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LARGE DEVIATIONS FOR /2-VALUED
ORNSTEIN-UHLENBECK PROCESSES

By I Iscor! anp D. McDoNALD?

Case Western Reserve University and University of Ottawa

A stationary /2-valued Ornstein-Uhlenbeck process given formally by
dX(t) = —AX(t)dt + V2a dB(t), where A is a positive self-adjoint constant
operator on {2 and B(¢) is a cylindrical Brownian motion on {2, is considered.
An upper bound on P(sup, o, 71l X(#)|| > x) is established and the asymp-
totics for the given bound, as x — oo, is derived.

1. Introduction. Let A be a constant, positive definite, self-adjoint oper-
ator on a real, separable Hilbert space H (in practice /%). We assume that A has
a complete orthonormal family of eigenvectors ¢, corresponding to a set of
positive eigenvalues A,

A, = N\ yoy, k=1,2,....

We study the stationary, weakly continuous solution X(¢) of the equation
(1.0) dX(t) = —AX(t) dt + V2a dB(t),
where B(t) is a cylindrical Brownian motion on H [see Yor (1974)] and a is a
constant, positive operator such that (¢4, vVad,) = Ja,; (¢,Vaed,) =0, i # .
Equation (1.0) with a = I has been studied by Dawson (1972) (see Proposition
5). Also consult Kotelenez (1984a), (1984b) and Dawson (1975). It is worth noting
that the solution X(t) satisfies (1.0) only in the mild sense [see Dawson (1972)]
since B(¢) € H and X(t) € 2(A).

The principal result in this article is the estimate given in Theorem 1.

THEOREM 1. Let T > 0. Assume that Y_,a,/\, < 00, Z¥_,az/A, < o and
that o2, the maximum ratio among (a,/\)¥_,, occurs with multiplicity m. Then

P sup 1 X(2))> %)
te[0,T]

2
<|2K Y akx'"exp(— —zx—z) [T(1 + O(x72)) + O(x72)],
k: (a/Ap)=0® g
where
1/2

K= [(202)m/2+11"(m/2 + 1)]_1 ﬁ [1 - ak/()\koz)]_ ,
k:(ap/A)#a?

and the two O-terms are with respect to x — + oo and are uniform in T > 0.
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It should be noted that the exponential rate is sharp since it is well known
[see, e.g., Donsker and Varadhan (1976)] that for at least fixed T' > 0,

lim x~2log P( sup || X(¢)| > x) =—-—.
x—>00 te[0, T] 20
The asymptotics for the corresponding fixed-time deviation is given in Lemma
4.12 [see (4.14)], where it is shown that
P(|IX(2)|| > x) = 2mKo*x™ % /2 [1 + O(x~%)], asx — oo,

where the O-term is independent of ¢.
Theorem 1 should be compared with the result of Borell (1975) (see Theorem
5.2 therein) which implies that if X(#) is /%-continuous, then

x2
P( sup || X(¢)| > x) < CTe“”exp(— —2),
te[0, T] 20

where c is determined by the median of the distribution of sup, o, | X(?)||
This is obtained by observing that

sup. IIX(t)II— s¢up{<¢ , X(8)): ll¢ll=1,¢€[0,T]}.

te[0
It should also be noted that the probablhty P(sup, ¢ (o, r1l| X(8)|| > x) must
depend not only on E|X(t)|*=X% ,a,/A; but also on the covariance
E[X(0)X(2)] = ZF_1(ar/A)exp(—A t). This dependence appears in the condi-

tion T¥_,aZ/\, < 00; in case the latter series diverges, the O-terms in the
theorem are actually infinite for every positive x and T. It is shown in Iscoe,
Marcus, McDonald, Talagrand and Zinn (1988) that if sup,(a,/A.)(log a,)” < oo
for some r > 1, then X(-) is continuous in H (in fact a sharper result is given).
" Hence Borell’s inequality, though weaker, holds under milder hypotheses than
those of the above theorem.

