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SUMS OF INDEPENDENT RANDOM VARIABLES IN
REARRANGEMENT INVARIANT FUNCTION SPACES

By WiLLiaM B. JoHNSON'2 AND G. SCHECHTMAN!
Texas A & M University and The Weizmann Institute of Science

Let X be a quasinormed rearrangement invariant function space on (0, 1)
which contains L,(0,1) for some finite g. There is an extension of X to a
quasinormed rearrangement invariant function space Y on (0, o) so that for
any sequence ( f;)?2; of symmetric random variables on (0, 1), the quasinorm
of X f; in X is equivalent to the quasinorm of f; in Y, where (f,)%, is a
sequence of disjoint functions on (0, o) such that for each i, f; has the same
decreasing rearrangement as f;. When specialized to the case X = L,(0,1),
this result gives new information on the quantitative local structure of L.

1. Introduction. In this article we formalize one aspect of the general
principle that independent random variables behave like disjoint functions. To
illustrate the principle, suppose that ( f,)>_, is a sequence of random variables.
Denote by (f,)>_, a disjointification of (f,)%-, on (0, c0); for example, f, =
[t —[n—1D1(,_,, ) if the f’s are defined on (0,1). The sequence (f,)7_,
appears implicitly in many limit theorems because

iP[fn>t] =meas[§:fn>t],
n=1 n=1

where meas denotes Lebesgue measure on (0, o0). The sequence (f,)%_, also arises
naturally in moment inequalities for ¥%_; f,. Indeed, Rosenthal [19] proved that
for 2 < p < oo, if the f,’s are independent and have mean 0, then ||Z_, f,||, is
equivalent, up to a constant depending on p, to the expression

1/2

) 1/p ©
max ( )y ||f,,||;:) ( > Ilf,,ll‘é’) ,
n=1 n=1

which is the same as
max{ [l 0, 0y> £l 2,0, 0))
with f = ¥%_.f,. In therange 2 < p < o

1F11 = max{ll £l 0, 0005 Il Il 500, 00}
is the natural norm on the rearrangement invariant function space
L,(0,00) N Ly(0, 00),
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790 W. B. JOHNSON AND G. SCHECHTMAN

so Rosenthal’s inequality says, in the language of Banach space theory, that the
basic sequence (f,)%_; in L,(0, ) is equivalent to the sequence (f,)?_, in
L,(0,00) N Ly(O0, o).

Recently Carothers and Dilworth [3] proved an analogous result for some of
the Lorentz spaces; namely, if the f,’s are independent symmetric random
variables, then for 2 <p < o0; 0 < g < 00, X2, f,I| L, .01 IS equivalent to
”Z:zo= 1 fn“ Lp, ¢(0,00) N Ly(0, 0)*

In Section 2 we extend the above results to the appropriate class of quasi-
normed rearrangement invariant function spaces. [A quasinorm is a function
which satisfies the axioms for a norm except that the triangle inequality is
replaced by

(1) ) lle + ¥l < K(llll + [|11)-

We denote by K(X) the smallest constant K which works in (1). A quasinormed
rearrangement invariant function space is a complete quasinormed vector space
(X, ]I+ ID) of measurable functions on (0,1) or on (0, ) such that |1,|| =1 if
meas A = 1, and if g isin X, then f isin X and || f|| < ||g| if f is a measurable
function satisfying f* < g*, where h* denotes the decreasing rearrangement of
the function |A|.] In order to state the theorems precisely, we need to repeat a
definition from Johnson, Maurey, Schechtman and Tzafriri [11]. Given a quasi-
normed rearrangement invariant space X on (0,1), define two quasinormed
spaces Y = Yy and Z = Zy on (0, ) by saying f € Y (respectively, f € Z) if
and only if f*1,, € X and f*1; ., € L1, ) [respectively, f*1p,1 € X and
[*11, ) € Ly(1, )], and set

1/2
1flly = (1710 1% + 11 F*10, ol12) 7,

Nf iz =1F1opllx + 1 F*1, ol

Evidently, || - ||y and || - || ; are quasinorms. If X is normed, both are equivalent
to norms. Indeed, X then satisfies the inequality |-y > |, so ||f|l; is
equivalent to the norm

1F*10,llx + 111l
while || f ||y is equivalent to the norm
1F* 10, pllx + 1112+,
where || - ||, ., is the classical norm on Y, = L,(0, 00) + Ly(0, o) defined by
I ey 4z, = inf{l2ll;, + [I8lls: f= A + &)

Now we can state the generalizations of the inequalities of Rosenthal and
Carothers and Dilworth.

THEOREM 1. Suppose that X is a quasinormed rearrangement invariant
function space on (0,1) such that for some 0 < p < q < oo,

() W1, < fllx<Ifllg

for all f € X. Then there exists a constant C = C(p, q, K(X)) such that if
(fon-, and (g,)r_, are sequences of independent random variables with the
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f,’s symmetric and the g,’s nonnegative, then

(3) an <C| Xt .

