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THE CONTACT PROCESS IN HIGH DIMENSIONS

By ENRIQUE D. ANDJEL
Instituto de Matemadtica Pura e Aplicada

We improve the complete convergence theorem for the contact process in
high dimensions by enlarging the range of the infection parameter in the
hypothesis of that theorem.

1. Introduction. The d-dimensional contact process is a continuous time
Markov process evolving in S = {all subsets of Z?}, where Z¢ is the integer
lattice of dimension d. This process represents the random evolution of an
infection in the following sense: When the process is in state A the elements of A
are infected individuals and the elements of Z¢ \ A are healthy individuals.
Infected individuals become healthy at rate 1 and healthy individuals are
infected at a rate proportional to the number of infected neighbors. To describe
these transition rates more precisely, we let A be a positive real number and for
x = (Xy,...,%y) € Z? we define |x| = X%, |x,| (throughout this paper this will
be the norm used for integer lattices in all dimensions). Then

A->AU {x} atrateh )Y 1,(y) ifxeA,

yilx—yl=1
A—-> AN {x} atratel ifxeA.

The parameter A represents the speed at which the infection propagates; we
will call it the infection parameter. The contact process exhibits a critical
phenomenon in the following sense: For each dimension d there exists a critical
value X&) of A such that 0 < X& < 0. This critical value satisfies the following
properties: If A < A&, then the process is ergodic and from any initial distribu-
tion it converges weakly to 8, (the point mass on the empty set), if A > A&,
then the process has an invariant measure p, # 8, which is stochastically above
any other invariant measure. In this last case we have P(() + gVt > 0) =
ay(A) > 0. (See [9] for the proofs of these results and related definitions.) Here,
and in the sequel, £, denotes the contact process and the superscript is the initial
distribution. (When the initial distribution is a point mass at A we will write
superscript A rather than §,. Furthermore, if A is a singleton {x}, then our
superscript will be x rather than {x}.) Elementary coupling arguments show that
XD > X9+D and ay(A) < ay,(A). It follows from these considerations that for
A > AY and any dimension d, the process is not ergodic. However, Durrett and
Griffeath [1] have proved that for any initial distribution p,

(11) £ = P(r" < 00)8, + P(14 = oo)uy,

where = denotes weak convergence, 7" is the hitting time of @ starting from p
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and p, is the upper invariant measure mentioned previously. The proof of this
result, known as the complete convergence theorem, can be found in [9] (for
d = 1) and [1] (for d > 1). In fact most of what is known about the one-dimen-
sional contact process is contained in [9, Chapter VI]. For higher dimensions the
reader is also referred to [1], [3], [6]-[8] and [11]-[13]. A shorter proof of (1.1)
(always assuming A > A?) can be found in [11]. In [12] this is generalized by
proving that if (1.1) holds in dimension d for some A > X%, then it also holds in
dimension d’ > d for any A’ > A. Since X¥ — 0 as d — oo (see [9]), it is natural
to ask whether (1.1) holds in dimension d > 1 if A > X, This paper gives an
improved version of the complete convergence theorem in high dimensions, but
still leaves a range of the parameter for which (1.1) is not proved. Namely we
prove

THEOREM 1.2. Ifd > 3k + 1 and A > X%, then (1.1) holds.

A key role in the proof of this theorem is played by a lemma due to Griffeath
(see [3] for its proof). It states that (1.1) holds if and only if two independent
copies £, and &, of the contact process satisfy

(1.3) lim P(§2néf=o,r4>¢,78>1t)=0
t— o0

for all finite A and Bin S\ {@}.

