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THE CONTACT PROCESS ON A FINITE SET. II

BY RicHARD DURRETT"2 AND ROBERTO H. SCHONMANN23

Cornell University

In this paper we complete the work started in part I. We show that if oy
is the time that the contact process on (1,..., N} first hits the empty set,
then for A > A_ (the critical value for the process on Z) there is a positive
constant y(A) so that (log oy)/N — y(A) in probability as N = o0. We also
give a new simple proof that oy/Eoy converges to a mean one exponential.
The keys to the proof of the first result are a “planar graph duality” for the
contact process and an observation of J. Chayes and L. Chayes that exponen-
tial decay rates for connections in strips approach the decay rates in the
plane as the width of the strip goes to oo.

1. Introduction. The contact process is a Markov process with state space
the subsets of Z and transition probabilities that satisfy

P(x & &,¢,) ~ ¢, ifx € ¢,
P(x € §)é) ~Méon {x—1,x+1}|, ifxeé,,

as t = 0, where f(¢) ~ g(¢) means f(t)/g(t) - 1. If we think of the sites in £, as
occupied by particles, then the dynamics can be described as: “Particles die at
rate 1 and are born at vacant sites at rate A times the number of occupied
neighbors.” It is by now well known that there is a unique Markov process with
the above properties and there are several ways to construct it. See Liggett
(1985), Chapter 6 [or Griffeath (1981)] for information on how to construct the
process and the basic properties we use if no reference is given.

Let { denote the contact process on {1,..., N } starting from all sites
occupied and let oy = inf(#: {¥ = @}. Since {} is a Markov chain on a finite set
P(oy < ) =1 for all A. Differences between the A’s appear when we let
N — 0. To state our results, let £) be the contact process on Z starting from
£3 = {0} and A, be its critical value

A, =inf{A: P(£) # @ forall ¢t) > 0}.
In part I Durrett and Liu proved

THEOREM 1. Let A <A, and

1
7:(A) = — lim ;logP(ggaé 2).
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Then as N — oo,
oy 1
N .
log N Yl(}‘)

They proved some results about the behavior when A > A_ but could not
prove the following sharp result, which is the main result of this paper.

THEOREM 2. Let A > A . There is a constant y,(A) > 0 so that as N — oo,

1
(a) ~log P(r(+) < c0) » (),
1
(b) —log P(7 M < o0) = —7,(A),
N 2
1
(c) F 108 P(re00 1M < 00) > —p(R),
and
¢
(d) long - vy(A), inprobability.

Here 74 = inf{t: {2 = @}, where £ is the contact process starting from
g4 = A; 74 = inf(t: £ = @), where £ is the contact process on the half-line
(1,2,...} starting from £4A = A; and, finally, 729"~} s the extinction
time for the contact process on Z starting from the upper invariant measure
(= lim, _, _¢%) restricted to {1,..., N}.

The last process or more precisely (c) of Theorem 2 is the new ingredient here.
It allows us to prove that the limit exists in (b) and is equal to the limit in (a),
problems left unsolved in the first part. At first it may seem that (c) is not
natural but the developments of Section 2 will show otherwise:

P(Teqn{l ..... N} < w)
= P(there is a “dual path” from (N + 1,0) to (1,0)).

Theorem 2 describes the asymptotic behavior of logoy. The next result
describes the behavior of oy itself.

THEOREM 3. Let By = inf{t: P(oy >t) <e '}. As N - oo,

(a) P(oy/By>x) > €%,

(b) Eon/By — 1.

This result was first proved by Cassandro, Galves, Olivieri and Vares (1984)
for large A and later for all A > A, by Schonmann (1985). We present here a
proof of (a) that is much shorter than the previous ones. We have not been able

to improve the proof of (b) due to Galves and Vares, which is given in
Schonmann (1985), so it is omitted.
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The paper is organized as follows. The “planar graph duality” is described in
Section 2. Theorem 2 is proved in Section 3. Lemma 2 in that section is the result
of J. Chayes and L. Chayes referred to in the abstract. Finally, the proof of
Theorem 3 is given in Section 4. It is short and simple and almost independent of
the developments that precede it. The only fact needed is that 8y/N — .