The idea of the proof of the theorem is summarized as follows. We project
X(t) onto R™ equipped with Euclidean norm |- |, by considering the
“truncated” process X™(t) = (X, (2),..., X,(t)), where X,(t) = {¢,, X(¢)). The
coordinates X,(¢) are stationary, independent Ornstein—Uhlenbeck processes
satisfying

dX,(¢) = =N, X, () dt + 2a, dB,(¢),
where X,(0) ~ N(0, a,/A.), a centered normal random variable with variance
a,/\ ., and are independent; and {B,(-)};_, are independent standard Brownian

motions. Denote the product-multivariate normal density of the law of X"(0) by

w,,

(11) w(x) = [TJema)] “ew( -/ @adl %), rer,

and define
(1.2) r=inf{¢> 0: | X"(¢t)| >x}, 6=T"
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Then
P( sup |X"(¢)] > x) — P(r<T)=P(6r<1)
tef0,T1]
< eEe™
= w(y)E, [e %] d
ef u()E,[e™"]dy
=e[ w(y)u(y)dy,
Rn
where
1.3) u(y) =E,[e ]
In Section 2 we note that u satisfies the boundary value problem
no 9% n du
L(u) = a,—5 — Ay, — = 0u, y| < x,
( ) kgl kayg kgl k kayk l |
u(y)=1’ ly] = x,

where L is the infinitesimal generator associated with the Markov process X . If
we define a bilinear form on the Sobolev space HY(B,) (B, = {y € R™ |y| < x})
by

o1,8) =0 I o+ [ £ anl ()

then by Lemma 2.4, u minimizes a(v,v) among {v € H'(B,)|v(y) =1 for
y € 8B,}. Also by Lemma 2.6, 05 w,(y)u(y) dy = a(u, u). Hence

P( sup |X™(t)| > x) < e[f w,(y) dy + Ta(u, u)]
tel0,T] B;

(1.4)
< e[chwn(y) dy + Ta(v, v)]

for any v € HY(B,) such that v =1 on 9B,.

The next step is to guess a suitable function o. This is done in Section 2. The
asymptotic properties of the resulting estimate (1.4) as n — oo and then x — o
are given in Sections 3 and 4, respectively.

2. The Ansatz. In this section we study and characterize the function u
introduced at (1.3) as the solution to a variational problem, and then estimate
Jim <y Y)u( ) dy, with w, as in (1.1). Also we denote

={yeR™ |y <x}, B)={yeR™]y<x},
9B, =8, = {y €R™ |y| = x};

HY(B,), HX(B,) denote the usual Sobolev spaces and C %%(B,) the usual Holder
spaces [see, e.g., Gilbarg and Trudinger (1983)].
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DEFINITION 2.1. For v € C%%B,),

(21), (Io)(»)= ¥ [a(8%0(5)/352) = Neyi(80(3)/33)], y € BY.

k=1

For v,, v, € H(B,),

a1, 5) 1= 0 [ 0i(5)ou( V) () dy
(2.1), )

n dv,(y) dvy(y)
+ a,w, —_—
Bxk§1 k (y) 3yk 3yk

LEMMA 22. Let u(y) = Eye‘o*, where 7 is defined by (1.2). Then u €
C%%(B,) for any a € (0,1) and is the unique solution to

Lu—-0u=0, inB?
2.3 ’ *’
(2:3) {u =1, onS,.
Proor. The existence of a unique smooth solution to (2.3) is given for
example in Corollary 6.9 of Gilbarg and Trudinger (1983). That u(y) = Eye“”T
solves (2.3) is well known [see Dynkin (1965), Theorem 13.16]. O

LEMMA 24. Letu(y) = E,[e™%"]. Then
a(u, u) = min{a(v,v): v € H(B,), v — 1 € HY(B,)}.

