = W, — tW, for some Brownian motion W. O

ProoF OF THEOREM 4.4. Let N be a right-continuous version of the
martingale density of o?. Fixing s € [0,1], we get a.s.

let dt=02—0o? = E[ol2 - OSZIZ]
s

=4wa24=fﬂM%hﬂ=ﬂ—@M-

Hence N is a.s. continuously differentiable and satisfies the differential equation
-N,=(1-s)N/-N,, 0<s<l,

so N/ = 0 a.s., and we get

(4.6) o?=to?, te[0,1], as.

This shows that X°¢ is a Brownian motion with diffusion rate o7.
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Let us next assume that ¢ is compensated by the process £ in (4.2) for some
measure-valued martingale p. Letting A € R be a Borel set with 0 &€ A, we get
a.s. for any s € [0,1],

£A-£,A-E[tA- A7) - E[ [ lp.,Adtﬂ;]

= [ElmaiZ] di= (1 - s)u,A,

so by right-continuity,
(4'7) ks = (gl - gs)/(l - S), s € [03 1]7 a.s.

By Lemma 4.5, it follows in particular that ¢ and X¢ are independent.

Let us finally assume that X is compensated by the process V in (4.3), for
some martingale M on [0,1). Then V has integrable variation on compact
subintervals of [0,1), and X — V is a martingale on [0, 1) since

[X-V,X-V]i=o+ [x%(dx) < o0,

so we get as., forany0 < s <t <1,

BLX,- X% = B[V, V)] - B| [, ]

= [EIM)Z] du= (¢ - 5)M,.

By the continuity of X at 1, the uniform integrability of X and the right-con-
tinuity of X and M, it follows that

X, -X,=(1-s)M,, se][0,1), as.,
S0
dX,= —(1—-s)dM,+ M,ds = d(X, - V,) + dV,
and, therefore,

sd(X, - V,)
/__

t€10,1), as.
(S e, as

t t
(48) Vv, jo M, ds /0 ds

Let us now consider instead an ergodic exchangeable process X’ on [0,1]
directed by (X, 62, £&,). Theorem 4.1 shows that X is a special semimartingale
with respect to the induced standard filtration and that the local characteristics
of X’ are absolutely continuous with martingale densities on [0, 1). Since X’ is
further L,-bounded and hence uniformly integrable, everything already said for
X applies equally to X'. In particular, (4.6)—(4.8) remain true for the processes
6’2, w, & and V' associated with X’.

As for previous X, it is seen that X’¢ is a Brownian motion independent of £,
and since ¢{% = o7 by Lemma 4.6, the diffusion rate is the same as for X¢. Since
the functional dependence in (4.7) is the same for ¢ and ¢/, it may further be seen
from Theorem 3.42 of Jacod [6] that ¢ =, & so & — & =, &— {-A, and hence
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X' — V' =, X - V. We may next infer from the two versions of (4.8) that
(X' = V,V)=,(X—-V,V), which implies that X' =, X. Thus X is ex-
changeable.

To reach the stronger conclusion of Fexchangeability, it suffices to fix an
arbitrary s € [0,1) and to check that the preceding arguments apply to the
conditional distribution of X on the interval [s,1], given the o-field %,. We omit
the details of this verification. O

We conclude this section with some remarks. First we show by an example
that the last two theorems are false without the additional assumptions of
stationarity of the increments or of nonrandomness of the local characteristics at
the terminal point. Let us then take ¢ to be a simple point process on R, such
that the restriction to [0, 1] is a mixture of Poisson processes with intensities 1 or
0, where each possibility is chosen with probability ;. On the remaining interval,
we choose £ to be Poisson with intensity 1 or (1 + €)™, depending on whether
¢, > 0 or not. It is then easy to verify that the density of £ is a martingale. But £
fails to be exchangeable, since P{¢;, = 0} = +(1 + e~ '), while

