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CONDITIONING A LIFTED STOCHASTIC SYSTEM
IN A PRODUCT SPACE

By ANDREW CARVERHILL

University of Minnesota

We study the solution £, to an elliptic stochastic equation and the
solution (£,, 1,) to a lift of this equation, under a condition on the behaviour
of £,. We obtain a “conditional” equation which gives the conditional be-
haviour, and we use it to deduce a conditioned version of the
Stroock—Varadhan support theorem.

1. Introduction. In this paper we study the stochastic process
(¢,(w)x, n(w)y) in the product space U X R! (U an open domain in R™), which
is determined by the following pair of (Itd) stochastic differential equations:

(1) d(i,(w)x) = XN(gt(“’)x) dB,(w) + XD(§,(w)x) de,
(2) d("'lt("’)y) = YN(gt(“’)x’ "h(“’)y) dB,(w) + YD(gt(“’)x, "Tt(“’)y) dt,
(go(“’)x’ T’O(w)y) = (x’ y)'

Here B, is a Brownian motion on R”, X}, is a smooth map U - R™ and Yp, is a
smooth map U X R’ - R%. Also X, and Yy are smooth maps U X R” - R™
and U X R! X R™ - R, such that for each (x, y) € U X R/, the maps Xy(x):
R™” > R™ and Yy(x,y): R® > R’ are linear. Also w is an element of the
probability space (2, #, P) which corresponds to B,.

One would perhaps more usually write Xy(x)dB, and Yy(x, y)dB, as
T Xi(x)dB} and T Yy (x, y) dB, where Xk (x) = Xy(x, e;) and Y (x, y) =
Yy(x, ¥, €;), {€5,---,e,} being the standard basis in R” and B},..., B" being
independent Brownian motions in R. Thus X, and Y, are the collections of
“noise” vector fields for (1) and (2), and X, and Y}, are the “drift” vector fields.
We will assume that the process (£,(x), n(y)) is nonexplosive for all (x, y) €
U X R! and that (1) is elliptic, i.e., for each x € U, the linear map X,(x):
R”™ - R™ is surjective (this implies n > m.)

Given the equation (1), the equation (2) might arise as a “lift” of (1); for
example, we might take Yy(x, y) = DXp(x)y, Y(%, ¥) = DXp(x)y, which will
give n w)y =[Dé(w)x]y (see [4] and the references therein). This is our
motivation for studying (1) and (2). Notice that (1) is autonomous, i.e., it
determines its solution by itself, but (2) is not.

Our aim is to study (for given T > 0, x,, x; € U and y, € R’) the process
(¢ (w)xy, n(w)y,) when we impose the condition that £;(x,) = x;. The be-
haviour of £;(w)x, under the condition is well known and is studied by
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considering the solution £7(w)x, to the equation
dgir(w)xo = Xn(£77(w)x,) dBy(w)
+Xp(£7(w)xo) dt + A(§57(w)x,) dt,

where A,(x) = v, log pr_(x, x7) and p(x, y) is the transition density associ-
ated with £,(x). In Section 2 (Theorem 2.1) we show that the conditioned
behaviour of (£,(x,), n,( %)) is given by the solution (§*7(w)x,, n*7(w)J,) to the
pair of equations (3) and the following:

dnir(w)y = Yn(£5(w)xo, m7(w) %) dBy(w)
(4) +Yp(£57(w)xo, m7(w) %) dt
+A~t(£?(‘*’)-"o» ’ﬁT(“’)yo) dt,

where A,(x, y) = Yn(x, y)o Xy'(x)° A(x). Here by Xy'(x) (for x € U) we
mean the inverse of the linear map X,(x), chosen with range equal to the
orthogonal complement of the kernel of X, (x). Using the fact that this comple-
ment is the image of the adjoint X, (x)* and that this adjoint is injective [since
Xp(x) is surjective], we can easily deduce that our choice of Xy'(x) is smooth.
Equations (3) and (4) become singular as ¢ — T, and Theorem 2.1 only tells us
about the conditional behaviour over a time interval [0, T — 7] (any 7 > 0). In
Section 3 we show that the process (£/7(x,), n7( %)) is nonexplosive in spite of
this singularity in (3) and (4), and we deduce (Theorem 3.3) that (£7(x,), 777( %))
gives the conditional behaviour over the whole of [0, T']. Then we use (3) and (4)
to show that given a local boundedness condition on Yy, Yy, the measure given
by the conditional process is weakly continuous in x.