PrROOF. Let K = {v € HY(B,): v — 1 € H}(B,)}. Then K is a closed convex
. subset of HY(B,). Now a(-, -), defined in (2.1),, is clearly a continuous bilinear
form on H'(B,) since w is bounded; a(-, -) is also coercive, i.e., a(v, v) = C||v||3n
for some constant C > 0 and all v € H'(B,), since w, is bounded below away
from zero on B, and the a,’s are positive. In other words, a(-, -) serves as an
inner product on HY(B,) (equivalent to the usual one). By the well-known
projection theorem [see, e.g., Theorem 1 of Section 4 of Chapter 1 of Aubin
(1979) with x there taken as 0], K contains a unique element, say %, of minimal
a(-, +)-norm:
a(@, z) = min{a(v,v): v € K};

u is characterized by the condition a(u, v — #) > 0 for all v € K. Multiply the
equation Lu —0u=0 by w,(v—u). [note: v—u=(v—-1)—-(u—1)¢€
H}(B,).] Integrating over B, and then integrating by parts, using the boundary
condition, yields

(2.5) a(u,v —u) =0 forv € K.

Since u € K, u = u and we are done. O

LeEMMA 2.6. 0[5 u(y)w,(y) dy = a(u, u).
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ProoOF. Simply observe that v = 1 € K, as defined in the proof of Lemma
2.4. Hence by setting v = 1 in (2.5), we obtain the result. O

We conclude this section by (over)estimating a(u, u) by a suitable choice of
candidate v as in Lemma 2.4. Guided by a generalization of some calculations in
Newell (1962), we choose v to be the function

o) = @) [T "M (r)dr, 0s i<z

(2.7)
= 7,(171)/7a(%),
where '
(2’8) Mn(r) = f wn(y) dy:
B,
(29) L(r) = [1(9) T asibl ™ do(2),
k=1
(“do,” is the usual surface measure)
(2.10) n(r) = [ 1) " M(s)ds, 0<rsux
0
for which

(v, 0,) = ﬂvan(y)zwn(y) dy
+ foxfsr%“kwn(y )2(%) 72 £u191) " 30/ 1] M(r)? do(3) dr

= 0f oy wi(2) dy+7a(x) 7" [ 1(r) 1) M) dr

@11) < 0f o () w(y)dy +5(x) "
Bx
Then by Lemma 2.4 and the estimate (2.11),
(2.12) a(u,u) < 0/ 0.(3)w,(y) dy + ,(x) 7" ]
BI

Combining (1.4) and (2.12) we obtain the following estimate.

LEMMA 2.13.

P (01> ) el [ )+ [ ) v+ Do),

REMARK 2.14. With a more clever choice of trial function v,, it may be
possible to relax the hypotheses of the theorem (when {a,}¥-, is unbounded)
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through an improvement of the estimate at (1.4) and (2.12). It is precisely the
nature of the term »,(x) [see (2.11) and (2.10)] which leads to the hypothesis:
Ek=1ak/Ak < 4+ o0 [See (3.3)].

REMARK 2.15. On the other hand we see below that v, is the best choice
among radial functions,

a(u, u) = min{a(v,v): v € HY(B,), v — 1 € H}(B,)}

, < min{a(v*e F,v*o F): v* € H((0, x)), v*(x) =1},
where F(y) = |y|. By direct calculation

a*(v*,v*) = a(v*o F,v*o F)

(2.16)

2

- [ £ 0 (e r)] e @

B =1

= fxfn(r)(ﬂ);-)zdr, using (2.9).

Defining a,*(v*, v*) = a*(v*, v*) + O[f(v*(r))?w*(r) dr, where w*(r) =
d/dr[g w,(y) dy, we see by (2.16) that to obtain an upper bound for a(u, u) it
suffices to consider

(2.17) C(x) = min{a}(v*, v*): v* € HY((0, x)), v*(x) = 1}.

This process of inducing a form like aj} on a simpler (lower dimensional) space
is studied in Iscoe and McDonald (1987) in the context of Dirichlet spaces. In a
one-dimensional setting the asymptotics for C(x) are shown to satisfy

lim »,(x)C(x) =

so the function o, (r; x) = »(r)/v(x) asymptotically achieves the minimum in
(2.17). Consequently v,(y) = v,(|y|; x) is the best choice among radial functions
for minimizing (2.16). For more general F, or other reversible Hunt processes on
R?”, the induced one-dimensional form provides a prescription for writing down
an Ansatz.