Pl = £,=0) = }(1 - e™e ! + (1 + e e 00

As a second remark, we shall sketch how the preceding results may be
combined to yield a simple martingale approach to the representation theorem
for exchangeable processes on [0,1]. Let us then assume that the process X on
[0,1] is exchangeable, integrable and continuous in probability at every fixed
point. Then Y, = (X, — X,)/(1 — t) is seen to be a martingale on [0,1), so X
must have a version in D[0,1]. Note also that [ X, X], < oo as., since the
exchangeability of X carries over to [X, X]. Since X remains conditionally
exchangeable, given the triple (X;,[ X, X];, §,), we may assume that X, [ X, X],
and £, are all fixed. Then EY,? < o, so even EX} < co. It may hence be seen as
in Theorem 4.1 that X is a special semimartingale on [0,1], whose local
characteristics are absolutely continuous with martingale densities on [0,1).
Note also that X is uniformly integrable on [0, 1], since EX? is bounded. The
hypotheses of Theorem 4.4 are then fulfilled, so the desired representation
formula follows as in the proof of that theorem.

5. Predictable transformations in continuous time. Our aim in the
present section is to prove continuous time versions of Theorems 3.1 and 3.2. Let
us then fix a standard filtration % and recall from Section 1 the definition of an
Fexchangeable process. Recall also our definition of the transformed processes
XV~ The stochastic integrals occurring in the definition exist by Lemma 5.2.

THEOREM 5.1. Fix I =[0,1] or R, and a subinterval J containing 0. Let X
and V be processes on I, such that X is #exchangeable while V is %predictable
with values in I U {0}, and assume that \V~' = X a.s. on J. Then

(5.1) XVl=,X ond.
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Since (XV~1!), is only defined a.s. for each ¢, (5.1) should be interpreted as a
relation between the finite-dimensional distributions. However, (5.1) implies that
XV~! has a right-continuous version with left hand limits and for the latter
there is clearly equality between the distributions on the Skorohod space D(J).

Two lemmas will be needed for the proof.

LEMMA 5.2. Let X be an %exchangeable process on I = [0,1] or R, and let
A C I be predictable with AA < o a.s. Then the stochastic integral [1,dX
exists. Moreover [1, dX —p 0 whenever A,, A,,... C I are predictable with
AA, -5 0.

ProOOF. Let us first consider the case of processes on [0,1]. Changing the
filtration, as in the proof of Theorem 4.1 and applying Theorem 9.26 of Jacod [6],
we may reduce the discussion to the case when X is conditionally ergodic
exchangeable, given %#,. But then Theorem 4.1 shows that X is a special
semimartingale on [0, 1], with a canonical decomposition X = M + V such that
both (M, M) and V are absolutely continuous. The existence of the stochastic
integrals (1, dX follows immediately from this. To prove the convergence
assertion, consider an arbitrary subsequence such that AA, — 0 a.s. Then

lim f 1,1dV] = lim / 1, d(M,M)=0 as,

n-—» oo

which yields the desired conclusion. O

For processes on R,, we may reduce as before to the case when X is
conditionally a Lévy process, given #%,. In this case we get a decomposition
X =M+ V+J, where V is linear, while M is a local martingale such that
(M, M) is linear, and J is conditionally a compound Poisson process. For
integrals with respect to M + V, the existence and convergence assertions follow
as before, so it remains only to consider integrals with respect to J. Letting N
denote the associated mixed Poisson process, it is seen from the results for
M + V that [1,dN exists and that [1, dN —p 0. Since the integrals [1, dN
and [1,|dJ/| are simultaneously finite and simultaneously zero, the correspond-
ing statements then follow for /.