As usual the results in this paper and in part I have counterparts for oriented
percolation (see Durrett (1984) for a description of this model) and the proofs are
essentially the same but easier for that model because we can sum over all
possible points rather than estimate the Lebesgue measure of the set of
space—time points that can be reached (see the proofs of Lemmas 5 and 6 in
Section 3).

What is more surprising is that there is also a close relation between our
results and the work of Grimmett (1981) on sponge crossings in (unoriented)
two-dimensional bond percolation. To describe the connection, consider bond
percolation in [1, N] X [0, ) and let

oy = sup{l > 0: there is a chain of occupied sites
from {1,..., N} X {0} to {1,..., N} x {l}}.
Grimmett (1981) showed that
if p < ;,thenoy/log N - 1/y(p), in probability,
if p > 1, then (logoy)/N — y(p), in probability,

where y(p) is a positive constant (= 1/the correlation length) with y(p) =
(1 — p).

Our proof of Theorem 2 can be adapted to give a proof of Grimmett’s result
for p > 1 (which by the self-duality of bond percolation implies the result for
P < 3), and our proof of Theorem 3 can be modified to prove the new result that
on/Eocy converges in distribution to a mean one exponential. The modifications
necessary to prove the second result are described in Section 4.

2. Planar graph duality. In this section we will describe a planar graph
duality for the contact process. We begin by describing the analogous concept for
oriented percolation, which has been described by Dhar, Barma and Phani (1981)
and in somewhat greater generality by Redner (1981, 1982). Let L = {(m, n):
m,n € Z and m + n is even} and draw oriented bonds from (m, n) to (m + 1,
n + 1) and to (m — 1, n + 1), which are open with probability p and closed with
probability 1 — p. For reasons that will become clear, we will also draw oriented
bonds from (m, n) to(m + 1, n — 1) and to (m — 1, n — 1), which are open with
probability 0 and closed with probability 1.

To define the dual problem, let L* = {(m,n): m,n € Z and m + n is odd}
and draw oriented bonds from (m,n) to (m+ 1, n+ 1),(m—1,n+ 1),
(m—-1,n-1) and (m+ 1,n — 1). To make the link between the original
process and the dual, we associate each dual bond with the bond on the original
lattice, which is obtained by rotating the dual bond 90° clockwise around its
midpoint, and we declare the dual bond to be closed (resp. open) if the associated
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bond on the original lattice was open (resp. closed). See Figure 1 for help with
the definitions and to observe that the dual model has bonds that are open with
probability 1 if the x-coordinate increases in the direction of the orientation and
are open with probability 1 — p if the x-coordinate decreases.

To explain the definitions and the connection between the two models, let n
be an even integer and consider the trapezoid T with vertices (0,0), (%, k),
(—n — k&, k) and (—n,0). Let S, be the segment from (1,0) to (¥ + 1, k) and S,
be the segment from (—n — 1,0) to (—n — &k — 1, k).

PROPOSITION 1. Either there is a path on the original lattice from the
bottom of T to the top of T or a dual path from S, to S, that lies in R X [0, k]
but not both. :

The last result can be obtained by combining the maxflow—min cut theorem
with some facts about planar graphs (see Berge (1973), Chapter 5, especially page
85). However, a direct proof is not difficult and will show the reader that dual
paths are just what previously have been called contours so we will give the
details.

ProoFr. First suppose there is a path from S; to S, and call it w. By
removing loops we can suppose without loss of generality that any point of L*
appears at most once in the path. With the loops removed an application of the
Jordan curve theorem shows that w divides the interior of 7' into two parts—one
we call T, which lies below w (its boundary contains the bottom of T'), and the
other T,, which lies above w. If we move along « in the direction of the
orientation, T is always on our left and T, is on the right. From this we see that
if there is a path of open bonds from the bottom to the top, then any time it
crosses from T to T, it does so along a bond that is a 90° clockwise rotation of a
bond on w but such a bond is closed by the definition of duality so no path exists.