Independently, Ichihara (1978) used a similar Ansatz to give conditions for
recurrence of symmetric, n-dimensional diffusions.

3. An estimate for fixed x: n - c0. Throughout this and the next section,
we denote the Fourier transform of an L'-function 11/ R,— R by Y with the
convention

$(¢) = jo Ceitny(r) dr.

LemMA 31. If IP_,a,/\, < o0 and £F_,a2/\, < oo, then with f, given by
(2.9), f = lim, _, [, exists ( pointwise) and is continuous; and f(r) = 2r~'g(r?),
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where g(r) is determined by its Fourier transform,

(3.2) 8(t) = i Z:(l -2 (?\k) )—lk]i:[l(l —2z(zk) )—1/2.

k=1
(Here the square root is defined with a branch cut along the negative real axis.)

ProOOF. Let g,(r) = Vr /2f,/r). Then with o, denoting the usual surface
measure on S,, the sphere of radius r centered at 0 € R”,

2.(t) = fo eivg,(r) dr

0 ., n
= f el f w,(y) Y, a,yido,(y)dr (by achange of variables)
0 S, k=1

= E{exp(it Y 162)[ Y akY,f]} (Where Y, ~ N( = ) are 1ndependent)
E=1 k

J=1

= ¥ a,E[YZexp(itY?)| T1 Ee™
k=1 J*k
n d _
=(-1i) Z ak[—E(exp(itY,f))] [1Eei¥
dt J*k
a, \~V2 -1/2
—(—Z)Zak 1*2z—t Il 1 2icky
Aw Aw

J*k

5 [ n alze —1] n a, -1/2
33) = 1-2i—t¢ 1-2i—t .
09 - | £ 5 -2ye) [ -5
Now since |1 — 2i(a,/Ap)t| = A + 4(aZ/N%)t?)/? the above sum converges
pointwise in ¢ as n — oo, using the hypothesis that Xk_lak/)\k < 0. The
partial product also converges pointwise in ¢ as n — + oo since X¥_,a,/A, <

+ oo [see, e.g., Theorem (15.4) of Rudin (1966) with the estimate lu ()] =
|2ia;t/X )| < 2a t/)\ in the notation of the cited reference]. Also the right-
hand side of (3 3) is dominated in absolute value by the integrable function
Ee-1al/A IS (1 + 4a}t?/N2)~ /4. By Lebesgue’s dominated convergence the-
orem, L'-lim 2, exists and is given by

(3.4) f, (az/A,)( - 2iakt/>\k)‘1H 1°‘°[ (1 - 2ia;t/n,) 7.
k=1 Jj=1

By the Fourier inversion formula

len(r) = gn(r = 12m) " [~ e~1[4,(6) - 8.(0)
@5) < (2n)° f_wlén(t)—é‘m(t)ldt

-0 asm,n— +oo.
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Therefore g := lim,, , , g, exists uniformly on R! and is bounded [replace g,,
in (3.5) by 0 and let n — + 0]. Moreover L'-lim,_, , g, = g. To see this we
estimate

2

rig(r) = (2m)” f_i[‘ e leoa

o _d?
(3.6) = (27) ! f_ — e—58,(t) dt
w | d?
< (277)-1/_00 (1)) dt.

As in the previous paragraph, it can be shown that the right-hand side of (3.6) is
bounded with respect to n. This, along with the pointwise convergence and
uniform boundedness of the {g,}, cn, fulfills the hypotheses of the dominated
convergence theorem, allowing us to conclude (3.2) from (3.3). O

Define for r > 0
(3.7) 1,(r) = f& w,(y) do,(¥);

(3.8) 0u(r; %) = v, (r) /r,(x) [see (2.10)].