= Y =1 lix n=1 lly

(4) <| X & Zgn
Z n=1 X n=1

Moreover, if X is a normed rearrangement invariant space, then (3) holds for
all sequences ( f,)7_, of mean zero independent random variables on (0,1).

REMARK 2. It is a formal consequence of Theorem 1 that inequality (2)
can be weakened to the condition that L, (0,1) C X C L,(0,1), because this
condition implies that the corresponding injections are continuous so that
(2) is satisfied for an equivalent rearrangement invariant quasinorm on (0,1)
Gf 8I1fll, < I llx < CIlf > replace |- |l with max{1/Cl|-|Ix, |l - ||,})- Kalton
pointed out to us that the condition X c L,(0,1) for some p > 0 is automati-
cally satisfied: Just apply the Nikisin factonzatlon theorem [18] to the identity
operator from X into the space of measurable functions on (0,1); Nikisin’s
theorem says that X - 1; € L (E) for some set E of measure 1/2 and some
p > 0. Since X is rearrangement invariant, this implies that X c L,(0,1).

In Section 3 we apply Theorem 1 to the problem of estimating the uniformity
function which arises in the study of the approximation property of L,; indeed,
it was this application which led us to the results in Section 2. The result in
Section 3 suggests that for 1 < p < oo, unlike the cases p = 1 and p = oo [7],
there is a polynomial upper estimate on the uniformity function for L, (see
Section 3 for precise statements).

2. Comparing independent sums to disjoint sums. One natural ap-
proach to proving Theorem 1 for symmetric random variables is to check
inequality (3) for the cases X = L,(0,1), 0 < p < o0, and then use interpolation
to extend to the general case. This is how Carothers and Dilworth [3] proved the
nght-hand side of (3) for L, ,, 2 <p < oo; however, there are some problems
in applying the interpolation theorems we know to the general case we consider
[X is only quasinormed, not normed; we only assume that X contains L0, 1)
for some ¢ < oo rather than that the upper Boyd index of X is finite]. Our more
elementary approach is just to make direct distributional comparisons between
Y f; and Xf,. In fact, after most of our work was completed, Carothers and
Dilworth [4] verified directly the L ,-boundedness for 2 < p < oo of a projection
similar to the projection P in Section 3. This gives an alternate proof of
inequality (3) for X = L,, 1 < p < 2. Probably the Boyd interpolation method
(see [17]) can be modified to give a proof of inequality (3) for normed rearrange-
ment invariant spaces X whose indices are strictly between 1 and oo, but we did
not try to check this.

Before proceeding to the proof of Theorem 1, we recall the connection
between inequalities (3) and (4), which is probably best understood by employing
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the notion of s-convexification (see [17], page 53, for a development of this
theory for general Banach lattices): Given a quasinormed rearrangement invari-
ant space X on some measure space, define for 0 < s < oo the s-convexification
X® of X to be the collection of measurable functions, f, for which |f|*e X
and set

1
I £ llxw = NIF 150"

Thus if X is a quasinormed rearrangement invariant space on (0, 1), then, even
up to equal quasinorms,

(5) (YX)(1/2) = Zyasm, (ZX)(2) = Yyo.

Now if (f;)'., is a symmetric independent sequence in a quasinormed rearrange-
ment invariant space on (0,1) which has finite cotype (see [17], page 72, for a
discussion of cotype), then the Maurey-Khintchine inequality ([17], page 49)
yields that |Xf;||x is equivalent to ||(Z|f;|?)'/?||x. One can then use (5) and
inequality (4) for X@/? to derive inequality (3) for X.

When X does not have finite cotype, the square function argument still works
to derive the left-hand side of (3) from the left-hand side of (4) under a mild
additional assumption which is satisfied by all Banach rearrangement invariant
spaces as well as the classical nonlocally convex quasinormed rearrangement
invariant spaces. (In Section 4 we present an example, due to Kalton, which
shows that the extra assumption is not satisfied by all quasinormed rearrange-
ment invariant spaces.) To prove the left-hand side of (3) in the general case, we
need to repeat part of the argument for the left-hand side of (4) and use the fact
that the left-hand side of (3) is true for L, 0<p<co.

To prove the right-hand side of (3) and (4), we first prove the nght-hand side
of (4) for L,, 0 <p < co. Since L, has finite cotype and L{/? = L, the
Maurey- Khmtchme equivalence dlscussed above applies to glve the rlght-hand
side of (3) for all the L, spaces. [Of course, for L, this equivalence is a well
known and classical consequence of Khintchine’s 1nequahty, so our proofs for
both sides of (3) really use only Khintchine’s inequality instead of its modern
Maurey—-Khintchine version.] A truncation argument then gives the right-hand
side of (3) and (4) for general rearrangement invariant spaces X which satisfy (1).

To prove the left-hand side of (4) and (3), we use the following distributional
inequality from [8], proof of Lemma 3.2, and include the simple proof for
completeness.

