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THE MAXIMUM OF A GAUSSIAN PROCESS WITH NONCONSTANT
VARIANCE: A SHARP BOUND FOR THE DISTRIBUTION TAIL

By SiMEON M. BERMAN! AND NoR10 KONO
New York University and Kyoto University

Let X(2),0 < t < 1, be a real separable Gaussian process with mean 0 and
continuous covariance function and put o%(t) = EX%(t). Under the well
known conditions of Fernique and Dudley, the sample functions are continu-
ous and there are explicit asymptotic upper bounds for the probability
P(maxg 11 X(¢) = u) for u > oo. Suppose that there is a point 7,0 <7 < 1,
such that 6%(¢) has a unique maximum value at ¢ = r and put o = o(r). The
main result is a sharpening of the standard asymptotic upper bounds for
P(max, 1 X(¢) > u) to take into account the existence of the unique maxi-
mum of a(¢). Indeed, when the order of the standard bound exceeds that of
the obvious lower bound P(X(7) > u), the upper asymptotic bound is shown
to be reducible by the factor fjexp(—uZg(t)) dt, with g(¢) = (1/0)(1/a(¢) —
1/0), where 5(¢) is an arbitrary majorant of o(¢) satisfying certain general
conditions. For a large class of processes the asymptotic order of the bound
obtained in this way cannot be further reduced. The results are illustrated by
applications to the ordinary Brownian motion and the Brownian bridge.

1. Introduction and summary. Let X(¢), t € T, be a centered Gaussian
random field, where T is some space. Define a pseudometric dy(s,t) =
(E(X(s) — X(t))®>)? on T and assume that T is compact with respect to the
pseudometric, that is, for any e > 0, it contains a finite e-net. Under this
condition there exists a separable version of the field with respect to any
countable dense subset [Fernique (1975)]. We denote by N (S, €) the minimum
cardinality of the set of balls of radius at most ¢ which cover a subset S
of T. Throughout this paper we assume Dudley’s condition: Put H(x) =
max(y/log x,1) and assume

(1.1) Qy(T, x) = fo *PH(Ng(T, ¢)) de < oo

for x > 0. This implies that the sample functions are continuous on T with
probability 1 [Dudley (1967)]. When T is an interval on the real line, say
T = [0,1], another condition, due to Fernique (1964), is known. Let ¢ be a
nondecreasing continuous function such that ¢(0) = 0 and

(1.2) dy(s,t) <o¢(s—t) fors,teT.
If
(1.3) Qp(x) = jo “o(xe~?) dt < oo
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for x = 1, then the sample functions are almost surely continuous on 7. It is well
known that (1.3) implies (1.1). Let @3', @' and ¢! represent the usual
inverses of the corresponding monotonic functions. Define a%(¢) = EX?(¢).

Our main result is

THEOREM 1.1. Let X(t), t€ T =[0,1], be a centered Gaussian process
satisfying (1.1) and let ¢ be defined as in (1.2). We assume that there is a unique
point 7,0 < t < 1, such that o(7) = max(o(¢t), 0 < t < 1), and we put

(1.4) o=oa(r).
Let 6(t) be a continuous function on [0,1] with the following properties:

(i) o(¢t) has a unique maximum at t = 1 and () = o.
(1.5) (ii) o(t) < a(t), forall 0 < t < 1.
’ (iii) o(t) is nondecreasing for 0 < t < 1 and nonincreasing
forr<t<1.

Define
(1.6) g(t)=(1/0)(1/5(¢t) —1/0), O<t<]l,
and
(1.7) Y(u) = (27) e 2/, u>o0,
and

q(u) = 4Qp(1/u)), u>0, under(1.1) alone,
(1.8) = ¢ YQp'(1/w)), u>0, or=Qz'(1/u),u>0,
under (1.1) and (1.3).
Then
P(max, . X(t) > u
(19) lilrtrlszp ‘I'(u/o){(l + (e/T;](t(t)))j(,le")‘zg(‘) dt}
where the constant K(o) is defined as follows:
K\(0) = exp(32/2 /0%)(1 + 1/(2V7)),
K,(o) = (exp(2/0®) + (Y2 + 1)/ 270 )exp(16(2 + v2) /0?)

< 2K(o)

and
(1.10) K (o) = max[K,(0), K,(0)].

The proof of the theorem is given in Section 3.

REMARK 1. The condition (1.2) and the continuity of ¢ imply the continuity
of a?(t) = EX?(¢).
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REMARK 2. A function ¢ with the properties (1.5) exists; for example, there
is

o(¢) = max o(s), 0<tx<m,
O<s<t
=o¢— min (6 —0o(s)), r<t<l.
T<s<t

Let ®(x) be the standard normal distribution function and ®’(x) its density
function. We recall the well known inequality

(1.11) 1-®(x) <x'®(x) =¥(x) forx>0.