In Section 4 we use the conditional equation to deduce (Theorem 4) a
conditional version of the Stroock—Varadhan support theorem (see [8] and [9]).
This characterises the support of the conditional measure in a control-theoretic
way, as in the usual support theorem, but with a corresponding condition on the
controls.

The work of this paper is easily adapted to dealing with the solution to a
stochastic dynamical system on a smooth finite-dimensional manifold and a lift
to a smooth finite-dimensional fibre bundle. To do this, one can either embed the
manifold in a Euclidean space or work in local charts (see [4]). [Note that for this
formulation, the equations corresponding to (1) and (2) must be Stratonovitch.]
In [3] we give an application of the conditioned support theorem in a manifold
formulation.

(3)

2. The equation for the conditioned process. First we establish some
notation. Throughout, we will restrict attention to the time interval [0, T'], and
we will take the probability space (2, #, P) to consist of (Borel) sets of
Brownian paths in R” which are measurable over this time interval. For
r € [0, T] we will denote by Fj_, the o-algebra up to time T'— 7 and by Pp_,
the measure P restricted to Fy_,. (Thus P, = P) We will abbreviate the
solution (£,(w)xg, 1(w)¥) of (1) and (2) to G{(w)v, [With v, = (x4, ¥%)], and
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the solution (£i7(w)xq, 1i7(w)),) of (3) and (4) to G&f7(w)v,. This notation
emphasises that G£}(w)v, is a lift of £,(x,). Denote by [£(P)x,] and [GE(P)v,]
the measures induced from (2, #, P) on the spaces C([0, T],U) and C([0, T'],
U X R™) by the maps w — {Patht - {(w)x,} and w — {Path ¢ —» G§{(w)v,)}
and for 7> 0 take [£™7(Pr_,)x,],[G&§*"(Pr_,)v,] to denote the -corre-
sponding things. [Note that we must work to show that these are defined for
=0 because (3) and (4) become singular as ¢ — T.] Finally, denote by
[E(P)xolér(xo) = x7] and [GE(P)oyltr(x,) = %;] the measures [£(P)x,] and
[G&(P)v,] conditioned on the event §,(x,) = x,. These conditional probabilities
are defined up to a pr(x,, —)-null set of x;’s, or equivalently [since (1) is
nondegenerate] up to a Lebesgue-null set of x,’s in U.

THEOREM 2.1. Take 7 € (0,T]. Take x, € U, y, € R! and put (x,, y,) = v,-
Then up to a (Lebesgue) null set of x;’s in U, we have

@) [¢(Pr_,)xolér(x0) = 7] = [£77(Pr_,)xo],
(ii) [Gg(PT—T)Uolgr(xo) = xT] = [ngT(PT—‘r)UO]'

Proor. (i) This is well known. See [5].
(ii) Replace (1) and (2) by

dé,(x,) = XN(gt(xO)) °Proj * (st(xo)) dB;*

(5)
+XD(§t(x0)) dt,
dn,(y) = YN(gt(xO)’nl(yO))
(6) ° [Proj ! (gt(xo)) dB/' + Proj * (gt(xO)) dBtl]

+ YD(gt(xO)’ n( yo)) dt,

where Proj* (x) and Proj"(x) (for x € U) denote orthogonal projection in R”
onto ker Xp(x)* and ker Xy(x), respectively, and B,*, B,)' are independent
Brownian motions in R” It is clear that the solutions of (5) and (6) have the
same distributions as those of (1) and (2). Now (5) enables us to write dB,* [or at
least is component in ker X (£,(x))*] in terms of d§,(x,) and to eliminate dB,*
from (6) to obtain

dn(%) = YN(gz(xo)’ "It(yo))
(7) ° [Proj ! (gt(xo)) dB,' + X;,l(ﬁt(xo))(dgl(xo) - XD(gt(xO)) dt)]
+ YD(gt(xo): n4( yo)) dt.