To complete the proof of Proposition 1, we have to show that if there is no
path from the bottom to the top there is one on the dual from S, to S,. The
reader may find it helpful to consult Figure 2 while we do this. Let A = {(m,0):
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miseven and —n < m < 0}. Let C = {x € L: x can be reached by an open path
from some point in A}. Let D = {(a, b) € R% |a| + |b| < 1} and orient the
boundary of D in a counterclockwise fashion. Finally, let W= U, (2 + D). C
is for cluster, D is for diamond and W is for wet region. If we combine the
boundaries of the z + D with z € C and allow oppositely directed segments to
cancel, then the boundaries that remain are closed paths on the dual and one of
them I' = the boundary of the unbounded component of R X (0, k) — W is the
path we want. The reader should note that this path starts at (1,0) and ends at
(—n — 1,0) but any path from S, to S, can be extended to such a path by adding
a segment from (1, 0) to the first point on the path and from the last point on the
path to (—n — 1,0) since all the bonds added are open with probability 1. O

In the preceding argument we have used the notation of Section 10 of Durrett
(1984) to show that the dual of oriented percolation is a process of “contours.”
This viewpoint clarifies a number of points in the contour argument described in
Section 10 of Durrett (1984) but we will not go into this because our main aim is
to define the corresponding dual for the contact process. One way to approach
this is to write the contact process as a limit of oriented percolation process. Let
L, = {(J, ke/2), where j, k € Z} and make bonds open independently with the
following probabilities (here m, n € Z):

(m,ne) > (m—1,(n+1%)e), Ae,

(m, ne) > (m,(n + 1)e), 1 - (&/2),
(m,(n+ 3)e) > (m+1,(n + 1)e), Ae,
(m,(n+ 1)e) > (m,(n+ 1)e), 1 - (&/2).
If we let ¢ = 0 in the preceding construction, we get for each m a Poisson
process of arrows to the right (m, t,) - (m + 1,¢t,), k=1,2,..., at rate A, a
Poisson process of arrows to the left (m, ;) - (m — 1,¢;), k = 1,2,..., at rate

A, and if we mark the closed bonds (m, ke/2) — (m, (k + 1)e/2) with 8’s, we get
a Poisson process of 8’s at rate 1. The preceding limiting process is the graphical
representation for the contact process introduced by Harris (1978) and developed
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by Griffeath (1979). In what follows we will assume that the reader is familiar
with how the contact process is constructed from the graphical representation.
See Liggett (1985) for a recent account.

With the duality for oriented percolation and the preceding limit in mind, we
will now define the dual for the contact process. If we recall that the associated
dual bond is a 90° counterclockwise rotation of the original bond and has the
opposite state, then we are led to the following rules:

(i) | is impossible so — is always allowed in the dual;
(ii) 8 marks a hole so « is allowed only through 8’s;
(iii) —» open makes 1 closed;
(iv) < open makes | closed.

To explain the definitions and the connection between the two models,
consider T = R X [0, t], let n be an integer, and let A = {0, —1,..., —n}.

PROPOSITION 2. Either there is a path from A X {0} to the top of T in the
contact process or a dual path from (3,0) to (—n — %,0) that lies in T but not
both.

Proor. The first part of the argument (if there is a dual path there is no
path in the contact process) is almost exactly as before so we proceed to the
second part. This time the reader should follow along on Figure 3 and look at
Griffeath (1981), page 160, or Gray and Griffeath (1982) when we are done.

Let C = U (¢2 X {s}). Let D = {(a,0) € R% |a| < 1} with the left and right
endpoints considered as infinitesimal arrows pointing down and up, respectively.
Suppose C does not intersect the top of 7. If welet W =U, (2 + D) and let T
be the boundary of the unbounded component of R X (0,00) — W with T
oriented in the way dictated by the infinitesimal arrows, then T is a path on the
dual and the “contours” used by Gray and Griffeath. O

In Section 3 we will need several variations of the last result. We will prove
the one that was mentioned in the Introduction now. It is the most difficult.
After seeing its proof and the previous argument, we think the reader can supply
the details in the remaining cases.

PROPOSITION 3.
P(,reqn(l ..... n} < 00)
= P(there is a dual path from (n + %,0) to (3,0)).

PrOOF. Let T=R X[—¢,t] and let A = (1,...,n}. We claim that either
there is a path from the bottom to the top of T' that passes through A X {0} or
there is a dual path from (n + },0) to (3,0) in T but not both. As in the two
previous proofs the existence of a dual path prevents the occurrence of a path in
the contact process so we will suppose there is no contact path and construct a
dual path.