Irreducibility arguments and the Markov property show that it suffices to
prove (1.3) for A = B = {0}. To prove (1.3) in this case we will need an auxiliary
process 7,. It will be a Markov process evolving in the subsets of Z x T, where
I is a connected subset of Z% (T is called connected if V x, y € I' there exists a
finite sequence x,...,x, such that xy=x, x,=y, x, €I for 0 <i<n and
lx; —x;_;| =1 for 1 <i < n). The 7, process, whose transition rates will be
given, is similar to the contact process except for the following rule: If a
hyperplane H, = {(x, a): x € Z"} is such that n,-N H, # &, then at time ¢ an
element of H, cannot be infected by elements off H,. More formally, if y € T
and n € Z4 X T, let

1, ifnnH * o,
(m) () =}, ifnNH = 2.

With this notation, the transition rates of 1, are (x € Zh, y € T)

AT L) () =1,
z€H,
2= (x,»)|=1

Y Li(z) if(m)(y) =0,
zezZhxT
2= (x,1)|=1

A—> AU {(x,y)} atrate

if (x, y) € A and
A->ANA{(x,y)} atratel if(x,y)€A.
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Finally, if one does not allow infected elements to recover, a third Markov
process {, is obtained. For {, the rates are

A-> AU {x} atrateA Y 1,(y) ifx¢A.
yily—x|=1
The ¢{, process was first studied by Richardson [10]. Of the results in [10] we will
only need the following: There exists a positive constant L (it depends on A)
such that for all finite A € S, we have
(1.4) lim P({# c B,,) =1,
t— o0

where, as in the rest of the paper, B, denotes {x: x| < r}.

Standard techniques allow us to construct, for a fixed dimension 7, + [,, the
three processes on the same probability space in such a way that

(1.5) P(nfctfcip)=1
forall £ > 0and all A c Zh x T. Given A C B, these techniques also allow us to

construct two versions of each of these processes on the same probability space,
in such a way that

P(npcaB)=Ptpctl) =Pt ciP)=1

for all ¢ > 0.

These techniques can be either graphical or via generators. However graphical
methods will make it easier to understand the beginning of Section 2. For this
reason we refer the reader to either [4] or [7]. Note that in this way we obtain
right continuous versions of these processes.

In the next section we will prove some properties of the 7, process which will
be used in Section 3 to prove Theorem 1.2. In both sections |A| will denote the
cardinality of A.

2. The process m,. Suppose I is a connected subset of Z'>, A > X* and
I, = k. Let

a=P(g0+ oVt=0),
where ¢, is the contact process on Z“ with infection parameter A. Since

A > A > AW o must be strictly positive. Let the n, process start from {(0, x)}.
Then, for each y € T, define a stopping time 7, and a random variable Z

7, = inf{¢ > 0: (79 ®)(y) = 1}
(by convention inf & = + o0),
{1, if (79 ®)(y) = 1forall't> 1,
0, otherwise.

Since T is connected, P(7, < oo|(7n®>®)x) =1Vt>0)=1 for all ye . It
follows from this and from the graphical construction of 7, that after condition-
ing on {(7n{>®)(x) = 1V ¢ > 0}, for each y € I' the random variables 7, and Z,
are independent and the random variables Z,, y € ' — {x}, are iid. with

7 =

y
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common distribution given by
P(Z,=1)=1-P(Z,=0) =

Given z € Z4, x, y € T and t > 0, we define a random variable

] (0, x) —
Z(t,y)={1’ if (700 9)(y) =1Vs > ¢,

0, otherwise,
a random subset of T,
F(z,x) = {weT: (7@ )(w) = 1 for some s < t},

and a distance in T,
dp(x,y) =inf{n:3xy=x,x,,...,x,=ysuchthat x,eTfor0<i<n
and |x; — x; ;| =1forl <i < n}.

Lemma 2.1 gives an estimate for the growth of the “projection on I'” of the 7,
process.

LEMMA 2.1. Let N(t) be a Poisson process of parameter Aa. Then for all
x,y€Tlandallt >0,

P(y € F(0,x)|(mn@?)(x) =1Vs = 0) = 1 — P(N(t) < dp(x, ).