Equation (7) shows how 1,(y,) is driven by £,(x,) (as a process in U € R™ with
measure [£(P)x,]) and the independent Brownian motion B,". The solution to
(7) is a map ¢: C([0,T — r],R™) x C[0, T — r],R™) - C([0, T — 7],R"), de-
fined up to a P, ® [&(Pf ,)x,]null set and which gives ¢(Pp_, ®
[E(PF—)x0)) = [GE(Pp_,)v,). (Here P" and P+ denote the probabilities associ-
ated with B," and B,*.) .
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Now if we fix y € C([0, T — 7],R™), then from the preceding we see that the
map ¢, = ¢(-,v): C([0, T — 7],R™) = C([0, T — 7],R’) sends P;_, to the condi-
tional measure [GE&(Pr-,)voléx(xo) =, for ¢ €[0, T — 7]] (This is true for
[£(Pf-,)x,] ae. 7.) Note that by the substitution result of [6], Chapter 3,
Proposition 4B, we can recover (6) by substituting for d§,(x,) in (7), using (5).
Now suppose we change the measure [£(P;-,)x,] to the equivalent measure
(677 (Pr_)xo] = [E(Pr,)xolér(xo) = x7] [see part (i) of the result.] Then
[GE(Pr-_,)vplé(xy) = v, for t [0, T — 7]] is still given by (7), but to get
[GE( Py, )volér(x,) = x7], we must now substitute d£;7(x,) instead of d£,(x,)
in (7), where d§;7(x,) is given by the following, which is equivalent to (3):

d§77(xo) = Xn(§77(%0)) o Proj* (77 (o)) dB,*

+Xp(£57(x0)) de + A,(£7(x0)) .

(8)

Making this substitution yields an equation whose solution has the same distri-
butions as (4), and the result follows. O

COROLLARY 2.2 (Girsanov transformation to get conditioned probability).
Take 7€ (0,T). Take x4, xy € U, y, € R! and put (x,, y,) = v,. Define the
probability Pfr _ on the measurable space (2, Fp_,) by

X7
T—r

dPp_, (0) = eXp{LT_T<Xﬁl(§z(w)xo) ° At(gt(‘*’)xo)’ dB,(w))

~ 5 [ IR 6 )x0) Aol at,
where X3! is chosen as in (4). Then
(i) [6(Pfz,)xo] = [67(Pr_,)x,],
(ii) [G&(Pfz,)vo] = [GE(Pr_,)vo].

Note. Part (i) of Corollary 2.2 is well known and any (measurable) choice of
X' will do for this. But to get part (ii) we must use the previous choice of Xy

3. The conditioned measure over the time interval [0,7'). In this sec-
tion we will show that under the condition that |Yy(x, y)|,|Yy(x, y)| are
bounded for (x, ¥) € VX R!, where V is compact in U, the solution
(&57(x0), M57( ) to (3) and (4) can be defined over the time interval [0, T'] in
spite of the fact that they become singular as ¢ = T, and that they give the
conditional probabilities as in Theorem 2.1, but over [0, T']. Our technique is first
to give an estimate (Lemma 3.2) concerning |£,(x,) — x7| given &p(x,) = xp,
which allows us to show that £57(x,) = x; in a nice way, and then that (4) is
nonexplosive. Note that our work applies to (£57(x,), 157(,)) for every x, € U.
With this definition, we show that the conditional probability is weakly continu-
ous in x.
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Note that we can define [£(P)x,|ép(x,) = x7] for each x, € U as giving the
probability

X1

——— [ pEe 8Py (5 w)
—_—_— “es Xo, X _(x,x
pT(x(), xT) +,<B, EBlptl 0> 1 ptz H\ 1 2

Xoeee XpT—tq(xq’xT)dxl e dx,

to the cylinder set
{vec([0,T]U): v, € Bfor0<t; <t,< --- <t,<T}.

Also it follows from [2], Proposition 2.5, page 69, that with this definition we
have [{(P)xy|ér(x,) = xp] = [£*7(P)x,], although we will obtain this indepen-
dently.

We will make much use of the following estimates.

Suppose we have a (nondegenerate) stochastic equation

9) d§,(x) = ZN(ft(x)) dB, + ZD(ft(x)) de, So(x) = x,

in an open domain D in R™, with corresponding transition densities pZ(x, y).
Suppose there exists N, such that the system is uniformly elliptic in D with
bound N, i.e,

sup {(N[Zy(x)Zy(x)*] 7l < Ny, 1 Zxllcz < Ny, 1 Zplice < Ny}
xe

Then given a closed domain V in D, there exist c,,..., ¢z > 0 such that for all
x, y € V, we have

(10) c,t™ %exp(—cylx — y|2/t) < pZ(x, y) < cst™ ™ %xp(—c |x — y%/t),
(11) IV, pZ(x, y)| < cst™™ 2 V2%exp(—cglx — y|2/t).