LEMMA 3.9. Assuming that T_,a,/\, < oo, then 7 := lim, 7, exists
pointwise and in L\R ,; dr); 7 is continuous and is characterized by

(3.10) n(r) = 2rh(r?),
. where
(3.11) h(t) = kﬁ(l = 2i(ay/Ap)t) "7,

PROOF. Set h,(r) = (2Vr) 'n,(Vr) and calculate
h(t) = fwei"hn(r) dr= fooe“’znn(r) dr
0 0

=E [exp(t Y Ykz” (where ¥, ~ N(0, a,/\,) are independent)
k=1

= k]f[l(1 = 2i(a,/A,)E) "2

By the same argument as in Lemma 3.1 we conclude that

o0

nlglolo iln(t) = ﬁ(t) = kl_[ (1 - 2i(ak/)\k)t)_l/2’

=1

the limit being uniform and in L'. Then as in (3.5) and (3.6) we obtain the
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pointwise and L'-convergence, as n — o, of &, and 7, to & and 7, respectively,
yielding (3.10) and (3.11). O

LEmMA 3.12. If ¥¥_.a,/A, < © and ¥2_,a2/\, < oo, then

() M:=1lim, , M, exists and is differentiable, M(r)= [{n(s)ds and
M(0) =1;
(i) M,(r)/f(r) is uniformly bounded in n and r € [0, R], for each R
(i) » = lim,, _, », exists and is differentiable, v(r) = fO’[M(s)/f(s)] ds;
(iv) Define o(r; x) = v(r)/v(x), then o(r;x) = lim,_ v (r; x) and is
differentiable in r.

Proor. (i) M,(r) = [gn.(s)ds = [Jn(s)ds, as n > oo, by Lemma 3.9; the
L'-convergence of 7, to , as n — oo, also yields the result M(c0) = 1.

(ii) Denote the factorization of g,(t) in (3.3) into a series and a product by
g.(t) = q)n(t)h At) [consistent with (3.11)]. Then

M,(r)/f(r) = M,(r)r/[28,(r?)]
= rj(;rshn(sz)ds/Lr2(pn(r2 —s)h,(s)ds

= r‘/(;rsh,,(.sj)ds/for2s<pn(r2 —s?)h,(s?)ds
<rf "o, (s2)ds / f "250,(r2)h () ds
= r/[2q)1(r2)],

since ¢, > ¢, and ¢, is a multiple of an exponential density; consequently
1(0) > 9,(r) > p,(R) > 0 for r € (0, R].

Qi) 7,(r) = [JIM,(5)/F(s)]ds = [;TM(s)/f(s)]ds, as n — oo, by (i), (i),
Lemma 3.1 and the bounded convergence theorem. Also the integrand in » is
continuous.

(iv) This is an immediate consequence of (iii). O

COROLLARY 3.13.

P sup |X(6)11> %)
tef0, T]

(3.14) ) N
< e{Tu(.vc)_1 + j(;v(r; x)’n(r) dr + L n(r) dr}.

PROOF. By (3.7), (3.8) and Lemma (2.13), .
n * . 2 *
p( sup || X (t)||>x)<e{Tv (x)” +fou,,(r, x) n,,(r)dr+f0n,,(r)dr}.

tef0,T]
Then (3.14) results upon letting n — oo, using Lemma (3.12)(iii), (iv), the
boundedness of v and the LR ,; dr)-convergence of 7, to 7 as n = oo (Lemma
3.9). O
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The asymptotic behaviour in x — oo, of each of the three terms on the
right-hand side of (3.14) will be calculated in Section 4.

ProoF orF THEOREM 1. Combining (3.14) with the results of Lemmas
4.12, 4.16 and 4.23, we obtain (recalling the notational simplification

max, . ,&/A, < @/, = -+ =a,/\ =o02):
P( sup || X(¢)| > x) < ex™e~*"/20%)
te[0,T]

X {T(sz}'::)Iak)h +0(x72)] + O(x72) + O(x‘z)}

xme—xz/(Zaz)

. [M( Lo

k:(ap/A,)=0

x{T[1+0(x72)] + O(x7%)},
where K is given by (4.3). O

4. Asymptotics as x = o0. In this section we calculate the asymptotic
behaviour of each of the three terms in the expression at (3.14), as x — o0, in
Lemmas 4.12, 4.16 and 4.23. We assume for notational simplicity that

and we set z, = —1/(202). Throughout this section we assume that

oo [oe]
Y ay/A, <o and Y al/A, < .
k=1 k=1
The main tool which we use to calculate the asymptotics is the following
theorem taken from Olver [(1974), Theorem 2 therein]; see also Section 3 of the
survey article by Wong (1980).