First modify the graphical representation so that §’s occur at all points on
A° X {0}. Second truncate the picture by picking / < 0 (r > n + 1) so that there
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are no 8’s at I (resp. r) at times s € [ —¢,0] and there are no arrows from / to
[ — 1 (resp. r to r + 1) at times s € [0, t]. Let C be the set of space-time points
that can be reached starting from {/,/ + 1,..., r — 1, r} occupied at time —¢ in
the modified graphical representation. Let D = {(a,0) € R% |a| < 1} with the
left and right endpoints considered as infinitesimal arrows pointing down and up,
respectively.

Suppose C does not intersect the top of T, let I' be the boundary of the
component of (I — §,r+ 3) X (—¢t,t)) — W that touches (I — 3, r + 3) X {t}
and orient T in the way dictated by the infinitesimal arrows. I is a path on the
dual that starts at (r + },0) and ends at (I — 3,0). (See Figure 4.) Let p be the
last point of T on [n + 3, 00) X {0} and let g be the first point of I' on (— o0, 3].
The path we want is obtained by moving from (n + 3,0) to p along the x-axis,
going from p to q along I and then from g to (3, 0) along the x-axis. The bonds
we have added are all from left to right (which is always allowed) so the result is
a dual path.

Let B(t) be the set of x such that (x,0) can be reached by a path starting
from some (y, —t). At this point we have shown

P(ﬁtB(')n(l ..... n) — Q)
= P(there is a dual path from (n + 4,0) to (1,0)in [—¢, ¢] X R.
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As t1 o0, B(t) decreases to a limit B(co). For each ¢, B(t) has the same
distribution as £Z so the limit B(co) has the equilibrium distribution. Now as
t 1 oo the left-hand side increases to

P(£Pen 0 = & for some t)
and the right-hand side increases to
P(there is a dual path from (n + 1,0) to (1,0))

and we have proved Proposition 3. O

3. Proof of Theorem 2. In this section we will prove Theorem 2. Let
F,={(- 3,0) » (—n — },0)}, where (= 3,0) = (—n — 3,0) is short for “there
is a dual path from” (- 3,0) to (—n — 3,0). Let W, = {(x, ¥): —k <y <k}
and let F* = {(- 1,0) > (-n — 1,0)in W,)}.

LEMMA 1. There are constants 8 and §, so that as n — oo,
1 1
—log P(E,)) - -8, —log P(F¥) > -8,

and for any k,
P(FF) < exp(—8,n).
PROOF. For 1<k<ow let Ff¥ ={(-m-1,00->(-n—- 10 in W,).

Ff,> F}, N Fk . and the Ff , are decreasing events so Harris’ inequality
implies

P(E}!,) = P(F}, 0 B ) = P(ES ) PE L)
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If we let a, = log P(F{,) the last inequality can be rewritten as
a,>a,+a,_,.
It is well known and easy to prove (see Durrett (1984), page 1017) that this
implies
1 1

—a, - sup —a
n" mm

so if we let — &, denote the right-hand side and write & for §,, we have proved
the desired results. O

The next result is an observation due to J. Chayes and L. Chayes. The only
difficult thing about the proof is to believe that all the inequalities go in the right
direction.

ProOF. First observe that 8, decreases as % increases so the limit exists and
is > 6. Let ¢ > 0 and pick N so that
P(Fy) > exp(—(8 + €)N).
As k increases to o, Ff1Fy so P(F¥)? P(Fy). From Lemma 1 we have
P(Ff) < exp(—8,N). Putting the last three results together gives
exp(—(8 + ¢)N) < P(Fy)
Jim P(F%)

klim exp(—&,N)

- exp(—(kﬁ_{lgo8k)N).

IA

The last result implies
—( lim &8, > — (8 +
(Jim 8,) > —(s+¢)

and since ¢ is arbitrary

lim §, < 8. O
k— o0
LEMMA 3. Let
1
lim —log P(7{™ < o0) = —y.
‘ n—oo N
Then y = 8.