In fact, we can choose c,,..., cg uniformly given D, V and N,. [For (10) see [1];
for (11) see [7].]

LEMMA 3.1. Take a strictly increasing continuous function F: [0,1] > R=°,
which is bounded by 1, and is such that F(t) = (tloglog t ')/ forsay t < 1/e®.
Take N, > 0, 6 > 0, R > 0. Then there exists N, > 0 for which we have the
following: -

If we have a stochastic equation that is uniformly elliptic in R™ with bound
N, and solution (starting from x) denoted by {,(x), then, given z,, z, in R™ with
|2, — 20| < R, we have

P{I$,(29) — 2| < NyF(1 —¢) forallt € [0,1]i$,(20) = 2,} =1 - 6.

PRrOOF. (1) Note first that we have p > 0, depending only on N, such that
P{|¢,(x) — x| <2F(¢) fort € [0,p]} = (1 - 8).

This is an easy consequence of the law of the iterated logarithm.
(2) From [2], Section 2, we see that the distribution of {,(z,) given {(2,) = 2,
is the same, with time reversal ¢ - 1 — ¢, as the distribution of the adjoint
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process ft(zl) given fl(zl) = z,. If {,(x) is given by (9), then f,(x) is given by
dft(x) = _ZN(ft(x)) dﬁt - ZD(ft(x)) dt

(Bt—Bro‘ynian motion, independent of B,), and the conditioned distribution is
given by {7°(z,), where

dfo(z,) = —2Zy(§2(2,)) dB, — Zp(§72(2,)) dt + A2 ($7(2,)) dt,

where p#(x, y) is the corresponding transition density to ft(x), and AfO(x) =
Vxlog ﬁf—t(x: 20)'

Now (10) and (11) yield that there exists N; > 0 such that for |z, — 2)| < R,
lx — 2,| <1, t €[0,1], we have |A{(x)| < N,. Therefore we can apply part (1)
of this proof (with N, replaced by N, V N;) to yield that there is p > 0 such that
for |z, — 2;| < R, we have 2F(p) <1 and

P{|$,(20) — 21| <2F(1 — t)fort e [1-0,105:(20) = 2.} 2 (1 - 8).

(3) Given N > 0, denote by pN(x, ¥) the density of the transition probability
given by

pN(x, dy) = P{{,(x) € dy and [{,(x) — 2| < Nforall s € [0, ¢]}.
[Thus pN(x, y) corresponds to killing the process when it exits from the ball
B,(N) at z, of radius N.] Using (10) and the fact that

ptN(x’ y)=pt(x’ y)_f ps(z’ y)d”(s’z)
(s, 2)€[0, t]1XIB,(N)

[where the measure » gives the exit time and position of {(x) from B,(N)], we
see that there exists N, such that

pflip(zo’ y) = (1 = 8)p;_,(2, y) if|ly—z| <landl|z, — 2| < R.
Let us make the following abbreviations:
AY: {I8(20) —z| < Nforte [0,1-p]},
B,: {I8,(20) — 2| <2F(1 — ¢t) fort € [1 - p,1]},
Dy: {§_,(20) € dy},
C: {$1(20) = 21}

Then we have

P(AMnB|C) = fy L (I)P(Af,v4 n Dy N B,C)

= [ P(AYnDYC)P(B,A) N D,N C)
yYE€B,(1)

= f pY (20, y)P(D?|C)P(B,D? N C)
YEB, 1)

[Note P(B,JAN N DY N C) = P(B,|D} N C) because A} and B, are indepen-
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dent, given D;.]
>(-p)[  pi_,(2, y)P(D}IC)P(B,D; N C)
y€B,()

= (1 - )P(B,C)

> (1 -8)%

by part (2).
The result follows [with (1 — &) replaced by (1 — §)?] taking N, > 2 and such
that N,F(1 —p) =2 N,.O

LeMMA 32. Take 6§ >0, R >0, xp € U. Then there exist N, > 0, 7, > 0
such that for any v < 7, we have the following:
If \xp_, — x7| < 7V?R, then

T-t
P{IgT—-'r,t(xT—'r) - le < 71/2N2F(——.)
T

forte [T -, T)ér_, r(2r-,) = xT} >21-4.

