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NECESSARY AND SUFFICIENT CONDITIONS FOR ALMOST
SURE CONVERGENCE OF THE LARGEST EIGENVALUE
OF A WIGNER MATRIX

By Z. D. Ba1 aAND Y. Q. YIN!
University of Pittsburgh and University of Arizona

Let W= (X;;; 1 < i, j < o) be an infinite matrix. Suppose W is symmet-
ric, entries on the diagonal are iid, entries off the diagonal are iid and they
are independent. Then it is proved that the necessary and sufficient condi-
tions for A, ((1/Vr)W,) - a as. are (1) E(X;)? < o0; (2) EX{ < oo;
3) EX;, < 0; (4) a =20, 02 = EXZ.Here W, = (X;; 1 < i, j < n).

J

1. Introduction. We will call matrix W= (X;;) a Wigner matrix if it
satisfies the following conditions:

(1.1) symmetric;

(1.2) entries above the main diagonal are iid random variables;
(1.3) entries on the diagonal are iid random variables;

(1.4) diagonal entries are independent of nondiagonal entries.

Wigner (1958) studied this kind of random matrix. He established the semi-
circle law. Juhasz (1981) and Fiiredi and Komlo6s (1981) studied the asymptotic
properties of the largest eigenvalues for symmetric random matrices. They
assume the existence of moments of all orders. Sometimes they assume the
uniform boundedness of entries.

In this paper, we confine ourselves to Wigner matrices and get the necessary
and sufficient conditions for the convergence of the largest eigenvalue of a
Wigner matrix.

Throughout this paper, we assume the following conditions are true. W =
{X;3 1<i< o, 1<j< o0} is an infinite matrix satisfying (1.1)-(1.4). And
W,=(X;;1<i<n,1<j<n)isthe n X n submatrix of W. The n eigenval-
ues of a symmetric n X n matrix A will be denoted

M(A) 2 A,(4) > -+ 22 ,(4).

Sometimes we write A, (A) instead of A,(A).
The main purpose of this paper is to prove Theorem A.

Received March 1987; revised February 1988.

'Work of this author partially supported by NSF Grant DMS-87-03090.

AMS 1980 subject classifications. Primary 60F99; secondary 62E20.

Key words and phrases. Random matrix, Wigner matrix, largest eigenvalue, semicircle law.

1729

j
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )20

The Annals of Probability. RIKOAN

WWw.jstor.org



1730 Z.D.BAI AND Y. Q. YIN

THEOREM A. M\ ((1/Vn)W,) tends to a finite constant a as n — oo with
probability 1, if and only if

(1.5) E(X};)? < oo;
(1.6) EX{, < 0;

(1.7) a = 2o, o2 =EX2;
(1.8) EX, <0.

2. Some graph theory. In order to prove Theorem C of Section 3, we need
some graph theory. Let e,,..., e,, be edges, v, v,,..., vy, be vertices. v; is the
initial of e; and v,,, is the terminal of e;, i = 1,...,2k, but we define v,,,, = v,.
We also assume v; # v;,, for i = 1,...,2k. Sometimes we write v;v;,, instead
of e;.

If two sets {v;, v;,,} and (v}, v} are equal, we say that e, and e; coincide.
But the edges are always regarded as distinct, even if they are coincident.

A sequence {e,, e, 1,..., e,} of consecutive edges is called a chain. Sometimes
We use 0,0, *** Uy, to denote a chain; it is just the chain {e,, e,.,..., e;)}.
If in the chain v,0, --- v,, an edge e, (@ < b) does not coincide with any

other edge in this chain, then we say that e, is single up to v,. If v, , is distinct
from v,,..., v, we say that e, € T or e, is an innovation. If e, is single up to
v,41 but e, & T, we say that e, € T,. If e, € T, and e, (b > a) is the first one
which coincides with e,, then e, is said to belong to T}. T, is the complement of
T,UT,. S0, T,cT,.

LEmMa 2.1. Letl<a<b<e, V40, ., be single up to v, and v, = v,. Then
in the chain vy, | -+ v, there is a T, edge. If in addition we also have

(2.1) v, = v, = v,

(2.2) v,_10, € T}, single up to v,,

(2.3) inv, - v, there is no T, edge, single up to v,,
then the first edge v,_,v, with ¢’ > b + 1 and v, = v, is a T, edge.