THEOREM 4.0. Let 8§ € C((0, 0)) and a > 0 such that

() 8(t) ~ X2 _b,t""* L ast—> 0%
(ii) the asymptotic expansion in (i) is infinitely differentiable;
(iii) each of the integrals [er8(™(t)d¢t, n =0,1,2,..., converges uniformly
(as an improper integral) at o, and at 0 if n = 0, for sufficiently large r > 0.
Then

sf[ooei"S(t) dt ~ Y [8exp{(n+ a)7i/2}]T(n + a)r~**9, asr - co.
Y n=0

Lemmas 4.12, 4.16 and 4.23 derive from the following key lemma.
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LEMMA 4.1. Let ¢: R, — R have the Fourier transform

0 ® b . a2 . _
$(6) = [“ep(r)dr=Y 35 (1 - 2i(ay/A)0) " TT (1 - 2i(ar/A)e) ™,
0 k=1"k k=1
where a;, by, A\, > 0 and TF_,a,/A, < 0, LX_1b,/A, < 0. Then
m b
(12) o(r) = K( 5 f)rm/zexp(zor) + A(F)exp(zr),
k=1 "k
where
_ -1/2
- [@ory™2+ip( ™ ] 1 _ @M
(4.3) K [(20 ) r( i 1) k]:[m(l -
and as r = oo,
(4.4) A(r) = O(rm/271),
(4.4) A(r) = O(rm/?-2)

[in (4.4): A(r) = dA(r)/dr].

ProoOF. Set C = X7 ,b,/A, and note that z — z; = (—2¢)(1 + 2(a,/A,)z2),
k =1,2,..., m. By the Mellin inversion formula,

L[ or0(2) a2
q)(’)—g;‘if,e (2) dz,

— 100

where

o0 e bk ak -1 ak _1/2
®(z2) = f e Tp(r)dr= ) —(1 + 2—2) Il (1 + 2—2) ,
(4.5) 0 h1 Mk Ak k=1 Ay
z€ C\ (-, 2],

the principal branch of the square root being understood at (4.5). Write
®(2) = (2 = 20) ™" A(2) + (2 = 20) T Ay(2),

where

. a, -1/2
A(2) = C(=20)"* TT (1~+ 2—2) ,
k>m }‘k

(4.6)

) bk ak -1 ak -1/2
A(2) = (=2)"* ¥ }\—(1 + 2}‘—2) I (1 + 2}\—2)
k>m Mk k k>m* k

and note that A; and A, are analytic in an open neighbourhood of the strip
&= {z € C: 2z, < Re(z) <0}. Therefore, by expanding A, and A, into the
beginning of their Taylor expansions about z, plus analytic remainders, we
obtain

D(z) = ¥(2) + @(2),
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where

!
(47)  ¥(2) = Y c(z—2,)"™* """, 1= integer part of m/2,

n=0
and

_ 3, modd,
(4.8) @,(2) = (2 —2,) "A(2), b= {5’ m even.

In (4.8), A is analytic in an open neighbourhood of & for the appropriate choice

of (¢c,),_o in (4.7); in particular ¢, = A,(2,) = ['(m/2 + 1)KC. Inverting the

transform ¥ by inspection yields
c,

o(r) = Z I(m/2-n+1)

oo

m/2 ng 2ol 4 1
i Y — oo

e"®,(z) dz

(4.9) ‘
=¥(r)+ %fjfwerzél(z) dz.