[Here by &r_, (xr_,) we mean the solution to (1) starting from xr_, at time
T-17]

Proor. (1) Take a closed ball in U, centered at x;, of radius say r > 0.
Extend the coefficients Xy, X, of (1) from this ball [denoted B,(x;)] to all of R™
[and denote them again by X, X, and the associated solutions by £,(x)] so that
they make up a system which is uniformly elliptic with bound say N,. Now take
any t € (0, T A 1] and consider the scaling transformation

O"R™"X [T-7,T]>R™x[0,1], (x,¢)> (7Y%, 77 Y(t—-T)+1).

Take x € R™ and put y = 77 '/%x, Then the process {}(y), which is defined as
¢£7_, {(x) transformed via O, satisfies the equation

d(§1(y)) = X3(&(y)) dB; + Xp(1(y)) dt,

where X7 (2) = Xn(1V%), X}(2) = 7/2X,(7Y/%2) and B (w) =
77 Y2B 1 _1)+.{w), 50 that (at least as far as its increments are concerned) B; is
again a Brownian motion. Thus £](y) is the solution of a stochastic equation
which is again uniformly elliptic with bound N,, and so by Lemma 3.1 there
exists N, > 0 such that if |y, — y,| < R, then

P{|f:(yo) -l < N,F(1 - t)fort € [0:1]|§I(yo) = y1} >1-3.

But this probability must be the same as that of the statement, by the
correspondence induced by the scaling 07,
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(2) Using the technique of the proof of Lemma 3.1, we can show that
independently of the extension of X, X, beyond B.(Xy), we have

sup P{|§T—7,z(x7‘—7) = Xq| <r/2

{lxr—,—xr|<7/°R}
forte [T—1,T]ér_, r(x7_,) = xT}
-1 ast—0.
Let us make the following abbreviations:

{gé'—'r, t(xT—'r) - le < r/2 fOl' te [T -7, T]} = R:y
{g;—T,T(‘xT—‘r) = xT} = CiT’

. T-1t
lih-.. ez = xa < 7 NF| == |} = B
' T
Here £, £2 correspond to two extensions of Xy, X;, beyond B (x7). Note that if
T < 1/N2, then B} C R? and that P(B]|C] N R7) is independent of i. Also
P(B;|C7) = P(B]|C; N R})P(R;|CT).
From the preceding we see that we can find 7, > 0 (with 7, <1 A T A 1/Ng)
such that for 7 < 7, we have P(R}|C{) > 1 — 8. Thus
P(B]|C7) < P(B]|C N R}) < (1 - 8)"'P(BICY),

and it follows that the estimate of part (1) depends only on the uniform
ellipticity over B,(xr), if 7 < 7, and we throw in an extra factor (1 — 8)% 0O

THEOREM 3.3. Assume that the coefficients Yy(x, ¥), Yp(x, y) of (2) are
bounded over sets V X R', where V is a compact subset of U. Take x,, x; € U,
X € R’ and put 0y = (X9, Jo)-

() Then G&7(vy) [= (£57(x0), 17( Yo))—the solution of (3) and (4)] tends
a.s. to a limit as t > T, which lies in {x;} X R’ and which we will denote by
G&r(vy) [= (2, 157(%))]- Thus we can define the measure [G&*7(P)v,] as that
induced from (2, %, P) via equations (3) and (4).

(ii) We have

[ngT(P)”O] = [Gé(P)DO|§T(x0) = xT]’
whenever this RHS is defined, i.e., up to a null set of x;’s.

ProoF. (i) (1) Take & > 0 and R > 0 sufficiently large so that for 7> 0
sufficiently small, say = < 7,, we have

P{|§T Ax0) — x| < 71/2R|£T(x0) = xT} >1-286.

Take N,, 7, as in Lemma 3.2. We will show that, assuming the behaviour of
Lemma 3.2 and takmg TSHAT AT, where 7, is such that B,(x;) c U for
r = 1,/2N,, then G&~, (vr_,) is a Cauchy sequence for vy_, = (X7_., Yr.)
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|xp_, — %7| < 7?R and any y,_, € R. It will then follow that GEr(vp)
is Cauchy with probability at least (1 — 8)2. [Here G¢r-, (op_,) =
(77, (xp_.), M. {¥r-.)) is the solution to (3) and (4) starting at v,_, at time
T-1] ’

(2) Taking ¢t € (0, 7, A 7] and any 7’ with 0 < 7/ < 7, we see by Theorem 2.1
(with x,,[0, T'], 7 replaced by x;_,,[T — 7, T], 7’) and Lemma 3.2 that

‘ P{QT—‘I',T—T'} >21- 8’
where
T-t

Qr 7.0 = {lg;r—r,t(xT—f) = Xq| < "'1/2N2F( ) forte [T-+,T- ""]}~

Since Q7_, r_,. decreases as 7’ increases, we can deduce from this that

t
(12) |§;T-f, xr_,) — 27| < "'1/2N2F(T) fort e [T -, T),

with probability at least 1 — &, and thus &7, (%7_,) = x; as ¢t > T, with
probability at least 1 — §.