PrOOF. We assume ¢ > b + 1. Otherwise, e, € T,. Let v, be the first vertex
with ¢’ > b + 1 and v, = v.. We assert that v,_,v, € T,.

At first we see that v,_,v, cannot coincide with any edge in the chain
O0pi1 *** Uy If it is single up to v, it is already in Tj,. If v, _ v, coincides
with an edge in v, --- v,, then vw,,, --* v,_, is in the same situation as
vy -+ v, but with shorter length and induction hypothesis applies.

Suppose v,_,v, € T, is single up to v,, v, = v, = v, and in the chain v, - - v,
there is no T} edge single up to v,, v._v, & T,. If v,_ v, € T;, it must coincide
with a T, edge before v, ;. Thus v, must equal some v, with d < a. But
vy = v, = v,, contradicting v,_,v, € T,. Therefore, v, _,v, € T,.O
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LEMMA 2.2. If in the chain v, - - v,, there are s edges with the properties,

(2.4) they belong to T,
(2.5) they are single up to v,,
(2.6) they all have one end equal to v,

then s < t + 1, where t is the number of T, edges contained in v, - -- v

'a*

PrROOF. Let the s edges be v,v, ,; and v,0, ,1,--., 0,04 +1- Suppose v, =
- =10, =v, 0rv, ., and a@; <a, < -+ <a, <a. ByLemma 2.1 in each of
the chains v, 0, .1 *** 0., 005,41 *** Vgpseves Uy 41 *°° U thereisa T,edge.

But if e,, e, (b < c) are T, edges, e,, e, cannot coincide. Thus if ¢ is the number
of T,edgesinv, -+ v,,s—1<tors<t+1.0

A T, edge e, is called regular, if the number of T, edges satisfying (2.4)—(2.6)
in Lemma 2.2 is at least 2.
A chain v, , -+ v, will be called a *-cycle (with head v,) if .

2.7) 0401 € T, and single up to v,,
(2.8) c is the smallest integer such that ¢ > b + 1 and v, = v,,

(2.9) there is a T) edge e, such that a < b, single up to v, and v, = v, or
' Vg1 = Vpe

If in (2.9) we have v,,, = v, and in the chain v,,, --- v, there is no T} edge
single up to v,, then the *-cycle v, - - v, is called a %*-cycle of the first kind.
Other *-cycles are called *-cycles of the second kind.

If C is a %-cycle of the first kind, let ®(C) be the last T, edge in C. If C is a
*-cycle of the second kind, let ®(C) be the first T, edge in C.

LEMMA 2.3. The number of regular T, edges is bounded by twice the number
of T, edges.

Proor. It is evident that the number of regular T; edges is not larger than
the number of *-cycles. So, it is sufficient to prove that given any three *-cycles,
their ® values cannot be identical.

Suppose they have different heads. Then one of the following two cases must
occur:

CASE 1. At least two of them are of the first kind.
CASE 2. At least two of them are of the second kind.
Let the two *-cycles in either cases be C = v,,, **- v, and C’' =

VyVyoq *°° Uy b < b and v, # v,. Now suppose we are with Case 1. C,C’ are
two *-cycles of the first kind. By definition of ® and the second part of Lemma
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2.1, we know that v, = v, # v, = v, so
®(C) =v,_v, * v._v, = ®(C).

Now suppose C, C’ are both of the second kind. There are three possibilities to
consider: (i) b<ec<b' <¢; () b<b <c¢' < (ili) b< b <c<c. For (i),
®(C) # ®(C’) is obvious. For (ii), we will show that ®(C) is in v, --- vy. But
®(C’) is obviously in v, -+ v,, so we will get ®(C) # ®(C").

By definition, since C’ = v,, - - v, is of the second kind we have a T, edge
0,0, 1, Single up to v, a < b/, either v, = v, or v,,; = vy butinov,, v,,5 *** vy
there is a T, edge single up to v,. At first, suppose v, = v,. If a < b, the chain
v, + -+ vy contains a T, edge by Lemma 2.1. Thus ®(C) is in v, - -+ v,. If
b<a<¥,since v, -+ v, contains a T, edge by Lemma 2.1, ®(C) is also in
v, -+ Uy. Now suppose v,,, = v, and in v,,,0,,, *** v, there is a T edge
single up to v,. The chain from this 7T} edge to v, satisfies the requirement for
Lemma 2.1; it contains a 7T, edge, in this case, ®(C) also belongs to vb ce Dy

Now we consider case (iii). We need only to prove ®(C) is in v, - - vy. Let
00,1 € T, be single up to v, a < ¥, and either v, = vy or v, ; = vy, but in
Ug41 *** Uy there is a T edge single up to v,. Just as in the proof for case (ii),
®(C)isin v, -+ vy, in either situation.