LEMMA 5.3. Let A,,..., A, be digjoint predictable sets in [0,1] of equal
length n~' and fix an ¢ > 0. Then there exist some integer m € N and some
disjoint predictable sets A},..., A, of equal length n™', such that each Alis a
union of intervals ((j — )m™%, jm~'], and such that, moreover,

(5.2) i (AX P)(A;AA)) <.

j=1
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PROOF. Recall that the restriction of the predictable o-field to the interval
(0,1] is generated by the stochastic intervals of the form (o, 7], where o and
are rational-valued stopping times in [0,1]. From this, it follows easily by a
monotone class argument that any predictable set in [0,1] can be approximated
arbitrarily closely in measure A X P by a predictable union of intervals I; =
((j — Dm™Y, jm~1], with m a fixed multiple of n. This implies in particular that
the process X j1 A, can be approximated in L,(A X P) by a process of the form
1 Uy where U,,..., U, are disjoint predictable interval unions as before, with
union (0, 1]. Taking the error to be less than ¢/n, we get

(5.3) EY W;,-n"'| < ¥ (AXP)(A;AU;) <e/n.
j=1 j=1
Let us now define the variables ay,..., a,, by the condition

a;,=k if I,c U, Jj=1,....m, k=1,...,n,
J J k

and put, recursively,

aj, if ) 1{a!=a;} <m/n,
i<j
o =
min{k: Y 1{a =k} < m/n}, otherwise.

i<j
It is then easily seen that the sets

A= U {I;: «j = £}, k=1,...,n,
j=1

are disjoint predictable unions of I,,..., I,, of equal length n~'. Moreover, (5.2)
follows from (5.3) and the fact that, by construction
n n
Y MU AA) < (n=1) X N, —n71. m]
J=1 j=1

PrOOF OF THEOREM 5.1. Let us first assume that I =J = [0,1]. By the
right-continuity of X and by dominated convergence for stochastic integrals, it is
then enough to prove that, for fixed n,

(5'4) (gnl""’gnn) =d(nnl""’nnn)’

where §,,; and 7,,; denote the increments of X and XV}, respectively, over the
interval I,; = ((j — )n™", jn™']. Note that

nnj=f1A,.jdX’ Jj=1,...,n,

where A, ; denotes the predictable random set

Anj={tEI:‘/t€Inj}’ j=1,...,n.
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Consider first the case when each set A,; is a union of m/n randomly
selected intervals I, ,, for some multiple m of n. Then

m/n

'qnj= ng’_’_jk, j=1,...,n,
k=1

for some functions

T < e <Tj,m/n’ ]=1,...,n.

Write ¢ for the discrete filtration ¥, =%,,-1,, j=0,...,m, and note that
(§m1s+++» Emm) 18 F-exchangeable, while the 7;, are %predictable stopping times.
Hence Theorem 3.1 yields

(gm, TR gm,-r,,_,,,/,,) =d(£m1’ RS} gmm)’
and (5.4) follows by a suitable summation on each side.
In the case of general sets A, ;, it is seen from Lemma 5.3 that A ,,..., A,
can be approximated in (A X P)-measure by disjoint predictable sets B,,, ..., B,,,

of equal length n~!, and such that each B, ; 1s a union of randomly selected
intervals I,,. As previously shown, we get for each m,

(5.5) (lemldX"..’lemndX) =d($n1""’£nn)’
Moreover, it is seen from Lemma 5.2 that
lemjdX"’PflA,,,dX as m — oo, Jj=1,...,n.

Hence (5.5) remains true with the sets B,,; replaced by A, ;, and the assertion
follows.
Retaining I = [0,1], we turn to the case when J = [0, p] for some p < 1. We

may then construct another predictable process U on I by putting

U_ ‘/t’ Vtsp’
T \1=-NMs<t:V,>p), V,> p.

nj»

Noting that AU~! = A, we may conclude as before that XU~! =, X. Since
moreover XU ™! = XV~! on J, the assertion follows.
If instead I = R, while J = [0,1], say, we may define the processes

U _ ‘/t’ tsn,
W(t) = inf(sed:s—Ar<n:V.<s} =t-n}, t>n.