PROOF. The limit exists by supermultiplicativity and is < 0 (see Durrett
(1984), Section 10). In Section 2 we showed P(F,) = P(r°9" (L") < o0) g0
P(F,) = P(r{%=»™ < o0) and —8 > —y. To prove the other direction, we ob-
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serve that if W2* = {(x, ¥): 0 < y < 2k}, then {7} < 2k} occurs provided
that the following three events occur: {(n + 1, k) — (3, k) in W**}, {there is no
arrow from a point (n,s) to (n + 1, s) for 0 < s < £} and {there is no arrow
from a point (1, s) to (0, s) for 0 < s < k}. From Harris’ inequality it follows
that these three events are positively correlated, hence

P(T(l ..... n} < 2k)
2 P((n+3,k) > (3, k) in Wg*) - e,
and taking logs, dividing by n and letting n — c now shows —y > —§,. Since %
is arbitrary the desired result follows from Lemma 2. O
LEMMA 4. Let G, = {there is a y so that (n + 3,0) = (3, ¥)}. Asn — oo,
1
;log P(G,) - -7,

where vy is the constant of Lemma 3.

Proor. P(G,) = P(F,) so the liminf > —y. To prove the limsup < —v,
observe that Durrett and Griffeath (1983) have shown that there are constants
C, ¢ € (0, ) independent of A so that

P(t <74 < ) < Ce™*.

From the last fact it follows that if we pick 6 > (2y + log2)/e and let G? =
{there is a y with |y| < n8 so that (n + 3,0) = (3, )}, then

lim sup llog P(G?) = limsup llog P(G,).
n— oo n n—oo n
To see this, let G, = {thereisa y > 0 so that (n + 3,0) = (3, ¥)}, observe that
G — G! c {there is an A C {1,...,n} so that 0n < 7% < 0} and that the
probability of the last event is smaller than 2" - C exp(—0en).
Let F(x, y) = {there is a dual path from (n + }, x) to (3, ¥)}. Repeating the
first argument in the proof of Lemma 1 and using the (x, y) — (x, —y) reflection
symmetry of the dual gives

P(F,,(0,0)) > P(F,(0, y))P(F,(y,0))
= P(Fn(07 y))2'
Taking logs of both sides, dividing by 2n and letting n — oo gives

1
lim sup — sup log P(F,(0, y)) < —v

n— oo y

and

1 n
lim sup —log(/oo+lP(Fn(0, y)) dy) < —v.

n-— oo n —on
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Now, Fubini’s theorem implies

f"::lp(Fn(O, y))dy = E|{y €[—6n,0n+1]: (n+1,0) > (3, 5)}

where |{ - - - }| indicates the Lebesgue measure of the indicated set, so the proof
will be complete once we show
(%) E|[{ye[-6n,0n+1]:(n+1,0) > (3, 5)}| = e *P(GY).

To see the last claim, pick some path from (n + 3,0) to (3, ¥), which stays in
H(3) = {(x, y): x> 3} and ends at a point y, € [—0n, 0n]. The existence of
such a path is measurable with respect to the graphical representation restricted
to H(3) and if there are no arrows from 0 to 1 in [ y,, 3, + 1] we can reach all the
points (1, y) with y € [, 5, + 1]. The probability of the last event is e ~* so we
have shown (*) and the result follows. O

From Lemma 4 it follows immediately that we have

COROLLARY 5. Asn — oo,

PRroOOF.
GnD {,i:(l ..... n} < OO} ) {T{l ..... n} < OO},

so the result follows from Lemmas 3 and 4. O

Combining the last Corollary with Lemma 3 shows that the limits in (a), (b)
and (c) of Theorem 2 exist and are equal so it only remains to prove part (d).

LEMMA 6. As N — oo,
(logoy)/N — vy, in probability.