Thus we get the conclusion that the number of *-cycles is less than or equal
to 2|T,|. On the other hand, the number of regular T; edges is less than or equal
to the number of *x-cycles. The proof of Lemma 2.3 is finished. O

3. Two auxiliary theorems.

THEOREM B. If EX?2 < 0, EX,, =0, EX2 = ¢% and EX}, < o, then the
spectral distribution of the matnx 1/ \/— )W, approaches the semicircle law
(with density (1/20%7)V40% — x 1(|x|520)) asn — +oo, a.s.

This theorem is a consequence of Theorem 3.2.3 of Girko (1975), or cf. Arnold
(1971).

THEOREM C. If EX,, =0, EX} =02 EX}, <o and X;=0, then
A a1/ VROW,) = 20 and A, (1/ Vn)W,) » —20 a.s.

LEmMA 3.1. (Truncation Lemma), If EX}, < co and X,; = 0, then there is a
sequence 8,10 such that P(W, + W, i.0.) = 0 where W, = (X(")) and X(”) =

X; 10X < Vn 8,). Evidently the speed of 8,10 can be made arbztranly slow
Here 1(A) denotes the indicator function of A

PrOOF. Since E|X,,|* < oo, we have for any ¢ > 0,

Y 22mP(1X,,| = e2™/?) < o0.

m=1



LARGEST EIGENVALUE OF A WIGNER MATRIX 1733

We even have
o0

¥ 22"P(|X,y| 2 £,2™/%) < oo,

m=1
for some sequence ¢,, > 0, converging to 0. Of course we can assume ¢, tends to 0
arbitrarily slowly. .
_ Define 8 =8, = 2¢,, for 2"~ < n < 2™ Define W, = (X;)1<i j<n Where
X;; =X 1(X;,| < Vn8). Thus for any & > 1,

P(W, # W, io.) < mi;kP( U U (X2 m))

ogm-lop<om 1<i<j<n

IA

P U U (%227

om-lep<com 1<i<j<n

kP( U (|X,.j|szm/2em))

1<i<j<2m

IA

?Ms iMs

A
3
1 8

22mP(|X, | > 2™/%,,) = 0, ask — oo. o
k

Now we prove Theorem C. Because of symmetry we prove only that
A a((1/VR)W,) = 20, a.s. We can also assume that o = 1. Because of Theorem
B, liminf,_ A, . (Q1/ Vyn)W,) > 2, as. We need only to prove that
limsup, _, , A pa((1/ VRW,) < 2, as.

We can assume that the entries X;; = X of W, satisfy the conditions:
X, < Vn8, where 8 = 8,10 very slowly; EX,; =0, for i #j; and
X,/ =0,1<i<j<n. In fact, we can replace the original entries of W, by
X;1(1X,,| < Vn®), denoted by X;,, then define X;;= X, — EX,;, for i+,
1<i,j<nand X;;=0forl <i < n.ByLemma3.1, W, =W, for large n, as.
For any vector x, ||x|| = 1, we have

xWx = xWax — x/(J — [xEX, = x’W,x — u.
Here J is n X n matrix with all entries be equal to 1. But
2
jul < ((Zx.)" + 1) EX5l(1 Xl < Vn8)]
< (n+ 1)E|X,|1(1 X,y > Vn8),

by EX,, = 0. Since EX;, < o, u — 0. So we can replace W, by W,,. Of course,
now we have |X; | < 2/n 8, but we still write |X, ;| < Vn 8. We can also assume
EX? <1 and tends to 1 and EX}; < d < oo for some d > 0.

ij =
In order to show that limsup A, < 2, a.s,, it is sufficient to prove that for

any constant z > 2 there is a sequence of positive integers k£ = k(n) such that

5 Etr((vz«z)w” <w

2k
Note that [ .((1/ Vr)W,)]?* < trl(Q/ Vn)W,)**].
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Now fix z > 2 arbitrarily. Let 2 = k,, be any sequence of positive integers
satisfying

k,/logn - o, 83k, /logn — 0.
We are going to show that
E tr((1/Vn)W,)™

Y < 0.
. 7,

We first estimate

1 2k
— *
E tr(ﬁm) =n k Z EXiliZXiZiB ce Xi2kil.
Here ©* means the summation is taken for i,,..., i,;, running from 1 to n and

subject to the condition that i, # iy, iy # iy,..., 10 # i, and X,;= X de-
pends on n, but for simplicity we do not write the n explicitly.