Then each U, is predictable with AU, ' = A on  and U, 'J C [0, n + 1], so the
result for processes on finite intervals yields XU, ! =; X on J. Since moreover

Ms>n:Uyfs) <t} =Ns>n:V,<t} -0 as.
by dominated convergence, as n — oo for fixed ¢ € J, we get by Lemma 5.2,

(xU;Y), = (XVY), = [T(1{Us) <t} - 1{V, < £}) dX, -0,
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so the finite-dimensional distributions of XU, ! on J tends weakly to those of
XV~1! and the assertion follows again. O

Unfortunately, Theorem 5.1 is insufficient for most applications, since the
process V is usually measure preserving only on an interval of random length.
For a simple example, let A be a predictable set in I and define a new process

Z,= foﬁA(t) dX, tel.

If AA is fixed, then Theorem 5.1 can be used to show that Z = X’o 1 a.s. for
some process X' =, X, where the random time change process 7 is given by

,=AMAnNn[0,t]), tel

But the result remains true when AA is random (cf. Theorem 5.2 in [10]).
Similarly, a more general version is needed to obtain representations of stochas-
tic integrals with respect to nonsymmetric stable Lévy processes.

Recall from Lemma 5.2 that (XV~') is well defined for fixed ¢ if A{s:
V. < t} < oo as. In general, it may then be extended by localization to the set
where A{s: V, < t} < o0. :

THEOREM 5.4. Let X be an Fexchangeable process on I =[0,1] or R, and
let the process V on I be Fpredictable with values in I U {oo}. Put
{=sup{t=>0:A(s:V, <t} =t},
and let Y denote the restriction of XV~! to [0, ). Then Y C; X.

Note that the process Y is well defined on [0, {), since {{ > ¢} C A, for each .
The theorem states that Y can be extended to a process on R, with the same
finite-dimensional distributions as X. As before, this yields the existence on [0, {)
of a right-continuous version with left-hand limits.

The core of our proof consists in constructing a measure preserving process V7,
to replace V in the definition of Y. This will essentially be accomplished by the
next two lemmas.

LEMMA 5.5. Letf: R,— R, be measurable with \f~! < A on some interval
[0, p). Define

g, =sup{x=0:AMs<t: f,e-} <Aon[0,x)}, =0,
andputh =f+ oo - 1{f > g}. Then A\h™! < XA on R, and we have h = f on the
set where f < p. If f is a predictable process, then so is h.

LEMMA 5.6. Let f: [0,1] - [0,1] U {0} be measurable with A\f~!' <\ on
[0,1] and Af~! = A on some interval [0, p]. Define
g=inf{xe[0,1]:x=1-As<t: f,>x}}, ¢te[0,1],

andputh=f A g. Then \h"' =Aon[0,1], and hAp=fApae. A Iffisa
predictable process, then sois h;=f, A\ g,_.
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In most applications, we have AV~! < XA already at the outset, so only Lemma
5.6 is needed. For this reason, we omit the simple but tedious proof of Lemma
5.5.

ProoF oF LEMMA 5.6. Since A{s < t: f, > x} is continuous in x for fixed ¢,
with values £ < 1at0and A{s < ¢ f, = oo} > 0 at 1, the set of solutions to the
equation
(5.6) x=1-As<t f,>x}
forms a nonempty closed set. In particular, g, solves (5.6) at ¢. Note also that g,
decreases from 1 to 0. Substituting x = g, in (5.6) and letting ¢ — ¢’ from above
and below, it follows easily that both g,., and g, _ solve (5.6) at ¢’ and the same
must then be true for every intermediate value. This shows the existence, for
every x € [0,1], of some ¢ = ¢, €[0,1], such that x solves (5.6) at ¢ and,
moreover, g,, < x < g,_.

Let us now assume that x is such that A{s: g, = x} = 0. Then

Msth,>x}=Ns<t:h,>x}=Ns<t:f,>x}=1-2x.
Since the set of x’s with the preceding property is dense in [0,1], it follows
that AA~! = A. In particular we get MA Ap) ' =AfAp)}, and so
AMfAp—hAp)=0. Since the integrand is nonnegative, it follows that
hAp=fApae A

If f is predictable, then A{s < t: f, > x} is #,measurable for every ¢ and x,

and hence so is the event

(g, 2y} =N{x<1-As<t f,>x}},
where the intersection extends over all rational numbers x in [0, y]. Thus g is
adapted, so g,_ is predictable, like f. Hence sois A™. O

Next one needs to verify that the new predictable process V obtained through
the last two lemmas gives rise to the same process Y on the random interval

[0, $).