ProoF. Let x,, x,,...,x, be as in the definition of d(x, y). Then define a
process M(s) by

M(s) = {

where, by convention, sup @ = —oo. Of course, M(s) is not Markovian but it
does not increase and it decreases by jumps greater than or equal to 1. Suppose
1 < M(s) =k < oo; then Z(s,x,_,) =1 and 7, > s. Therefore, at rate greater
than or equal to A, an entirely healthy hyperplane among the H, s for n — k <
i < n gets an infected point. Having in mind the graphical construction of Ns
one can verify the property: Given that an entirely healthy hyperplane H, gets
a point infected at time £, then with probability « and independently of both 7,
for s <t and the random variables Z(s, y) for s <t and y € ' \ {x,}, the
hyperplane H, will have at least one infected point at all times later than ¢.
This shows that if N(t) is a Poisson process of parameter Aa, then

(M(t) = 0|(7q®®)(x) =1Vs = 0) = P(N(t) = n)
=1- P(N(t) < dr(x, y))

0, ifr, <s,

n—sup{0 <i<n:Z(s,x;) =1}, otherwise,

and the lemma is proved. O

In the remaining part of this section we will use the notation: If x € Z% and
r € [0, 0), then

x+B.={yezh|x—-y <r}.
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COROLLARY 2.2. Let T'=2Z"% and suppose r < Aa. Then for all (y,z) €
zh x 7%,

liinP(F,(y, z)Dz+ B|(m?)(2) =1Vs > 0) = 1.

Proor. By Lemma 2.1 and the translation invariance of the 7, process, the
left-hand side is bounded below by

1- liin Y P(N(t)<ly)=1- 1i§n(2rt+ )“P(N(t) <rt)=1. O

YEB,

In Proposition 2.3 and Corollary 2.4 7, and 7, are independent copies of the 7
process on Zh x Z%,

PROPOSITION 2.3. Suppose l, > k, I, €N and A > X». For u= (u,, u,),
v=(v,0,) € Z" X 2", let

Avt = {z€Z%: (mq4)(z) = 1and (77})(2) = 1}.
Then there exist constants K > 0 and b > 0 such that

lim| inf P(A%°| > Ktb|(mn?)(uy) = (7i%)(v,) = 1Vs > 0)| = 1.
t u,v

|u—v|< bt

ProoF. First note that if 0 < b < r, then there exists a constant K’ > 0

such that
inf I{u2 + Brt} N {02 + Brt}l > K/tl2
u,vezix2h
lu—v|< bt

for ¢ large enough. Therefore, the proposition follows from Corollary 2.2, the
independence of the processes 7, and 1),, the weak law of large numbers and our
remark concerning the joint distribution of the random variables Z, (see again
the beginning of this section). O

COROLLARY 2.4. Let b be the constant in the conclusion of Proposition 2.3.
Then \

liminf| inf P(Aye zb: (my*)(y) = (#72)(y) =1)| = o>
t

u,v
lu—v| <bt

Proor. Condition the probability on the left-hand side of the inequality to
be proved on {(mn%)(uy) = (7f°)(vy) = 1V s > 0}, note that this event has
probability a? and then apply. Proposition 2.3. O

3. The contact process. We start this section with a lemma which can be
proved easily from the contents of [6, Section 9]. Details of this are left to the
reader.
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LEMMA 3.1. If A > X&), then the d-dimensional contact process satisfies

(a) 11’131 N 1|ng nP('T =ow)=1
and
(b) P(|£% > oo|t = ) = 1.

In the sequel for a fixed ¢, > 0, , &, will represent a Markov process evolving
as &, when ¢t €[0,¢,] and as 5, when t € (¢, 00). Again standard techniques
allow us to construct the processes 7,,,£, and £, on the same probability space
and in such a way that

P(ntc,tfcéf)=1 Vi=0VA.

It will be assumed that this construction has been used whenever a statement
involves two of these processes.