(3) We show that taking 7 < 7, A 7, A 7, and assuming (12), Nrr {Yr_,) is a
Cauchy sequence a.s. From (4) we have

¢ xr X
n.;'r_.,, t( yT—'r) =Yr-- + ‘/;_‘_ YN(gT—r, s(xT—'r)’ nTT_,,-,s(yT—-r)) st

t

13 + YD ;'T—'r,s(xT—‘r)’n;‘T_.,,s(yT—'r) ds
T-1

b [ A (e, () ds,

where A (x, ¥) = Yy(x, y)o Xy '(x) A(x), with A (x) as in (3).
Put

sup (| Yy (x, ¥)I, 1 Yp(x, Y)I, | ¥y(x, y)o X3'(x)} = N,

lx—xr|<13/2N,
yeR!
and denote the last three terms in (13) by a(", a{, a{®. Then since £77, (x,_,)
does not escape from B,(xr), assuming (12), we see that a{, a{® are Cauchy.
To deal with af?, take N;, N, such that for |x — x;| < r we have |A (x)| <
Ny(T — s)™"/%exp{N,|x — x,|>/(T - s)}. [We see from (10) and (11) that such
N;, N, exist.] Then, assuming (12), we have for T — 7/e® < t < r < T that

r -1/2
laf® = af® < NN, [ (T = )7

(14) Xexp{N;rNé"(?){loglog( = T s) (T - s)} ds

r T N3N,
- NlNaft (T - s)_l/z{log( o s)} T ds.
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Now take n > 2N2N, and take Nj such that log ¢ < N;t~'/* for ¢ < 1/e".
Also put « = 1 — NZN,/n and note that a € (0, ). Then

(14) < N,N,N; /t (T - s)* 'ds = —N,N,N;[(T - 5)°/a]._,,

and we see that assuming (12), a{¥ is Cauchy.
(ii) This follows immediately from part (i) and Theorem 2.1. O

LEMMA 34. Take ¢>0,8 >0, R>0, xp € U. Assume Yy, Y}, are locally
bounded as in Theorem 3.3. Then there exists 7, > 0 such that if T < 75, then for
any (Xp_,, ¥p_.) (= vp_, say) in U X R™ with |x;_, — x7| < 7'/?R, we have

Pl s (GEL, (or) —or | <e21-0.
te[T-7,T]
[Here G&7~, (vr_,) = (§17., (*7_.), Wi, (Yr_,)) is the solution to (3) and (4)
starting from time T — 1.]

Proor. Take 7,7, Ty, Ny,..., N5, @ as in the proof of Theorem 3.3(i). We
will show that it suffices to take 73 such that

() 73 < e28/N2,

i) Nyry < &,
(iii) 173/2N,Ngexp{N;N,e¢} + (1/a)Ny(7;/e®)* < ¢,
(iv) Nyri/2 <e, 13/°R < e.

So take 7 < 7; and assume (12). Then from condition (iv) on 7, we see that
SUP, e (7—r, 71l€1 s, (Z_,) — Xp_,| < 2¢. Take af’, a{?, af? as in the proof of
Theorem 3.3(i). Then condition (ii) yields easily that sup,cr_, rla{®| < e.

