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A NOTE ON CAPACITARY MEASURES OF SEMIPOLAR SETS

By MamMoRU KANDA

University of Tsukuba

For a certain class of Markov processes, the A-capacitary measure 7 of a
semipolar set S has the following property under a mild condition: A subset
B of § is polar if and only if 7(B) = 0.

1. Introduction. Among results on semipolar sets, Dellacherie, Feyel and
Mokobodzki’s result (1982) is significant: A Borel set B is semipolar if and only
if there exists a o-finite measure m such that, for A ¢ B, m(A) = 0 if and only
if A is polar, under the hypothesis that B can contain none of its regular points.
We call the measure m the DFM measure of B. In this note, without appealing
to the DFM theory, we shall show that the A-capacitary measure of a set S is a
DFM measure of S if S C {x; P(T5 < ) <, P(Ty < o) < &} for some e,
0 < & < 1. The processes discussed here are required to satisfy stronger hypothe-
ses than those in DFM. In particular, the duality hypotheses are essential in our
proof.

2. Capacitary measures of semipolar sets. The strong (classical) duality
hypotheses in Chapter VI of Blumenthal and Getoor (1968) concern a pair of
standard processes X = (X,) and X = (X't) with common state space (E, &) and
a o-finite measure £. We assume that E is locally compact with a countable base.
Writing £(dx) = dx, these duality hypotheses assert that the resolvents
U, (U Ay of X, X, respectively, may be expressed in terms of potential kernel
densities u*(x, y) satisfying

(1) UNx, dy) = uMx, y)dy, UNx, dy) = uM(y, x) dy for every x € E; .

(2) for every y € E, x — u(x, y) is A-excessive relative to X and x — uN y, x)
is A-excessive relative to X ;

3) (x, y) » uMx, y)isin &* X &*

for each A > 0. Here &* is the o-algebra of universally measurable subsets of E.

Recent capacity theory is far developed beyond the scope of the classical
duality theory as is seen in Getoor (1984). In addition to the classical results,
applying Getoor’s modern theory to our case, our conditions (i) and (ii) enable us
to get a A-capacitary measure for every Borel subset of E. More precisely, for
every Borel subset B and every A > 0, there exist unique o-finite measures
75, 75 such that

E,(exp(~ATp)) = [u(x, y)mp(dy),  Ey(exp(~AT5)) = [ur(y, x)#5(dy).
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The measure 7} is carried by B U B®*~" and #} is carried by B U B”. Here Ty
(resp TB) is the h1tt1ng time of B defined by Ty = inf(¢ > 0, X, € B) [resp
Ty = inf(¢ > 0, X, € B)]. The set B” (resp. B~T) denotes the set of regular
points for B with respect to X (resp. X). The total masses of 7} and 7} are
identical, which we call the A-capacity of B, denoted by C*(B) or C3(B). CN(B)
may take the value . The A-capacitary measure 7} and the A-capacity play an
essential role in this paper. Our study is in the scope of the classical theory. A
polar set is characterized as a set whose compact subsets have A-capacity 0 for
all A > 0.

PROPOSITION. Let X = (X,) and X= (Xt) be standard processes on (E, &)
satisfying (i) X and X are in strong duality with respect to a o-finite measure &
(i) AUM = AU™M =1 for all A > 0. Consider a Borel set S such that, for some
g 1l>e>0,

Sc {x; P(Ty < ) <e, B(Ty < o) <¢}.
Then there exists a o-finite measure = on S that satisfies:

For every Borel subset B of S, B is polar, if and only if
7(B) =0.

If € <1, then the A-capacitary measure md, A\ >0, may be chosen as the
measure .

We shall divide the proof into several steps.
Step 1. Consider the case 0 < ¢ < 1. We shall show:

(2.1) For every bounded Borel subset K of S, 73(K ) is bounded
’ in A.

More strictly, we shall prove:

For every bounded Borel subset K of S, C)(K) is bounded

(22) g

In the proof the following identity plays the key role:

mp(dy) = mj(dy)

(2.3) +(A = p) [E,(exp(~pTyp)) dx E,(exp(~AT,), Xy, € dy),

for A > p > 0 and for every Borel subset B of E.

The identity was stated as exercise 4.15 in Chapter VI of Blumenthal and
Getoor (1968) under certain regularity conditions on the resolvent. A modern
version of (2.3) is shown in Getoor (1984). Define a set G by

G = {x; P(Tx < ) > 8},
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for a constant § with ¢ < 8 < 1. Then it follows from (2.3) that

CNK) < CH(K) + (A= u) [ E(exp(~nTy)) dx B (exp( ATy ))
(2.4) +(A - p)j;;EA'x(exp(—ATK)) dx

< C“(K)+8>\f ' (exp(=2Ty)) dx+)\fE exp(—ATy)) dx.

Using condition (ii), we see

CMK) = Aff Mx, )2 (dy) dx = A/E exp(—ATy)) dx.
Hence it follows from (2.4) that

(- o[z "(dy){f "(y,x)dx} < CH(K), forA> p.

Noting that #2(dy) > #3(dy) for A > », we have
CONEDNE (dy){f x(y,x)aax} < CH(K), forA>»>p.
On the other hand, we have
(2.6) Alln;kU"lG(x) =0, onK.

Indeed, for A > v, it follows from the resolvent equation that

E,(exp(~vTp)) = UMg(x) + (A = ») [uM(x, 2) [w(z, y)mg(dy) dz

Mi(x) + (A — ») /G uM(x, z) E,(exp(—»T,)) dz

Ma(x) + (A — »)UMg(x).
Here we have used £ G N G¥) = 0. Hence we have
E (exp(—»Tg)) = lim sup AUMg(x).
A—
But K c G, because Py (Tg < o0) takes pos1t1ve time to get from ¢ to 4.