We can regard i, i,,..., iy, as vertices for the graph described in Section 2.
The 2k edges are automatically determined so that if e, is the ath edge, then
the initial and the terminal of e, are i, and i, ,, respectively. Thus

1 2k
Etr(ﬁm) =n YNV X X e X,

Here ¥’ is the summation for different arrangements of three different types
(T, T5, T,) of edges at 2k consecutive positions; L” is the summation for all
canonical graph I' with given arrangement of the three types of edges (a graph is
called canonical if i, € T, implies i, = max(i},...,i,_;) + 1, but i, = 1); =" is
(for a given canonical graph) the summation over all graphs isomorphic to it [two
graphs (vy, ..., vy;) and (v5,..., v3;) are called isomorphic if v, = v, & v} = v/].

Let !/ denote the number of edges of class T}, so [ is also the number of edges
in T,. So, ¥’ can be replaced by 2{11(21")(2" ; l). If there is an edge single
throughout the graph, the corresponding mean is 0. We do not consider such
graphs. ¥ " is evidently bounded by n’*™.

Suppose we know the 2k edges which belong to T}, which belong to T} or T,.
Now we estimate the bound of the number of canonical graphs with the given
arrangement of three types of edges. If an edge i,i,,; should be in T; and it is
not regular, it can only coincide with the only T; edge which has a common end
with it. If it is a regular edge, then it has at most ¢ + 1 possible choices by
Lemma 2.2, where ¢ is the maximal number of noncoincident T, edges. But the
maximal number of regular T, edges is bounded by 2(2k — 2/) by Lemma
2.3. If the maximal number of noncoincident T, edges is ¢, the 2(k — [)T, edges

have at most | #*|¢2%~) choices. Thy . 22" can be replaced by ¥2¢52/(¢ + 1)2k—20
t=0

t
(k:’)tZ(k—l).

Finally, we bound the mean EX,, X, ., --- X, .. If t=0,itis [E(X3)]* < 1.

Qla™ "ol

For t > 1, let p be the number of T, edges which coincide with T, edges. Let n;
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denote the number of T, edges which coincide with the ith such T edge
i=1,...,p.
Let m; be the number of T, edges which are coincident of each other but not

with any T) edge, j =1,..., ¢ — p. Then we have

t—p

-
EXilizxizia ;y,»l [EX 2] g I_IE(X{E'”) ﬂ EX[y,
where 2( — p) + X¢_(n; + 2) + XiZtm, =2k and p < .

It is easy to see that E|X,,|' < (Vn8)'"2 for I > 2 and E|X,,|' < C(Vn6)"~3
for [ > 3, where C > 0 (C = E|X,,|?) is a constant, so we have

IE Xizkill < Cl.l(‘/;s)2k_2l—l < kt(‘/ﬁs)gk_m_t.

blp ‘2 i3

Combining the preceding considerations, we have

pelgm) =i £ ()

=1

2k—1)

X z ( )t2(k l)(t+1)2(2k 2l)k‘(\/—8)2k_2l_t

: (2k)! 7 2t 6(k—1), ta2k—21 —t
< lgm tgo k2 (t+ 1) k6 (\/—728)

t
(t+ 1)6(1Z 1)82(k D,

k N 2(k—1) k3
_ § (2k)! (

N2k -2) | Vné
Consider the function g(¢) = a¥(t+ 1)°, t€[—1,00), where 0 <a <1 and
b >0 are constants. g'(¢) =al(t+ 1)®"Y(b+ (t+ lloga) <0 when t>

b/|logal — 1 and g'(t) >0 for —1 <t < b/|loga| — 1. Thus, in the interval
0<t<hb,

b \° b \°
b/|log a|—1
glt)<a (Iloga|) S(llogal) ’

if -1>0,
|log a|

g(t) <g(0) =1, if -1<0.

llog a

In any case we have, when 0 < ¢ < b,

b \° b b
glt) s|——| v1= v1].
|log a| |log a|
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Thus if n is large,

1\ & 2k)! kD[ g(k -1 k=
Etr(——W;,) < z____()—__ (———(—)381/3v81/3)
Vn S0 @E-20) S \log(Vns/k?)
k ! 1/3 6(k—1)
2 (2k)! 18k$ v g/
SN2k - 20 logn

2k

k81/3 3
v 81/3) ) =2k(2 + A,)%.