LEMMA 3. Let (g,)7-, be nonnegative independent random variables. Then
forall 0 <t < oo,

X, Plg; > t]
1+X* Plg;>t]

Consequently, if also ¥}_, P[g; > 0] < 1, then in any quasinormed rearrange-
ment invariant space X on (0, 1),

28
i=1 X

P[ max g; > t] =

l<i<n

<2K(X)

n
> s
i=1

X
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ProOF. Using the inequality 1 — e™? > /(1 + t), we see that
n
P[ max gi>t] =1-[](1-Plg>1t])

l<i<n i=1

» Plg > t]

1- — Pl g, > .
> exp( El [g;> t]) > T+ Pz 1]

If also X, P[g; > t] < 1, we get for all ¢ > 0,

n n n
meas[Zgi>t = ZP[gi>t]s2P[ maxgi>t] 52P[2gi>t
l<i<n

i=1 i=1 i=1

which yields the “consequently” statement. O

793

We now prove the left-hand side of (4). Assume, without loss of generality,
that P[g; =t] =0foralll <i < n and all real £. We can thus select oo = ¢, >

t;, > -+ >t,=0sothat foreach 1 <j < n,
n
ZP[tJ<gt<tJ—l] =1.
i=1

From Lemma 3
%k

n
( Z gi) 1o,y
i=1

n
Z gi1[8i> 4]
i=1

(6) x *
n n
<2K(X) Zgil[gi>tl] <2K(X)| X &
i=1 X i=1 X
Assuming, as we may, that the “p” in (2) is at most 1, we have
n * n
’( > gi) Lo, || = )y 8l <4
i=1 1 i=1 1
n n n
= E Z gil[tj<gi<tj_1] < z tj—l
j=2i=1 L J=2
n n
<XYIX 8ilrs<g, <t 1)
j=1lli=1 b
n n
<2K(L,) X | X 8dy<g<s, | (byLemma3)
J=1lli=1 p
n n
< 2P Y 8l <gi<t )] (since p < 1)
Jj=1i=1 b
n n
=27 Y gl <27 ¥ & [by (2)].
i=1 p i=1 X
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Combining this with (6), we get the left-hand side of (4):
n n
Y g <(2K(X)+277)| ¥ g
i=1 z i=1
where it is understood that p < 1.
To prove the left-hand side of (3), note that if X satisfies (2), then X1/?

satisfies (2) if p and g are replaced by p/2 and q/2, respectively. Setting
Y= YX’ W= Zx(l/z), we thus get
n 1/2
= ( E Ifi|2 )
v i=1 ya/2

n 1/2
( 5 w)
i=1
1/2 172
< (2K(X0/D) 4 g¥/p)'/? )
X/
n 1/2
( 5 Ifil2)
i=1

where we have assumed p < 2. We now introduce the mild additional hypothesis
mentioned earlier. Assume that X is lattice r-convex for some r > 0; that is,
assume that there is a constant M so that for all sequences (x,)"_; in X,

n 1/r n 1/r
( ) Ixil’) < M( ) leillfx) .
i=1

i=1

’
X

n
L
i=1

Y

2 I
i=1

n
2
2 Ifd
w i=1

< (2K(X) + 2v/P)

I

X

X
We thus have

. e . o\ 1/2
‘(Z |fi|2) =|[|Average .| Y + )
i=1 x i=1
X
n r\1/r
< B(r)|||Average_ .| Y. =+ f;
i=1 X
(by Khintchine’s inequality)
n ry\1/r n
< MB(r)|Average .|| Y +f; =MB(r)| X f| -
i=1 X i=1 lix

This gives the left-hand side of (3) with constant C = MB(r)2K(X) + 2'/7), so
for X = L,, C = 3B(p)2"/? works.

We now prove the left-hand side of (3) in the general case. Since the f;’s are
symmetric and independent, for each ¢ > 0,

l<i<n i=1

P[ max fi>t] s2P[ifi>t].
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Thus applying Lemma 3 with g; =|f,|, we have by the argument for the
“consequently” statement in Lemma 3 that if ¥? | P[|f;| > 0] < 1, then

n n
)Ig2 2 fi
i=1 X i=1 |lx
Just as in the proof of the left-hand side of (4) we choose ¢, so that

Z P[|fi|> tl] =1

i=1

We thus get
n * n
(£1) 100 =] £ 00
, i=1 X i=1 X
©) n "y
<4K(X)| X flussal < 8K(X) >
i=1 X i=1. |lx

The last inequality follows from the fact that for all ¢ > 0,

n n
P[ 2 flppsa| > t} < 2P[ 2> t]-
i=1 i=1

The other term used to define the quasinorm in Yy is no problem because we
know that the left-hand side of (3) is valid for L

n
( Z ft) l(l,oo)
i=1
< 2B(p)4V/P

2 Y,

L f;

i=1

X f;

i=1

< 3B(p)2'/? .
p X
This and (6') give the left-hand side of (3) with C = 8K(X)? + 3B(p)2'/7.

We turn now to the proof of the nght-hand side of (3) and (4). For L,
0 < p <1, the right-hand side of (4) is an easy consequence of the followmg
lemma.