Also, using condition (iii), we have

a® < NN [* (T - )" exp{ N, N /(T ~ 5)} ds
T-1
< exp{N22N4e"’}fT (T—-s)2ds <e,
T-7
ifte[T—+,T— 7/e°], and

la®| < N;N, fT T_"/ “(T - )" 2exp{N;rN2/(T — s)} ds

(T - s)‘l/“’{log( i )}szmds
1-s

1 1 T\
< 571/2exp{N22N4e"’} + ;N5(;)

T

+N,N, fT e

<&,

if te[T - /e T]
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Thus, assuming (12) and using (13), we have

P{ sup "1T T, t(yT 'r) _yT—Tl =< 48}
te[T-1,T]

> : }

= P{ ze[i‘liI:,T] L’—TYN( T, s(xT ) ﬂT_, s(}’T f))

Assuming (12), we have |£7°, (x7_,) — x7| < 137N, for s € [T — 7, T], and
this last probability is unaltered if we set Yy(x, y) equal to 0 for |x — x| >
73/2N,. Altering Yy in this way, we have |Yy| < N, and hence, using the
martingale inequality, we deduce that this last probability [not assuming (12)] is
at least 1 — 8. Thus the probability that (12) is true (and hence this inequality),
and that the event of this last probability is true, is at least 1 — 28. This gives
the result, with ¢ and § replaced by 4¢ and 26. O

THEOREM 3.5. Assume Yy, Y, are locally bounded as in Theorem 3.3. Take
%o, X7 € U, y, € R! and put (x,, ¥,) = v,. Take e > 0, 8 > 0. Then there exists
p > 0 such that if |x; — xf| < p, .

P{w: sup |GE(w)vy — GEF(w) oy < e} >1-3.
te[0, T]

COROLLARY 3.6. If Yy, Y, are locally bounded as in Theorem 3.3, then for
each vy € U X R!, the measure [G£*7(P)v,] is weakly continuous in x.

PROOF OF THEOREM 3.5. Take R > 0, 7, > 0 such that if 7 < 7, then
P{|¢7- (xo) — x7] < 7V?R} > 1 - 8.

Also take 7; as in Lemma 3.4. Then for 7 < 1, A 7; we have

P{w: sup |GEFT(w)vy — Gépm (w)oy| < s} >1 - 26.
te[T-1,T]
Now note that we can make all our estimates locally uniform, and hence we
can choose 7, > 0 and a neighbourhood W of x; such that for 7 < 7,, x; € W,
we have

P{w: sup |GEF(w)vy — GEXE (w)vy| < e} >1-26.
te[T-r,T]

The result follows (with ¢, 8 replaced by 3¢,58) from this and Theorem 3.5
itself, but with “sup,c( r)” replaced by “sup,c(o 7—,;”—this is a standard
result because the coefficients of (3) and (4) are continuous in x, for t €
[0,T-1].0

Note (Removing the local boundedness condition of Theorem 3.3 on Yy, Yp).
Suppose that instead of this condition, we merely assume that G£,(v,) is
nonexplosive. This means that P{sup, ¢ o, 71lG§:(v)| < o0} = 1 and implies that
for a.e. x;, we have

(15) P sup [GE,(0o)] < oolér(%,) = xr) = 1.
tel[0,T]
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Now choose M > 0 and truncate Yy,Y), off the set {(x, y): |y| > M}, i.e., alter
them so that they are locally bounded. Then the preceding results do hold for
the truncated systems, and moreover the alteration does not affect the solutions
to (1) and (2) and (3) and (4) if we kill them on exiting from {|y| < M}. Letting
M — o0, we deduce that for x, such that (15) holds, (3) and (4) do not explode as
t —» T. The truncation technique also enables us to prove Theorem 3.3(ii) for x
such that (15) holds, merely assuming that G£(v,) is nonexplosive.

4. A conditional version of the Stroock-Varadhan support theorem.
This theorem applies to Stratonovitch equations, therefore we must convert (1)
and (2) to Stratonovitch form when giving the action of the controls. So do this
and denote the new drifts by X,, and Y. Also denote by C the space of piecewise
smooth maps (“controls”) [0, T] - R™ For ¢ € C and (x, y) € U X R’ denote
by (£,(c)x, n,(c)y) the solution to the pair of time dependent, ordinary differen-
tial equations

dgt(c)x = XN(ét(c)x)ét dt + XD(ét(C)x) dt,

dn,(c)y = YN(ﬁt(c)x, "h(c)y)éz dt + YD(ﬁt(c)x, m(c)y)‘dt.

The control ¢ here stands in place of the noise in (the Stratonovitch form of) (1)
and (2): One thinks of choosing a control ¢ to steer the solution along a desired
path in U X R%

THEOREM 4.1 (Conditioned Stroock-Varadhan support theorem). Take
(%9, Yo) = vy € U X R Then for all but a null set of x;’s in U, we have

(16) Support[Gé(P)vO|§T(x0) = xT]
= Closure[G¢(c)vy: ¢ € C, £,(c)xy = x7].