LEmMMA 3.2. Suppose l, > k, A > NP and ¢ > 0. Consider the ,{ processes
on Z4 X 7% and let T be the hzttzng time of @ for the contact process in
dimension 1, + 1, starting from {0}. Then there exists a t, > 0 such that

P(Bx € 2% such that (wtoif)(x) =1Vi= ¢t = oo) >1-—e
Proor. By part (b) of Lemma 3.1 |£,| — oo as. on {7 = 00}. Hence,

sup {|(x: (nE)() = Ulswp T &)} > o0 as.on (5= o).

x yelll

The lemma now follows from part (a) of Lemma 3.1. O

In the following proposition £, and ét are two independent copies of the
2k-dimensional contact process, both in the same probability space. The 7
processes appearing in the proof are the ones evolving on subsets of Z* x T, for
various choices of subsets I of Z*. As before 7 and # are two independent copies
of the n process.

PROPOSITION 3.3. Suppose A > X® and a > 0. Then there exist constants
M >0, d = d(a) > 0 and t, such that

. Fol M

inf P(¢5,n€5+2)=—
x,y€z?* t
lx—yl<at

forallt > t,.

‘PROOF. The statement to be proved is equivalent to: For some d > 0,

(3.4) liminf|¢* inf P(&5,N &+ 2)|> 0.

t x yeZ
lx—y|<at
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By Corollary 2.4, (1.4), (1.5) and the Markov property, we may assume
(changing the value of d) that %2 of the coordinates of x are equal to the
corresponding coordinates of y. Due to the invariance of the contact process
under translations and under permutation of coordinates, we may also assume
that these equal coordinates are the first £ and that they are equal to 0. Hence
the proposition will be proved if we show that Va > 0 there is a d > 0 (not
necessarily the same as in the statement of the proposition) such that

liminf| inf ¢*P(¢9® NEYY + @)| > 0.
t x,yez*
lx—y|<at

Again using the Markov property, we can see that this is implied by

liminf| inf ¢*P(£%%) N EYY + @) | >0,
t x,yez*
lx—y|<at
lx—yl€2Z
where 2Z is the set of even integers.
By (1.5) this in turn is implied by

(3.5) liminf[irlgft”P(nﬁ’;f*i) NG5 + @)] >0,
t

where we have adopted the following conventions which will hold throughout
the proof of this proposition: Once ¢ is fixed, I' runs over all subsets of Z* of the
form {x,,..., x,,} with n < at/2and |x; — x| = |i — j| forall ;, j € {0,...,2n},
and once I is fixed the n, and ), processes are the ones evolving on subsets of
Z* x T. Now take d > a/2\a and write

P((vrn(so’ *0))(x,) = 1 for some s < dt — 1)

> P[(wn‘so"‘O))(xn =1 for some s < dt — 1|(7q®*))(x,) = 1Vs > O]a
at
>[1 - P(N(dt-1) <n)]ax [1 - P(N(dt— 1) < ?)]a,

where the second inequality comes from Lemma 2.1 and N(¢) is as in Lemma 2.1.
From the previous inequalities we conclude that there is a ¢, which depends on a
but not on I or n such that

P((vrn(so”‘o))(xn) =1 forsome s < dt — 1) > g

for all ¢ > ¢,. From the independence of 7, and Z, (see the beginning of Section
2), it now follows that for ¢ > ¢,,
a2

P((7nG20)(x,) = 1) > 5
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The same argument applies to (779 *3)(x,,). Hence,
4

P((7n920)(x,) = (70%50)(x,) = 1) > 34-

for all £> ¢, and all n and T as specified previously. This implies that the
left-hand side of (3.5) is bounded below by

4
a
(3.6) llmmf [mftkP(n(O %) () 7% B £ g ICt,,)] s

where C,, is the event {(79{;*9)(x,) = (77Q;%3»))(x,) = 1}. For y € Z2* let
y+ B, ={z€Z%:|z—y| <r). It follows from (1.4), (1.5) and n < at/2 that
there exists R such that

(3.7) lim [irlng(ndt"O) c (0, x,) + By, and 79;*3" C (0, x,) + Bm)] =1.
t

Fix ¢ and let y,,..., yyq [U(¢) = 2[Rt] + 1)%, [ ] denoting integer part] be an
ordering of the elements of {y € Z*: |y| < Rt}. Then define

Y =09 (v x,),  1<i<U(2),
and
Y'-_ndtxml)(yn n,) 1 Sis U(t).