LEMMA 4. Let ( f;)!-, be nonnegative measurable simple functions on [0, ©).
Then ¥7_, £, is in the convex hull of the set of all measurable simple functions on
[0, c0) which have the same distribution as X7, f..

PROOF. An obvious iteration argument reduces the lemma to the following
trivial comment: Suppose that 0 < ¢ < c0, 0 < a, b < 0, and 4 is a function
supported on [2¢, o0). Then

alpy gy + bl o + h = ((a+b)14 , + h)

a+bd

A
+—5((a+0)1,, + h). O
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Recall that a quasinormed rearrangement invariant function space X is said
to be I-concave or simply concave provided X ,\ Ball(X) is convex; equiva-
lently, if

Wf+&lix=Nflix+llglx

for all nonnegative functions f and g in X. Observe that if X is a concave
quasinormed rearrangement invariant function space on [0, 1]; for example, L,
with p < 1, then Z = Zy is also concave (use the easy fact that for f in Z,

1 fllz=1inf{||fLallx + || f1acll,: meas A = 1}).

COROLLARY 5. Let (g,):_, be a sequence of nonnegative functions in a
quasinormed rearrangement invariant function space X on [0,0). If X is
concave, then

n
Zgi

i=1

=
X

’
X

n
Egi
i=1

while if X is normed, then

>
D¢

.

X

n
Zg,-
i=1

n
Z 8
i=1

The second conclusion of Corollary 5 was proved in [11], page 171; the
argument we give here is a bit simpler.

The first conclusion in Corollary 5 gives the right-hand side of (4) with
constant C =1 for X =L,, 0 <p < 1. As mentioned in the Introduction, a
square-function argument then gives the right-hand side of (3) for X = L,
0 < p < 2. This competes the proof of Theorem 1 for L, since Rosenthal’s
original work [19] takes care of the remaining cases.

We break the proof of the right-hand side of (3) and (4) into two cases. Set
S =|X%, f| or S=2X,g,;, depending on whether we are proving (3) or (4),
respectively, and normalize so that ||S||x = 1. For some T = T[p, q, K(X)] to
be specified later we set S, = Sl;g_r.

CaseE 1. ||S||lx = 1/(2K(X)). For definiteness, we prove the right-hand side
of (4). We have

2K(X) <|ISillx < ”S].”q < ”Slug/qu_p/q

so that

[2K(X)] " PT-9/7 < |IS),,-
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Thus, using (4) for L,, we get
1=|Slix < [2K(X)]*PT/P7Y8],
n
PR &

i=1

i

i=1

< [2K(Xx)]¥PT9/P!

Zy,

< [2K(X)]¥PT9/P!

Zx
The proof of the right-hand side of (3) is the same; just replace “Z” by “Y.”

In the proof of Case 2, we use an iterated version of an inequality due to
Hoffmann-Jergensen [9], presented below in Lemmas 6 and 7. (Lemma 7 is more
general than Lemma 6 but gives a worse constant.) Although the arguments are
easy variations of those in [9], we present complete proofs for the convenience of
the reader.

LEMMA 6. Let (8,)5-, be a sequence of nonnegative independent random
variables and set S =Y%_,8,, M =sup,_,.., &, Then, for every positive
integer k and positive real t,

P[S> (2k - 1)t] < P[M > ¢t] + P[S > t]*.

ProoF. Define an increasing sequence of stopping times by 7, = 0,
o= inf{m > 1: XL, g, > ¢}, 1, =inf{m > 72 XL ., 8, > ¢}, ™ =
inf{m > 7,: XL, ., 8 >t},..., with the usual convention inf¢ = co. If S>
(2k — 1)t, then either M > ¢t or else Z?_T‘_l +18i < 2t whenever 7; < . We
thus get !

7) P[S> (2k—1)t] < P[M > t] + P[7, < ].

Now for 1 <j <k,

P['rj< w]=P

T, <oand ) gi>t]

i=7_1+1

=nand ) g;> t]

i=n+1

S
I
(=

Il
18
Y
<3
|

I
18
)
~

Q
|

=n]P[ i g > t]

i=n+1

B
Il
=}

™8

< ¥ P[r,_,=n]P[S>t]

= P[1;_, < ]P[$ > 1].

Iterating, we get that P[7, < c0] < P[S > t]* and the conclusion follows from
(M. O

S
(=}
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LEMMA 7. Let (f,)7-, be a sequence of independent random variables
taking values in some Banach space and set

>

i=j

X

i=n+1

s* = sup
l<j<m<co

* —
,  8¥=sup
m>n

s M= sup|f.
n

Then for every positive integer k and positive real t,

P[s* >2kt] <P[M >t]+ sup P[s*>¢t]*.
0<n<oo
Consequently, -if the f,’s are also symmetric, then
k
P[ > t]) .