LEMMA 5.7. Let U be another predictable process on I, and assume that
AMs:U#+ V,,UAV,<¢} =0 a.s.
Then XU~ ! and XV ! represent the same process on [0, {).

ProoF. Fix ¢t € I and define the stopping time
r=inf{r>0:Ns<r:U# V,,U AV, < t} >0}.
Then
AM{U<t,s<tia{V,<t,s<7})=0 as,
so by Lemma 5.2 we get for all n € N,

[V, < tydX, = [1{V,<t,s <7 A n})dX,
0

= fl{Uss t,s<tAn)dX,= fTAnl{lL,s t} dX,,
0
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which shows that (XU ™), = (XV™!), a.s. on the set {r = o0, { > t}. It remains
to notice that a.s.

(1=} = (\(s: U, # V,, U, A V, < £} =0} > (¢ > ¢}, 0

We shall also need an extension of Lemma 5.2 to deal with convergence of our
specific stochastic integrals on events of the form {{ > ¢}. Note that the result is
trivial when { is %,-measurable for some n. Write %, for the Borel o-field on the
interval (n, o).

LEMMA 58. LetI =R, andassume A, € %, X #,, n € N, and F € % to
be such that

1:AA, -, 0.
Then

1Ff1AndX—>P0.

PrOOF. Since 1,AA, =0, there exist some constants ¢, |0, such that
P[AA, > ¢,; F] — 0. The random sets

AL,=A,N({AA,<¢e,} XR,), neN,

are then predictable with AA}, < ¢, - 0, s0 [1,, dX —p 0 by Lemma 5.2. Since,
moreover,

flA:. dX = flAndX as.on {AA, <e,},
we get for any ¢ > 0,
P[ J1a,dx

as desired. O

> ¢ F]sP{‘flA;dX‘>e}+P[}\An>sn; F] -0,

We shall finally need an elementary result on weak convergence in the
function space D(R ) with the Skorohod-Stone topology (cf. [7]). Recall that %,
denotes killing at ¢. The coffin state d is regarded as isolated in R U {d}.

LEmMA 5.9. Let X, X, X,,... and 1,7, 7,... be random elements in
D(R,) and R, respectively, and assume that (X, 1,) =, (X, 1) with respect
to the Skorohod—Stone topology on D(R ). Then

(5.7) ky o X, g kp o X
for p €[0,1] a.e. A.
PRrOOF. It is easy to check that the mapping (x, t) — k,x from D(R,) X R,

to D(R,, R U {9}) is continuous at ¢ = oo, and also at every (x, t) with ¢ < o0
and such that x is continuous at ¢. Thus (5.7) is true for every p € [0,1] such
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that X is continuous at pr a.s. on {7 < c0}. But conditionally on that event, the
process Y, = X, p € [0,1], has paths in D[0,1], so Y has an at most countable
set of fixed discontinuities (cf. [2]). It remains to notice that X is continuous at
pr iff Y is continuous at p. O

PROOF OF THEOREM 5.4. Let us first assume that I = [0,1]. By Lemmas 5.5
and 5.6, there exists a predictable process V' with AV'~! = X\ a.s. and such that
V, =V, ae. A X Pontheset {V, A V/ < {}. Putting Y’ = XV’'~!, it is seen from
Lemma 5.7 that Y and Y’ represent the same process on [0, {). Since, moreover,
Y’ =, X by Theorem 5.1, it follows that Y c; X.

Let us turn to the case when I = R_. By Lemmas 5.5 and 5.7, we may assume
that AV™! <X as. on R,. For every n € N, we define a predictable process U,
by

V., tvV,<n,
Un(t)= 0, t<n< Vt’
inf(s >0: s —A{r<n:V,<sAn}=t-n}, t>n.