Hence lim, , E (exp(—»Ty)) = 0. Since lim, , AU = 1, we have, at the same
time,

(2.7) lim )\f uMx,y)dy=1, forx € K.
Ao YG°
Combining (2.5) with (2.7) and u_sing Fatou’s lemma, we get

(238) (1-8)C*(K) < CHK), forv>up.

We have proved (2.2). Since 73(K) < CNK), (2.1) follows from (2.2). The
statement (2.1) together with the monotone property of md with respect to A
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implies that 7 has a vague limit, which we denote by 7. At the same time we
see that wﬁ‘, 74 have vague limits 73, 7, respectively, for each Borel subset B
of S.

Step 2. Let S and 7g° be as in Step 1. We shall show

(29) (1_8)<fs ><<f’ ><<f '”S>

for every nonnegative continuous function f of compact support, where ( f, 7) =
[f(x)m(dx). For the estimate we prepare

(2.10) my(dy) = )\j;:de'x(exp(-)\f‘B), XT,, € dy),

for every Borel subset of E.

Using condition (ii) together with the switching identity, we have
E,(exp(~ATp)) = E,(exp(~ATp)NU(Xp,))

= )\fu*(x, z)[j;dyEAy(exp(—)\’f’B), XT,, € dz)]

So (2.10) follows from the uniqueness of measures of potentials. Now set
H = {x; P(Ty < o) > 8}.
Using (2.3) again, we get

(1) < (Fongy + 08 [ B[exp(~Ny)f(Xy)) de

+||f||)\f E,(exp(—ATy), Xy, € B) dx,

where B = supp( f) N S. The second term on the right is smaller than §(f, 7y
by (2.10). The third term is smaller than || f ||A fHE (exp(— )\TB)) dx. But

Af E,(exp(~ATy)) dx = Afml,,(x)ﬁg(dx) < Afvxl,,(x)ﬁ,;o(dx),

and we can prove lim, _,th My(x) = 0 in the same way as in the proof of (2.6)
for every x € S. Since #% is a bounded measure on E and AU < 1, the
bounded convergence theorem assures that lim,_ A/ UM (x)78(dx) =
Hence we have lim, _, A [, E (exp(— )\TB)) dx = 0. Here we remark a bit on the
support of the limit measure ‘7TB and 7§ in case B is a bounded subset of S.
Since S c Sir N SO0~ supp(wB) C B and supp(#3) € B. So hmx_,oovrB(B) =
the total mass of 7 = 72(B), because B is bounded. Since 7}(B) < 732(B), we
must have 72(B) = 73(B). Note that this fact is used in the preceding. At the
same time we get lim, _, _ 73(B) = 75 (B). The same is true for #5. Anyway we
finished the proof of the first inequality of (2.9). The second inequality is
obvious.
Step 3. We shall continue to study the set S and #g°. We show

(2.11) 7(B) = 7 (B), for every bounded Borel subset B of S.
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Choose an arbitrary disjoint pair of bounded Borel subsets A, B of S. Then,
noting S ¢ S¥,

E,(exp(-ATs), X, € A U B)
= E, (exp(—ATy), Ts = Ty) + Ex(exp(—ATy), Ty = Tp)
= Ex(exp(_}‘TA)’ Tg = Ts) + E.(exp(—ATp), Ty = Tp)
= E, (exp(—ATy)) — E (exp(—ATy), Ts < Ty)
+E,(exp(—ATg)) — E,(exp(—ATg), Ty < Tg).
But
| E (exp(—AT,), Ts < T,) < Ex(exp(_ATS))EXTS(eXP(_ATA))

f (dz)E exp (—ATy), Xz € dy)u"(x, y).

A similar inequality holds for E (exp(—ATg), Tg < Tj). Integrating with respect
to A dx and using condition (ii), it follows that

N [ dx B (exp(~ATy), X € A U B)
> CMA) + CN(B) - fﬂ}(dz)EAz(exp(—}\Ts)) - f'rrg‘(dz)EA'z(exp(—)\flA‘s))

> CMNA) + CN(B) - fﬂf(dz)ﬁz(exp(—ATS)) — [7(dz)E.(exp(~My)).

Using (2.10) as the dual form, we have #3(A U B) > @{‘(A) + #5(B) — {the
remaining term} and hence #P(A U B) > #)(A) + #3(B) — {the remaining
term}. Since S € SU¥, we get 22(A U B) > #P(A) + #F(B) by tending A to
0. (Recall the remark at the end of Step 2.) As the dual form we get

7P(A U B) > 7P(A) + 7F(B). However, 73(A) < 7)(A) in general. We must
have (B) = 73(B). The proof of (2.11) is finished.

Step 4. Now we prove the proposition in the case £ < 1. It is sufficient if we
prove the statement in case B is compact. If 73(B) = 0, then 7$(B) = 0 by
(2.9). Hence 72(B) = 0 by (2.11). Then C*(B) = 0 for all A > 0. The converse is
obvious.

Step 5. Consider the case ¢ =1. Let S,=8S N {x; P(Tgy < 0) <1 — 1/n,
P(Ty < ©0) <1 —1/n}. Clearly, S,18. It follows from (2.11) that 78’5 = 75’
if n > m, where 7|, denotes the restriction of the measure 7 to A. Hence we can
define the limit measure 7 so that =|g = @g° for every n. It is clear that
7(B) = 0 if and only if B is polar in case "B is a Borel subset of S. The proof of
the proposition is complete.
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Note added. After this paper was submitted, the author discovered that (2.2)
had been proved for a class of Markov processes by Rao (1987). Rao’s proof is
different from the one given here.
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