Now note that T is taken in such a way that the distance from x, to x, is » and
there is only one connected path in I' joining x, and x,. The same comment
applies to x,, and x,. It follows from this and the properties of the n process
that the random vanables Y,,..., Yy, have the same joint distribution as
Y,... YU( 1+ The same happens to the distribution of these random variables
after condltlonlng them on C,,. Note also that after this conditioning the Y;’s
remain 1ndependent of the Y S. .

Define i, = inf{i: Y, = 1) and i, = inf{i: Y, = 1} (by convention inf @ = A).
It now follows from (3 7) that for ¢ large enough,

U(2)

(38) Y Piy = ilC,,) = }
i=1
Therefore,
R U(t) 1
(3'9) P(lo = ZO # Alct,r) = ,'Zl P2(l0 llct r) = 4U(t) )

where the last inequality follows from (3. 8) and the Cauchy-Schwarz inequality.

Since (79,9 N 7%, %3 # &} D (i, = i, # A}, it follows from (3.9) that (3.6) is
bounded below by lim (tk/4U(_t))a4/4 > 0. Since (3.6) is itself a lower bound of
the left-hand side of (3.5), the proposition is proved. O

PROOF OF THEOREM 1.2. Write Z%¢ = Z%* X Z!, where ! > k + 1. By Lemma
3.2 and the Markov property, to prove (1.3) it suffices to show that for all
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u = (U, uy), v = (v, vy),

lim P(¢7 0 €7 = &|(7n3)(u2) = (74)(v,) = 1V 2 0) = 0.

By Proposition 2.3 this is implied by
lignP(g(“dH)t n é(od+1)t = g |AYY] > Ktl) =0,

where d = d(L) comes from Proposition 3.3 and L from (1.4) (A%* and K are as
in Proposition 2.3).
By (1.4) and (1.5) this is equivalent to

lim P(&f 1y 0 €y = 1 AP > Kt'and £ U € € By,) = 0.

Since &4+ 1): € §(a+ 1) it Will suffice to show that
(3.10) 1i§nP( Elrene Ny = @] |A%® > Kt'and §¢ U £ € By,) = 0.

Given |A%®| > Kt!, we have more than Kt' elements x in Z' such that
(méH)(x) = (wf;’)(x) = 1. Hence by Proposition 3.3 the left-hand side of (3.10) is
bounded above lim (1 — M/t*)X#, Since I > k + 1, this is 0 and the theorem is
proved. O

REMARK. It is possible to use a simpler version of Proposition 2.3 (the inf in
u and v can be deleted) and Griffeath’s necessary and sufficient condition (1.3) to
show that if (1.1) holds in dimension d for some A > A&, then it holds in any
dimension greater than d for that same A. We do not write this proof because it
will be similar to the proofs given in [11] and [12] although it avoids the use of
linear structures with right angles. In fact this paper benefitted from talks with
R. H. Schonmann concerning [11].

Note. Durrett and Schonmann [2] proved the following result for a discrete
time version of the contact process in two dimensions:

Let A®:* be the critical value for the system on the strip Z X {—&,..., k)
and observe that A® * decreases as & — co to a limit A*. Then if A > A* the
complete convergence theorem holds for the process on Z2.

Acknowledgment. I wish to thank the referee for his valuable comments
and for pointing out a mistake in the original proof of Proposition 2.3.
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