Since clearly AU, '=A\ as., we have Y, = XU; ! =; X by Theorem 5.1. It
follows in particular that the sequence of pairs (Y, {) is tight in D(R,) X R, so
(Y,,{) =4 (X', {") along some subsequence N’ C N, for some process X' =, X
and some random variable {’ =, {. By Lemma 5.9 it follows that, along N’,

(5.8) koY, >,k oX', pel0,1]ae. A.
On the other hand, we have for fixed ¢ > 0
Ms>n:Ufs) <t} =As>n:V,<t}) >0 as.on{t<{},
so Lemmas 5.2 and 5.8 yield

< (X0 - %(0) = [T1V, < 8} = 1{U(s) 1)) dX, =0,

which shows that
(kpeo¥,), =p(ky°Y), pel01], teR..
Comparing this with (5.8) yields
koY= k,oX', pel0,1]ae ],

so the same relation must be true for p = 1. But then Y ¢, X’ =, X by Lemma
1.1.0
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North Carolina, Chapel Hill, where I enjoyed great hospitality.

Note added in proof. The ergodic theorem is actually never needed for the
proof of the de Finetti-Ryll-Nardzewski theorem outlined in Section 2, since
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Cauchy convergence in L, of the time averages follows easily from the covari-
ance structure of a spreadable sequence. The method also yields bounds for the
deviation from exchangeability of a finite spreadable sequence.

Some of the martingales considered in Section 4 have been used before in the
special case of empirical processes [cf. Shorack, G. R. and Wellner, J. A. (1986),
Empirical Processes with Applications to Statistics, Wiley, New York].

REFERENCES

[1] ALpous, D. J. (1985). Exchangeability and related topics. Ecole d’Eté de Probabilités de
Saint-Flour XIII—1983. Lecture Notes in Math. 1117 1-198. Springer, Berlin.
[2] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
[3] pE FINETTI, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H.
Poincaré 7 1-68.
[4] Doos, J. L. (1936). Note on probability. Ann. of Math. (2)37 363-367.
[5] HELLER, U. and PFEIFER, D. (1987). A martingale characterization of mixed Poisson processes.
J. Appl. Probab. 24 246-251.
[6] Jacop, J. (1979). Calcul Stochastique et Problémes de Martingales. Lecture Notes in Math.
714. Springer, Berlin.
[7] Jacop, J. (1985). Théorémes limite pour les processus. Ecole d’Eté de Probabilités de Saint-
Flour XIII—1983. Lecture Notes in Math. 1117 298-409. Springer, Berlin.
[8] KALLENBERG, O. (1973). Canonical representations and convergence criteria for processes with
interchangeable increments. Z. Wahrsch. verw. Gebiete 27 23-36.
[9] KALLENBERG, O. (1974). Path properties of processes with independent and interchangeable
increments. Z. Wahrsch. verw. Gebiete 28 257-271.
[10] KALLENBERG, O. (1982). Characterizations and embedding properties in exchangeability. Z.
Wahrsch. verw. Gebiete 60 249-281.
[11] KALLENBERG, O. (1985). Some surprises in finite gambling and its continuous time analogue. In
Contributions to Probability and Statistics in Honour of Gunnar Blom (J. Lanke and G.
Lindgren, eds.) 205-214. Studentlitteratur, Lund.
[12] KALLENBERG, O. (1986). Random Measures, 4th ed. Akademie-Verlag, Berlin/Academic,
London.
[13] KiNGMAN, J. F. C. (1978). Uses of exchangeability. Ann. Probab. 6 183-197.
[14] RYLL-NARDZEWsKI, C. (1957). On stationary sequences of random variables and the de Finetti’s
equivalence. Collog. Math. 4 149-156.

MATHEMATICS ACA

120 MATH ANNEX

AUBURN UNIVERSITY
AUBURN, ALABAMA 36849-3501