Proor. Define an increasing sequence of stopping times by

1),
-1,

with the usual convention inf ¢ = co. Now suppose that 1 <j < n < o0 and fixa
point in the probability space. Let r be the largest integer so that 7, < j and let
m be the smallest integer for which n < r,. Then

i ol > 2kt] <P[M>t]+ (2P[

L fn
n=1

'To=0,

m
™= inf{m >1: Y f;
i—1

m
T, = inf{m >l Y f

i=n+1

m
Ty = inf{m >n:ll Y f

i=1+1

n '7'r-+1_:l 7r+2_1 n
Y=l X fl+uf 0+ X A+ ] XK
i=j i=j i=14,+1 i=Tp_1+1

<2U+M+t+M+ - +t,
which is at most 2m¢ if M < ¢. Thus
P[s* > 2kt] < P[M > t] + P[7, < ].
Now for1 <j <k,

Plri< o] = P['rj_1 < coand s} > t]

0 0
Y Pl =n]P[s}y>¢t]< ¥ P[7;_,=n] sup P[s}>t¢]
n=0 n=0

0<n<ow

=P[7_, <] sup P[s}>t].

0<n<oo
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Thus, by iteration,
P[r,< o] < sup P[s}>t]*,

0<n<oo

which gives the first conclusion of the lemma. When the f,’s are symmetric, a
standard computation yields that for every j and every positive real ¢,

S 1, >tl,
n=1

so the “consequently” statement follows formally from the first conclusion. O

Psy>t] < 2P[

We return to the proof of the right-hand side inequality in (3) and (4).

Cask 2. S|l x < 1/(2K(X)). Setting S, = Sl;g. 71, we have in Case 2 that
ISsll x = 1/(2K(X)). Therefore we get from Lemma 7 for ¢ > (2k) T and hence
for all positive ¢,

(8) P[S, > 2kt] < P[M > t] + (2P[S, > t])*,

where k = k(p, q) will be specified later, S; = Sl;g. 4)-173, M is the maximum
of the g,’s in the proof of (4) and the maximum of the |f,|'s in the proof of (3).
Let S, be a nonnegative random variable such that for all positive ¢,

P[S,> t] = (2P[S, > ¢])*.
Now for all positive ¢, tPP[S > t] <||S||5 < 1, so if pk > q we get
q’2k Ve op \Ph/a-1
pk - q) (7) '
Now choose % so that 2q < pk < 3q. Then if T > 2k, we have
1Syl x < 2%/92RT1.

/q
0
||S4nxsns4nqs(qf t"‘12kt"’"dt) -
@k)"'T

Therefore, from (8) we get

1
_— < — K Ml + 2L T*/apT-1
so that
1
M|y > ———— — 21 *R/app— 1
1Ml 4kK(X)?

Finally, setting T = 2***/9kK( X )?, we have
1 p
5 > 5 -
8kK(X) 249K (X)
This completes the proof of Case 2 and hence of the theorem, because in the

proof of (3) we obviously have || M|y <|X”_,f,|ly and in the proof of (4)
1Ml x < IE7-1 8xllz-

1Ml x =
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REMARK 8. In inequality (3) of Theorem 1, if X is a normed space, then the
assumption that the f;’s are symmetric can be replaced by the weaker assump-
tion that the f;’s all have mean 0. Indeed, just apply (3) to (A,),, where
h;=f,— f* and (f,;*)"_, is a sequence independent of the f;’s having the same
joint distribution as ( f;).,, and note that in Y, (h;)"_, [respectively, (h;) ,]is
equivalent to ( f)? . [resvectivelv. (f)* .1

3. An application to the local theory of L,. First we recall [7] the
uniformity function for the bounded approximation property of L,. Given a
finite-dimensional subspace E of L, and K > 1, let

k,(E,K) = inf{rank(T): T: L, > L,,|T|| < K, Tx = x forx € E
and set
k,(n,K)=sup{k,(E,K):ECL,,dimE =n}.

In [7] it was shown that there is a positive constant 8 so that if E is the span of
n independent Gaussian or Rademacher random variables, then k,(E, K) >
exp(8K ~2n), while k(E, K) > exp(8K2n%*?") if E is spanned by n indepen-
dent symmetric p-stable random variables (1 < p < 2; p* conjugate index to p).
In particular, the uniformity function &,(n, K) admits for any fixed K a lower
estimate which is exponential in n. However, it may be that for 1 < p < oo,
there is a K = K(p) so that k,(n, K) has an upper estimate which is polyno-
mial in n. Here we prove a result which supports this conjecture:

THEOREM 9. Foreachl <p < oo thereis K = K(p) < o0 so that if E is a
subspace of L,, which is spanned by n independent random variables, then there
is a projection P on L, so that ||P|| < K, Px = x for x € E, and dim PL, <
Cn log(n + 1), where C is a constant independent of n and p.