In case m is odd (or even but ¢, = 0) the terms in (4.7) are absolutely
integrable near z, + ico so we can deform the vertical contour of integration
{Re(z) = 0} [at (4.9)] onto {Re(z) = z,} by Cauchy’s theorem [and Lebesgue’s
dominated convergence theorem for odd m]:

#(r) = ¥(r) + o [* e (2) az

29— 10

(4.10) .
=y(r) + {Efoo e ®, (2, + it) dt}ez"’

(4.11) =¢(r) + Ay(r)e>.

Since ®,(z, + it) ~ LX_qaft" P, as t —» 0* for some sequences (aF)_,, then
Theorem 4.0 yields with « = 1 — p [after transforming the integral [°_ at
(4.9) to one of the form [;° through the change of variables: ¢+ —t] that

A(ry=0(rP"') as r— 0. Also A(r) = Q2n) Y>_e"4d (2, + it)dt and
td,(zy + it) ~ L2 _jaft" P*! as t > 0% which implies, again by Theorem 4.0
that A(r) = O(r?=2), as r - oo.

Set A(r) = Ay(r) + e 2" (Y(r) — [¢o/T(m/2 + 1)]r™/?). Then we obtain the
decomposition at (4.2), such that (4.4) and (4.4)’ hold, using (4.9) and (4.11), the
evaluation ¢, = A,(z,) = I'(m/2 + 1)KC and the estimates of the previous para-
graph

A(r) = O(rP~Y) + O(r™/%71) [seg (4.9)]
=0(r™?71), asr— oo,
A(r) = O(rP=Y) + O(r™/?=1) [see (4.9)]

=0(rm™/?72), asr— c.
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In case m is even and ¢; # 0, it may not be possible to deform the contour of
integration to {Re(z) = z,} due to the presence of the term ¢,(z — z,) ! in the
decomposition (4.7) of ¥, such term not being absolutely integrable near z, & ico.
To alleviate this problem we first integrate by parts,

1 ico
27 J oo

-1

o(r) = [r'e™]®(z) dz

ico "
Tz’ dz.
Py f_iwe (2) dz

We can now repeat the previous analysis with @' = ¥’ + ®{; ¥(z) does not
contain a summand of the form const.(z — z,) 7%,

l
‘P(r) = —p! E [(—m/2 +n-1)/T(m/2—-n+ 2)] cnrm/2—n+1ezor

n=0
—r‘1e2‘>’/2'7rf°0 e ®/(z, + it) dt
— 00
= ¢(r) + e™y(r).
Defining A(r) as before, with A,(r) replacing A(r) we again arrive at the
desired result since ®,(z, + it) is analytic at ¢ = 0 and hence, from Theorem 4.0,
Ay(r) = O(r~2) and Ay(r) = O(r=?), as r > 0. The remainder of the proof in
this case is the same as that of the previous case. O

~We can now proceed to the analysis of each of the terms in the expression
(3.14). We begin with the term [*7n(r)dr. Note that it is the probability
P(|| X(2)|| > x) at a fixed instant ¢ > 0. For this reason we state the asymptotics
in a somewhat finer form than is strictly necessary for Theorem 1 for the sake of
comparison.

LEMMA 4.12. With the constant K given by (4.3),
(4.13) n(r) = 2ma®Kr™'e®"*[1 + Ay(r)],
where A(r) = O(r~2) asr - o and

(4.14) foon(r) dr = 2mKo*x™ % =/ [1 + O(x~?)], asx - .

PRrOOF. In the notation of Lemma 3.9 [see (3.10)], [®n(r) dr = [*2rh(r?) dr.
Now by (3.11),

-1

LCUCER UL Ak(l—z’(xk) ) ﬁ(l—:zi(%)t)_w

k=1 k=1
Bwaemma (4.1), with b, = a, and @(r) = rh(r), we have (7_,a,/A, = mo?)
(4.15) rh(r) = ma?Kr™/ %" + A(r)e>",
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where A(r) satisfies (4.4). Since n(r) = 2rh(ré), (4.13) is an immediate conse-
quence of (4.15), with A(r) = (me2K )~ r=™A(r?).
Integrating by parts yields [z, = —1/(202)]

fooﬂ(r) dr = 2mo*Kx™ %= + 2mKo4f°°ez°'2(r'”_2)'dr

x x

+2ma4Kf°°r’"_1ez°’2AO(r) dr
x
= 2mo*Kx™ %e%% [1 + Ay(x) + Ay(x)],

where

A(x) = xz‘me‘zoxzfooez"’z(r'"”)’dr,

x
Ay(x) = o'2x2‘”’e_2°"2f°°r'”’1e20’2Ao(r) dr.
x
By I'Hopital’s rule A,(x) = O(x~2) and Ay(x) = O(x~2), as x = c0. O
Next we consider the dominant term, »(x) .