PRrOOF. In Durrett and Liu (1988) it was shown that for any ¢ > 0,
P((logoy)/N>7v +¢) > 0,
as N — o0, so all we have to do is prove the other bound. Now
Ploy<t) < P((N+1,x) > (%, y)in[4, N+ 1] x [0, )
for some x, y < t)

and Lemma 4 implies that if N is large

t+1de(forsomey (N+ %,x) - (%, y) in [%, N+ %] X R)
0

< (t+ lexp(—y(1 —¢)N).
The preceding integral is
E|{x: thereisa y with (N + 3,x) - (3, ) in (3, N+ 1] x R},
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where again |{ --- }| denotes the Lebesgue measure of the indicated set. To
convert the last estimate into a bound on P(oy < t), we observe that the
existence of a path from {N + 1} X [0, ¢] to {3} X [0, ¢]in [}, N + 3] X [0, 0)
is measurable with respect to the graphical representation restricted to
[$, N + 3] X [0, o0), and if there is no arrow from N + 1 to N in [x,, x, + 1],
then all the points (N + %, x) with x, < x < x, + 1 are the starting points of
paths to (3, -) so

E|{x € [0, + 1]: thereisa y with (N + ,x) - (3, )
in [, N+ 1] x [0,00)}]

> e "P{thereare x, y < t with (N + },x) = (3, )

)

in [, N+ 1] x [0,00)}. ]

4. Proof of part (a) of Theorem 3. Let V, = {(x, y): 1 <x < N}, let oy =
sup{y: there is a path from V; to V, in [1 N]Xx[0,00)}, and let By =
inf(¢: P(oy > t) < e '}. To prove

(a) P(oy/By=x) > €%,
it is enough to show

(8) for any x,t > 0,
|P(ay > By(t +s)) — P(oy > Bys)P(oy > Byt)| = 0, as N — oo.

To do this, we use a little bit of the renormalized bond construction of Durrett
(1984) and Durrett and Schonmann (1987). First recall the definition of the edge
speed a()). Let 7, = sup £~°%, i.e., the rightmost particle at time ¢ when the
contact process starts with all nonpositive integers occupied. Durrett (1980)
showed that

ast—> oo, r/t— a(\) almost surely
and
= inf{A: a(A) > 0}.

Let s > 0, write a for a(\) and suppose N is large enough so that 8ys > 2N, /a
(it follows from Theorem 2 that (log By)/N — y > 0). Let L = N/0.9a. Let R,
be a parallelogram with vertices (—0.laL, Bys — 0.5L), (0, Bys — 0.5L),
(N + 0.1aL, Bys + 05L) and (N, Bys + 0.5L). Let R, be a parallelogram
with vertices (N, Bys + 0.3L), (N + 0.1aL, Bys + 0.3L), (0, Bys + 1.3L)
and (—0.1aL, Bys + 1.3L). Let R; be a parallelogram with vertices
(—=0.1aL, Bys — 0.3L), (0, Bys — 0.3L), (N + 0.1aL, Bys — 1.3L) and
(N Bys — 1.3L, N). See Figure 5 for a picture. Let Ay ; be the event that there
is a path from the bottom to the top of all the parallelograms When Ay ; occurs
a path from V; to V; , and a path from Vg , to V; ;. can be connected using
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s + 1.3L

s -~ .3L

paths in the tubes so

P(Vo = Vo) P

Vays =

NS

S
s - .5L é
N\

BN(3+ t))

Fi1c. 5.

v

NS

-

v

=

P
P
P(Vo =

°<!

> P(V, -

‘,BN(S"’ t))

BNS - 1.3L

- V;;N(su)» Ay, s)
NS ? BNs g VbN(s-i-t)’ AN s)
"BNS) (VvﬁNS - %N(s"’t))P(AN,S)’

where the last line follows from Harris’ inequality. In other words,
P(oy > Bys)P(oy > Byt) = P(oy > By(s + t))
> P(oy > Bys)P(oy > BNt)P(AN,s)’
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or rearranging the last line
0 < P(oy > By(s +t)) — P(oy > Bys)P(oy > Byt) < P(AY ).

As N - oo, P(Ay ) — 0 (see Durrett (1984), Section 9, or Durrett and
Schonmann (1987)) so we have proved (a).

To extend the argument above to (unoriented) bond percolation, use the same
approach but define Ay , to be the intersection of the events:

{there is a left to right crossing of [1, N] X [ Bys — N, Bys1},
{there is a left to right crossing of [1, N] X [Bys, Bys + N1},
{there is a top to bottom crossing of [1, N] x [ Bys — N, Bys + N1]}.

When p > 3§ the last three events have probabilities that approach 1 as N — o
and when they occur a path from V; to V; , and a path from V, to Vj ., can
be connected, so repeating the preceding arguments proves (2) and (a) follows. O
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