Theorem 1 allows us to reduce Theorem 9 to proving a similar assertion about
the span of disjoint functions in Y, = ¥, . To make this precise, let Y be the
subspace of Y, cons1st1ng of those functions which have mean 0 on [n— 1 n] for
each n =1,2,.... Define the independent stacking operator T, from Y0 into

L,([0,1]%) by
(TLf)(tli t2"'-) = E f(tn +n-— 1)'

n=1

Theorem 1 and Remark 8 say that 7, is an isomorphism for each 1 < p < 0.
Moreover, for 1 <p < oo, TPY;,O is a complemented subspace of L,([0,1])
because 7). is also an isomorphism. Indeed, it is a classical fact that for
2 <p <0, (Ly0,00) N Ly0, 0))* can be identified with Y = L (0, o) +

L,(0, o) via the bilinear form

(1.8 = ["1(0)a(e) de

and Y, (respectively, Y,.) is easily seen [11] to be L,(0, c0) N Ly(0, o) [respec-
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tively, L,(0, ) + Ly(0, o0)] under an equivalent norm. Now define a projection
Q, from Y onto Y by setting

i n
@ =1= X ([ 10|10
IQ,ll < 2 because I — @, is the usual averaging projection onto the closed span
of (1(,_1, ny)n-1- Note also that @ can be identified with @,,., so Y0 and Y2 are
duals to each other for 1 < p < co. Finally, (7, T,.) preserves the relevant

bilinear form on (Y, Y,):

(T,f, Tpe8) = [T,H(E)T,g(Ep..( )

j f(t +n—1)2‘,g(t +n—1)dtdt,..

3

i ff(tn+n— 1)g(t, +n—1)dt,

i [ @) ds =<1

In view of the reﬂexiv1ty of L,, this means that T,Y? & (T,.Y2)" is a direct
sum decomposition of L ([0, 1]°°) (One can of course wnte down explicitly the
projection onto 7,Y? and use Theorem 1 to check its boundedness but we prefer
to emphasize the general principles involved.)

Now suppose that E is a subspace of L, which is spanned by n independent
random variables ( f,)?_;, which we can assume all have mean 0 since we are not
concerned with absolute constants (the span of E and 1, ,, is spanned by 1
and n independent random variables of mean 0). We can also assume that L, is
isometrically embedded into L ([0,1]®) in such a way that f.(%) depends only on
the ith coordinate ¢; of 7, say, f,(f)=h(t;). Let f; in Y be the natural
disjointification of the f;’s; that is,

f,(s)=h,(t,—i+1).
Thus T,f; = f..

In Theorem 10 we shall prove that there is a projection R on Y, so that
Rf;=f,fori=1,2,...,n, ||R| < 3; and dim RY, < Cnlog(n + 1). Thus if S is
a projection from L,([0,1]*) onto Tpro, thenU = T,Q,RT, 1S is an operator on
L ,([0,1]%) with rank at most Cn log(n + 1); Uf; = f; for i = 1,2,..., n; and |[U||
depends only on p. Denoting by V the norm one projection from L,([0,1]*)
onto the original L, space, we have that VU, L, is the identity on the f.’s, has
rank at most Cn log(n + 1) and ||[VU || depends only on p. This shows that
k,(E,K) < Cnlog(n + 1) for K > ||VU|L |I; however, VU,,, need not be a pro-
jection even if U is, and U need not be a projection if RY;,O is not contained in
Y0 Rather than work harder to guarantee that the above constructlons produce
pro_]ectlons for U and VU, L,y We prefer to use the “abstract nonsense” argument

of [16] to complete the proof Since (I — @)Y, is isometrically isomorphic to ,,
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we can in an obvious way extend T, to an isomorphism T from Y, into

L,([0,1]*) & I, (which is another 1somorphlc representation of L [12]). Let S
be the natural extension of S to a projection from L,([0,1]°) & I, onto T,Y, and
set U = T RT 1S. Thus U is a projection on L,[0,1]) & l2 whose range call
it Z, contalns E and has dimension < Cnlog(n + 1), and ||U|| depends only on
p. As in [16], we can choose a projection W on L, with norm at most 2||U|| so
that WVZ = {0} and WL is 2-isomorphic to Z say, 71 Z — WL satisfies
I7ll = 1 and ||77 Y| < 2. Deﬁne U:L,—>Z2,T:Z—- L,by

U =U01-W)+W, T=V,+1(1-UV,).

Then ||U,|, |IT|| depend only on p and U,T = I, so TU, is a projection on L,
with rank at most dim Z < Cnlog(n + 1) which is the identity on E. Thls
completes the reduction of Theorem 9 to Theorem 10, which we now state:

THEOREM 10. Let Y be a normed rearrangement invariant function space on
(0, 0) such that for some 1 < p < oo, ||f|ly = ||f||p if supp f € [0,1}. Suppose
that ( f;){2, are disjointly supported functions in Y with meas[|f|+ 0] <1 for
each i =1,2,...,n. Then for each ¢ > 0 there is a projection P on Y so that
Pf,=f, for i =12,...,n, dim PY < Cnlog(n + 1) and ||P|| <2 + ¢, where
C = C(e) is a constant which is independent of n and p.

PrOOF. Assume, without loss of generality, that |f,|=1 for each i=
1,2,...,n. Then

I il gy <e/mlly < %”1[0,1]”1/ = % ,
so by replacing f; with the normalization of f; (11> e/n]» W€ can via a standa.rd
perturbation argument assume that [0 < |f,| < ¢/n] = ¢ for each i = 1,2,.
Let g, = fly>np set h;=f,—g and let G =UZ,suppg; Smce 1 >
lgilly = llgill , > n(meas[| f;| > n])'/?, measG <1 and thus Il-lly agrees with
| - ||, for functions supported on G. Therefore, there is a norm one projection
Q from Y onto span(g;)’; such that @f = 0if G N supp f = ¢.