LEMMA 4.16. With the constant K defined by (4.3),

(417) »(x)7'= (2K Y ak)x’”e‘xz/(%z)[l +0(x7%)], asx - oo.
k=1

Proor. In the notation of Lemma 3.1, »(r)= [[M(s)/f(s)ds, where
M(r) = [gn(s)ds and f(r) = [2/r]g(r?), where

8(8) = ¥ (a2/A,) (1 = 2i(ap/A,)t) " k]‘[l (1 = 2i(ay/A,)e) 2
k=1 =
By Lemma 4.1, with b, = a2 and ¢(r) = g(r), we have that
(4.18) g(r) = ( Y aZ/Ak)Krm/zeZO’ + A(r)e®",
k=1

where, by (4.4), A(r) = O(r™/?71), as r —> oo. Note that X7 a2/, = 02X _,a,
since a,/A, =o0? for 1 <k < m; we set C:=02L7 ,a,K for brevity. From
(4.18) we derive

1/f(s) = [s/2]/&(s?)
(4.19) = [s/2]C % ™e %% /[1 + O(s72)], ass— w0
= [Cc1/2)s~mt e =" [1 + O(s7%)], ass > oo.
Also, from (4.14) of Lemma 4.12 we derive
M(r) = ['n(s)ds

(4.20) -1- [“u(s) ds

r

=1-e*0(r™2), asr— oo.
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Combining (4.19) and (4.20) we see that
M(s)/f(s) = [C‘l/2]s""“e‘2°sz[1 + O(s‘z)], as s — .

Therefore

o(r) = [1M(s)/i(s)] ds
(4.21) = [c12] [smm+iem =" ds

+[c1/2] f1 "s—m—le=2050(1) ds + fo [ M(s)/f(s)] ds.
Now, integrating by parts,
frs""‘“le‘zos2 ds = frs""(—zo_l/2)(e_z°sz)'ds
1

1

(4.22) .
= r""(—zo‘l/2)e“’°’2 - j;s""_1(20‘1/2)e“’°‘"‘2 ds.

By I’'Hépital’s rule we see that lim, _, [ [fs~™ 'e~%°" ds/r~ ™%~ %""] exists and
is finite and nonzero. This, along with (4.21) and (4.22), implies that

v(r) = j:[M(s)/f(s)] ds = [o2C1/2] rmer /€)1 + 0(r-2)], asr— oo,

since 2z, = —1/(262%). The result given by (4.17) follows immediately upon
inversion, since C = ¢2L7_,a,K. O

Finally, we analyze the term [Jo(r; x)2n(r)dr.
LEMMA 4.23.

fxv(r; x)2q(r) dr = x™e"*/@I0(x7%), asx - co.
0

Proor. Writing a(r) ~ b(r) when lim, , _a(r)/b(r) =1,
v(r) - C r-"e r?/(20%) and "7(7') - C rm—lg —-r? /(2¢%)

by (4.13) and (4.17) for some positive constants C,, C;. Therefore v(r)2n(r) ~
C2Cyr~™" 1" /@) and by 'Hopital’s rule [Fv(r)’n(r) dr ~ Cyx ™™ %e* */@9) for
some positive constant C,. Since v(r; x) = »(r)/v(x),

fv(r x)’n(r) dr ~ Cy %™ —xz/acx—m—zexz/(zaz)

- Cl— 2C3xm—2e—x2/(202),

which is somewhat stronger than the assertion of this lemma. O
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