Proor. (1) First assume Y, and Y), are locally bounded as in Theorem 3.3.
Take x; € U. We will prove the result with [G&(P)vy|ér(xo) = x7] replaced by
[GE™(P)v,].

(2) Here we prove “ C .” So take a path y in the LHS of (16). Take ¢ > 0. We
will find a control ¢ such that £,(c)x, = x7 and sup, ¢ o 7{|v; — Gé(c)vpl} < e.
The idea is to find ¢ over the time interval [0, T — 7] for suitable 7 > 0 using the
usual support theorem and then to steer the solution to x, over the time interval
[T—-1T] _

Take r < € such that the closed ball B,(x;) lies in U and put

Ny= sup {|[Yn(x, y)o X5'(2)ll, 1¥pll, 1 Xpll, 1}
|x—xp|<T
yERl
Take 7 > 0 such that 7 < e¢/6(N, + N?) and sup, ¢ (r—,. 71{|Y; — Yr-.} < ¢/6N,.
Take a control ¢™: [0, T — 7] » R™ such that

sup  |G£,(c")vy — v < &/BN,.
tel[0,T—-7]
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Then
|ér_.(c7)xg — 27l(= p say) < |&r_,(c")xo — 7(vp_,)| + |7(¥r_,) — 27|
< ¢/3N,.

We will extend c” to c: [0, T] —» R”" so as to steer £,(c)x, along the straight
line a: [T — 7, T] - U (with constant speed p/7), such that a;_, = &,_.(c")x,
and ar = x7. To do this, simply put ¢y =c¢; for t€[0,T — 7], and ¢, =
Xy a)d, — Xp(a,)) for t € (T — 1, T

With this choice of c,,

4% _ y (ne)m)e (X (d ~ )] + Tolnde)),

for t € [T — 7, T], and the speed of n,(c)y, is bounded by (p/7)N, + N2 + N,.
Thus

sup  {|G¢,(c)vy — Gér_,(c)vgl} < N, + "'(N12 + Nl)
te[T-1,T]

<e/3+¢e/6=¢/2,
and we have for ¢t € [T — 7, T] that
|G£,(c)vo — v < |GE,(c)vy — Gér_,(c) vy
+1Gér_(c)vg = Yr—o| + l¥r—r — ¥
< 5¢/6.
(3) Here we prove “ > .” So take a piecewise smooth control ¢ such that
¢r(e)xg = xp. Take ¢ > 0. We will show that

(17) P{ sup |GEx(v,) — GE()ng| < 3e} > 0.
te[0,T]

Take R > 0, § > 0 and then take 7; as in Lemma 3.4. Take K such that
|G¢,(c)vy — GE,(c)vy| < K|t — s| foralls,te [0,T].
Finally, take 7 > 0 such that 7 < 7,, 2K7 < 7//?2R, K7 < e. Now if vy_, satisfies
|DT—‘r - GsT—T(C)Uo| < KT’ then putting Op_, = (xT—ﬂ yT—‘r): we have
|xT——r - le < IxT—‘r - gT—‘r(c)xol + IgT—‘r(c)xO - xTI < 2Kr < TI/ZR,
and by Lemma 3.4 we have
P{w: sup |Gp_, (w)op_, —ovp_,| < e} >1-386.
te[T-+,T]

Therefore, with probability at least 1 — 8, and uniformly over ¢t € [T — 7, T'], we
have

Ith(c)DO - G£T—‘r, t(w)vT—rl
< |GE(c)vy — Gép_(c)vy| + |Gép_.(c)vy — vp_,

+lop_, — Gér_, (w)op_,|
< 3e.
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The estimate (17) now follows taking v,_, = G&7~ (w)v, in the preceding
and considering the following, which is the usual support theorem:

P{w: sup |GET(w)vy — GE(e)vy] < Ka-} > 0.
te[0,T-r]

(4) To remove the local boundedness condition on Yy, ¥y, apply a truncation
argument, as in the note at the end of Section 3. O

Note. A control system is naturally associated with a Stratonovitch stochas-
tic equation and the usual Stroock-Varadhan support theorem is most conve-
niently formulated for Stratonovitch equations. However, it seems that we must
have an Itd system in order to do the analysis of Section 3. Also it does not seem
sensible to study the control system associated with equations (3) and (4) even in
their Stratonovitch form.
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