Next we chop up each A; into m = 2log(n/¢)/log(1 + €) pieces whose abso-
lute values are “almost two-valued.” Formally, let m be the smallest positive
integer for which n(1 + ¢) ™™ <e/nand fori=1,2,...,n, k=1,2,..., m, set

A= [n(l +e) F<|fl<n@+ s)_kH] .

Recall that if (A;)7, are disjoint sets of finite measure, then span(l a)i-1 s
norm one complemented in any normed rearrangement invariant function space
by the averaging projection. From this it follows easily that if g; is supported on
A, and |g;(s)/g/(t)| < 1 + eforall s and ¢ in A;, then in any normed rearrange-
ment invariant space there is a projection W onto span(g;)”_, with |[W| <1 + &
so that Wf = 0 if f is supported off U™ A Thus in our situation there is a
projection R from Y onto span(flA ), 1h—1 With |R|| <1 + ¢ and Rf = 0 if
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supp f N supp(f; — g;) =¢ for all i = 1,2,...,n. Thus P= Q + R is a projec-
tion from Y onto span( f; s> n)i=1 Y (fila, ), 1 k=1 Which contains span( f;)
and has dimension at most n(m + 1) = C(e)n log(n + 1), and ||P||<2 + ¢ be-
cause @ and R operate on complementary bands of Y. This completes the proof
of Theorem 10. O

REMARK 11. We do not know whether the projection P in Theorem 10 can
be constructed to have norm less than 1 + ¢ instead of 2 + e.

REMARK 12. 'The proof of Theorem 9 yields a complemented superspace PL,
to span( f;)?.; which has a “good” unconditional basis (the superspace is even an
X w space in the sense of Rosenthal [19]), but PL, need not be well isomorphic
to an lp space. However, Bourgain, L1ndenstrauss and Milman [2] recently
proved that every well-complemented d-dimensional subspace of L, embeds into
lk k = d'/? (r = max{p, p*}), as a well-complemented subspace. (Actually, the
case of X7 d » had already been dealt with in [20], where a different polynomial
estimate 1 1n d was obtained.) One can then choose a well-complemented subspace
W of (1 — P)L, so that PL, + W is well isomorphic to l” so PL,+ W is a
well-complemented copy of lk which contains span( f;)_, whose dlmensmn is
polynomial in n. In contradlstmctlon to this, Arias [1] has recently proved that
for some & = ¢(p) > 0, if the f;’s in Theorem 9 are symmetric and satisfy a mild
flatness condition (e.g., they have Gaussian distribution or s-stable distribution
for some p < s < 2), then if E is a superspace in L, of span(f;)_, which is
1 + e-isomorphic to l” then k& > a” for some constant a > 1 (a depends on the
degree of flatness of the f;’s, on g and on p).

4. Appendix. In [13], Example 2.4, Kalton gave an example of a quasi-
normed lattice which is not lattice p-convex for any p > 0. By taking /,-sums of
finite-dimensional sublattices of his example, it follows that there are quasi-
normed spaces with a 1-unconditional boundedly complete basis which are not
lattice p-convex for any p > 0. Recently, Kalton pointed out to us that there are
rearrangement invariant spaces exhibiting the same phenomena which contain
Ly0,1). This is a formal consequence of his earlier example and the following
theorem, which is a generalization to the quasinormed setting of a result proved
in [11] for normed spaces.

THEOREM 13 (Kalton). Let E be a quasinormed space with a 1-uncondi-
tional basis (e;).,. Then E is isomorphic to a sublattice F of a quasinormed
rearrangement invariant space X on (0,1) such that L, c X c L, for all r > 2.
If the unconditional basis for F is boundedly complete, then F is complemented
in X.
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Proor. By a theorem of Aoki and Rolewicz (cf. [15], page 7) there exist
0 <p <1 and a constant M so that if Y is any quasinormed space for which
K(Y) < 4K(E), then

n 1/p
In+y+ oyl < M( > Ilyill") .

i=1

Choose 1 = a, > a, > -+ >0 with a,,, <27 'a, and
o k-1 » 00 » /p .
Y Y (aai)+ X (aje:Y) = A < [8MK(E)] "
k=1 j=1 J=k+1

For a measurable function f on (0,1), define

Z byey,

k=1

1fllx = sup

n

b

E

where

v =y f""f (t)dt.

If h=f+ g, then A*(¢) < 2[ f*(t/2) + g*(t/2)] so ||f||x is a quasinorm and
K(X) < 4K(E). Clearly, X is a complete quasinormed rearrangement invariant
function space on (0,1) with L, ¢ X c L, for all r > 2.