< 2k(1 +1+ (
logn

We choose 8 such that A, = (18k8'/3/logn) v §/%)® > 0asn —> 0. Let L, =
k/(log n). Then L, - oo and

2k
ZE(Xmu((I/ZVI{E)W;)) < E 2k _ Y g2k los@+4,)/2)
z

n n

= Y 2kn?Lalos@+1,)/2),

n

(2 + A O

The last series is evidently convergent, since A, -0, z> 2, L, - o, and
k < log®n, if we choose 8, — 0 slower than 1/(log n). O

4. The proof of the necessity part of Theorem A. We suppose
A max((1/ Vn YW,) = a as n — oo a.s. Here a is a finite number. We are going to
prove conditions (1.5)—(1.8) hold.

For the proof of (1.5), we suppose E(X;;)? = + . We are going to show that
limsup A ((l/y/_)W) = + o0 as.

Since E(X;})? = + 0, P(X;, > 0) > 0. Thus ZP(max, _;_ X

i =

< 0) < o and

max X;; >0 forlargen as.
l<i<n

Hence as.,

1 1 1
Amax(ﬁvvn) > ﬁfg?;xﬁ: T max. X;; forlarge n.

<

But for any K > 0,

Y P((x)" = zK) + 0.
i
So, limsup, _, , X,},/ Vn = + o0 as. and limsup, _, , A, (1/ VR)W,) = + 0 as.
follows.
For the proof of (1.6) we suppose E(X;;)? < oo and EX};, = +00. Let M > 0
be such that p = P(X,; < —M) < ;. Define

Xi= Xiil(Xi,- <-M)*
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Then
Xi— Xii = Xiil(Xii> -M) = Xi+ Xii1(0> X;>—M)
and then

E(Xii_Xii)2< 00, ZP((Xii-Xa)zZie) <o (Ve>0),
;

which implies
lim—-l— max |X,; — X, =0 as.
Vn isisn ¢ TF
Now, let W, = W, + diag{X,, — X,3,..., X, — X,,,,}. Since
1 - 1 2 -
x’ﬁ(VVn - n)x = —‘/-;—tgl(Xu Xu)x,
1
< T lr;)lasxn|Xu X, —»0 as,
we have
)\max(—i—W'n) —}\max(—}—m) < sup x’—}—(Wn— Wn)x -0 as.
JE ‘/’7 Jlx||=1 ﬁ

So, we need only to show that limsup A, ((1/ Vn)W,) = + oo as. or, in other
words, we will assume X;; = X;1 x ).
It is easy to see that

1 1
A —W,| > — X+ X..+2X;]).
max(‘/; n) 2‘/’7 lsnil<ajxsn( u JJ I zjl)

Thus, for B > 0,

P(Amu(%Wn) > B i.o.) =1

11
= P57, mex (Kat X200 = Bio) =1
(4.1) .

'<js2k+l

2V2k+1 2k<i

max (X;+ X,;+2X;)>B

£p(
<« — ..
% \2V2k+1 joicjcor ¥ :

= + 0.
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But
P —1 X, +X
W s 1;:2:’;2,,( it X;+2X,) =B
2k
> ¥ Y Pljust X,,,..., X, ave the
I=2k11<ij< - - <iy<2k
vanishing diagonal entries and
X, .| = B2*+v/2
(42) X )
2% i
i e
= E (2l )[P(Xu = 0)] [P(Xu # 0)]2 !
1=2k"1

xp( max |X,.,.|zB2<k+l>/2)

1<i<j<l

1

1
—P( max |X,~j|zB2<"+1)/2),

lsi<j52k"l
since P(X,, = 0) > ;. Evidently,

1<i<j<2k!
e [T(P(1Xyl < Bz<k+1)/2))(2”“‘@’“—1»/2 -0
(4.3) )
2k—1(2k—1 -1
< E——_—2_———)P(|X12| > B2*+D/2) = 4 oo
Combining (4.1)-(4.3) we get

1
EX{‘2= + o0 =P(limsup )\max(ﬁufn) = +oo) =1.

Now suppose E(X{;)? < o0 and EX;, < oo, but EX,, = a > 0. We are going
to show that P(limsupn_‘w)\max((l/\/;)VVn) = +oo)= 1. As before we may