Set g, = a; 1y ,2; and suppose that c; > 0. Then

o0 o0
Y gl = > dies|
k=1 X k=1 E
where
k-1
dy=c,+ ) aaj'c; + E a;a;’c;.
j=1 J=k+1
So
o0
0<d, - Z aya;t + Z ajart || X cren
J=k+1 = E
and
o0 o0
Y die,| <K(E)Q+ MA)| Y cies
k=1 E k=1 E
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Set hj, = a; 1,2, oz; and suppose that ¢, > 0. Then

)

Z crhy,

k=1

0

Y g — K(X)

k=1 X

o0
Z Crer
k=1

0

Y cu(gr = ki)

k=1

K(X) >

X

X

>

E

0 k 0
-K(X)|| X ck( Yy a;la,:la,f+lej+ Yy a;lajej)
k=1 \j=1 J=k+1 E

o0
Z Crep
k=1

E

w [J—1 )
-1 -1,-1,2
Y| X aarle+ Y cajlaylal,,e;
j=1\k=1 k=j

—K(X)

E

1%

o [J-1 00 PP
1- K(X)M Z(Z Pla;+ Za;lazla}iﬂ) }

Jj=1\k=1 k=j

X

[oe]
Z Crr
k=1

E

> 2
E

0
Z Crer
k=1

> [1 - K(X)MA]

0
Y cren
k=1

E

Therefore, for all ¢, > 0, and hence for all scalars c, we have
00
Y cien
k=1

that is, the map e, — h, extends to an isomorphism from E onto the closed
sublattice of X generated by (&,)%-;-

Since it is easily verified that X has Kalton’s property (d) [14], there is a
continuous averaging projection from X onto the closed span of (A,)7-, if
(e,)¥-, is a boundedly complete basic sequence. O

0

Z cphy,

k=1

o0
Z Crer,
k=1

[8K(E)] " < K(E)[1 + MA]

X

<
E

.
b

E

REMARK 14. It is evident that the above construction can be modified to
guarantee that L, c X c L, for all r > 1.

5. Concluding remarks. After the first version of this article was submit-
ted, we came across a comparison result of de la Pefa [5] (since replaced by [6])
which can be deduced from Theorem 1 and Corollary 5. Suppose that (A,)7_, is
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a sequence of nonnegative random variables on (0,1) and (g,)™_, is a sequence of
independent random variables on (0,1) such that for each n, g, has the same
distribution as A,. Let X be a quasinormed rearrangement invariant function
space on (0,1) which satisfies condition (2) of Theorem 1. Corollary 5 and
Theorem 1 imply that if X is 1-concave, then

m

m
(9) Z h Z gn s Z gn, b
n=1 X n=1 n=1 X
while if X is normed, then
m m
n=1 X n=1 VA n=1

If (d,);-, is a sequence of mean zero random variables on (0,1) and ( f,)™_, is a
sequence of independent random variables on (0, 1) such that for each n, f, has
the same distribution as d,,, then by applying the left-hand sides of (9) and (10)
to (|d,|?)™_, in the 1 /2 convexification of X we get from Theorem 1 that if X is
2-concave (i.e., X1/? is concave) and normed, then

Zf

n=1

(11) I18(e)llx < <=

Y

X fa
n=1

X

while if X is 2-convex (i.e., X/? is a normed space), then

(12) 1S(d)lx = >C f i

n=1

L,
n=1

X

where S*(d) = I™_,|d,|*> defines the usual square function of the sequence
(d,)r-,. Now let ¢ be a symmetric convex Orlicz function such that ¢(|s|'/?) is
concave for some g < oo (it is well known and easy to see that every convex
Orlicz function which satisfies the A, condition is equivalent to such a function)
and for ¢ > 0 define the unit ball of a normed space X on (0,1) to be all those
random variables, f, on (0,1) for which E¢(|f|) < ¢. 'I‘um X into a normed
rearrangement invariant space X, by dividing the X -norm of / by the X -norm
of 1 ;) (recall that our deﬁmtlon of rearrangement mvanant space requires that
the norm of 1(0 1 be 1). All the spaces X, for ¢ > 0 satisfy (4) with any ¢ for
which ¢(|s|}/7) is concave and, of course, w1th b = 1. Therefore, when ¢ = 2, (11)
holds with the same constant C for all the spaces X,. Translated back to
expectations, this means that when ¢(|s|'/2) is concave,

(19) Ba(s(a) s oo 3 1.

n=1
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Similarly, when ¢(|s|/?) is convex, we get from (12)
1 m
(1) Ba(s(a) = gEo| £ 1.
n=1

The inequalities (13) and (14) are what de la Pefia [5] proved, except that he
assumed that (d,)™, is a martingale difference sequence. This allowed him to
apply the Burkholder-Davis—Gundy convex function inequality and state (13)
and (14) with the square function of the martingale replaced by the maximal
function. It turns out that there is a generalization of the convex function
inequality for normed rearrangement invariant function spaces: We checked
recently [10] that the norm of the square function of every martingale is
equivalent to the norm of the maximal function in a normed rearrangement
invariant function space if and only if the upper Boyd index (cf. [17]) of the
space is finite.
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