Because A, ((1/Vn)W,) = x’(1/ Vn)W,x for any unit vector x, we can see
that for any integers j, i,,...,i; with 1<j<n, 1<i < -+ <i;<n, by

appropriately choosing x, we have
1 J J

1 1
Apar| = Wo| 2 - = X,
(,/E ) J z XX,

n r=1s=1
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Thus, for any B > 0,

1 J J
44 =P U U (—.'2_('”1)/2 Z ZX“ ZB) i0.] =1
(44) 1<j<2k h<ij< oo <ij<2tti \J r=ls=1
1 J J
<P U U 2 D2 % ¥ X, 2 B|| = oo.
k 1<j<2® 2kb<ij< .. <i;<ok*! J r=1s=1

But the general term of the last series is greater than or equal to

P

U U (X"lll = 0,. cey Xl.ll.l = Oonly
<ij52k‘”

1<j<2k 2b<ii< ..

. «
and —2-**2722 Y X, > B)
J

"""3 -
l<r<s<j

§1(%;)[P(Xu = O)]j[P(Xu # 0)]2k_j

1
xP(—,2—<k+1>/22 Y X,szB)
J

= 22 (2{z)[P(X11 = O)]j[P(Xu # 0)]2k_j
j=gk-1 J

p Yicr<s<jXrs (Bj2*+v/2) /2
X . . — = T T
(G =172 J(i—-1)/2
But
( Bj2(k+l)/2) /2 Botk+1/2
. <
J(j—-1)/2 2k-1_ 1

-0 ask - oo,

215r<35jX,-3
J(j-1)/2

So as k is large,

> EX,=a>0 asj>2F1> was.

T ‘o (k+1)/2
Pl ¥ er/1(12 ) (B2 )/2

1
2 VE > =
1<r<s<j ](] - 1)/2 2
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and since P(X;; = 0) > 1,
2k ok . ok_;
>z (j)[P(Xu=0)]’[P(Xu¢0)] T2

j=2k—1

therefore, the series in (4.4) is divergent and limsup A, ((1/ Vn)W,) = + 0 a.s.

5. The sufficiency of the conditions. Suppose E(X 2 < o0, EX{h < +o0
and EX,, < 0. By E(X;})? < o0, we can assume that X, = X;1(X;; < — M) for
some M > 0 with P(X;; < -M) < }

Let Xij =X, — EX;; fori+}, Xii =0. Thenif x’x =1

Xy EX;, -+ EXp
1 1 . 1 |EX X ... EX
W X — W 12 22 12
X Tn X = ~ ‘/77 X
EXIZ EX12 e Xnn
. W + 2 ! EX, Y ! Y X%}
n ‘/’7 12lsi<jsn ’ ‘/7—7'-
1 . 1 2 1
Sal =W + V—n_EXIZ(in) + —ﬁIE 12l
1 |EXy|

since EX,, < 0. Therefore, A . ((1/Vn)W,) < A,..(Q/Vn)W,) + |EX,,|/ Vn.

By Theorem C, we get limsup, _, , A ,.(1/ Vn)W,) < 2 as.

Now let % be the number of diagonal entries of W, which are not 0. % is a
random variable with binomial distribution B(n, p), p = P(X;; # 0) < }

Let V be the set of all n X 1 vectors x = (x,,...,x,) with the properties:
Yix;=0and X; # 0 = x;, = 0. Then V is a vector space of dimension n — & — 1.
Then we have

1 1
Apax| =W, | = sup x'| =W, |x
ax( Vn ) er:/ ( n )
[lxll=1
1 . 1 »
= Ssup x'(_vvn)x + = Z (Xu EX12)xz)
[ " im

By a lemma in Bai and Yin (1988),

k
P(; -p Zp) <e (/Y forall n.
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Thus
P(k > 2npi.0.) = 0.
Therefore,

1 1 .
’\max(j—;Wn) > A[zpnm(-‘/fwn) as.

for large n. But as n - oo,
1
A[hn]”(‘ﬁ“’n) - F—l(l - 2p) =7y, as,

where F(x) = (1/27)[* ,V4 — u? du. Thus

1
liminf A —W,| >
1'?_1)1:: max( ‘/; n) P2p
a.s. for any p < 3. Letting p > 0, »,,, > 2.
Therefore, lim ,_, , A, (1/Vn)W,) = 2 as.
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