We briefly indicate the relation of Theorem 1.1 to recent work. For any closed
subinterval S of [0,1], put oy = max,.go(¢). Berman (1985b) showed that
P(maxgX(t) > u) is of the order ¥(u/05)/Qr'(1/u) for u — co. Then he
showed that this result is sharp by furnishing a class of stationary Gaussian
processes for which P(maxgX(t) > u) is exactly of the given order. More
recently, Berman (1985c) showed that the bound can be cut to the factor
¥(u/0g) alone if o(¢) has a relatively sharp spike at its maximum value. The
assumption was that the ratio

(1.12) E(X(2) - X(5))*/Io(t) = o(s)|

tends to 0 at a specified rate for s, ¢ » 7. The reason for the reduction in the
asymptotic bound is that the spike of o(¢) causes the value of X(7) to dominate
all other values in a small neighborhood of 7. More recent results in this area
have been obtained by Dobric, Marcus and Weber (1988) and Talagrand (1988).

The contribution of this paper has two parts: 1. It furnishes an asymptotic
bound for P(max X(t) > u) in the case where o(¢#) has a unique maximum
without other conditions. 2. While the results of Berman (1985b, c¢) were proved
under the assumption (1.3), the current results are valid under the more general
assumption (1.1).

In Section 4 we show that for a large class of Gaussian processes, the
asymptotic bound of Theorem 1.1 is actually attained and so the bound cannot,
in general, be asymptotically improved.

2. Preliminary results. First we prove a lemma concerning the bivariate
normal distribution which will be used to extend the results in Berman [(1985b),
Corollary 3.1] for n = 1.

LEMMA 2.1. Let X and Y be random variables having a bivariate normal
distribution with mean 0, variance 1 and correlation r. We assume that

(2.1) e= (E(x-Y)»)”

Then, for
(2.2) 0<ex <y,

<1
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we have

(2.3) P(X2x+ey,Y<x)<2¥(x+ey)¥((y—ex)/2).
Proor. It follows from (2.1) and the definition of r that

(2.4) e=(21-r))"? and

1
2
Let P represent the left-hand member of (2.3). Then, by the independence of
X — rY and Y it follows that

<r<l.

P=fx P(X > x + ey|Y = ¢) d®(¢)
(2.5) i

—f ( X-rY x+ey—rt do(2).

1/2 2 (1- r2)1/2

For t < x, we have the elementary 1nequalities

(x+ey—rt)1—r2) 2> (ey+ 1 —r)x)1 - r2) 2

= (V2y +ex/V2)(1+1)7* [by (24)]
>y+ex/2>(y+ex)/2>0.

It then follows that the last member of (2.5) is, by application of (1.11), at most
equal to

26) f (1-r2)

—oX tey—rt

/2
xX+ey—rt
P’ )7 )(D’(t) dt.

Since the function ®'((z — ro)(1 — r?)~¥2)®’(v) is symmetrxc in u and v, the
integral (2.6) is equal to

9.7 X (1—7‘2)1/2
(2.7) f_oox+ey—rt

o'(x + ey)‘I)’((t —r(x+ey))(1 - r2)_1/2) dt.
For t < x we have the elementary inequalities
<(@-r)x—ery)1-r?
= (ex — 2ry)(2 + 2r) % [by (2.1)]

(ex —y)2+7r)"V? (fory>0andr>1)

—(y—ex)/2 (for y > ex).
Thus, by another application of (1.11) and the symmetry of ®’(x) we find that
(2.7) is at most equal to

2¥(x + sy)f

—-1/2 -1/2

t—r(x+ey)1-r?)

IA

IA

- w)/zd@(t)(l _ r2)—1/2

<2(1 - r)" "W (x + ey)¥((y — ex)/2).
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By (1 — r?)/2 < (21 — r))/? and (2.4), the last member displayed above is at
most equal to the right-hand member of (2.3). O

The proof of the following lemma is based on Lemma 2.1 and the idea of the
proof of a theorem of Sirao (1960).

LEMMA 2.2. Let X(t), t € T, be a centered Gaussian random field, where T
is compact in the pseudometric dy(s,t) = (E(X(s) — X(t))?)/2. We assume
that there are constants o> and G2 such that
(2.8) 0<o0?< EX%*(t) <o® forallte T.

Then the inequality

[o2]
PlsupX(t) = x+ ) g,

teT n=1
(2.9) w
< Nx(T,06,)¥(x/5) + X Nx(T,qe,)p,

n=2

holds under the conditions

(2.10) 0< -+ <g<g<1 and ¢ ) ¢,<1,

n=1
(2.11) 0<A <A< -+ and 0<2gx <A,
where
4e,_,5%xp(—x2/25% — (N,_, — 2¢,_,x)°/(3252
(2.12) P, = 1 p( / ( 1 1 ) /( )) .

T(Apoy + 6y 1X) (Ao = 26,_1%)
ProOOF. Define a new random field Y(¢) = X(¢)/0(t) and the corresponding
pseudometric dy(s, y) = (E(Y(s) — Y(¢))®)'/2. Then we have
dy(s,t) =2 - 2E(X(s)X(t))/(a(s)a(t))
= [d%(s,2) = (o(s) = o(2))"] /(a(t)a(s))
< di(s,t)/a”
It follows that Ny(S, €) < Ny (S, o¢) for any ¢ > 0. Denote by S, a set of the

centers of balls of radius < ¢, with respect to the distance dy which cover T
and such that the cardinality is equal to Ny(T, ¢,).
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Setting

A= {sup Y(¢) 2x/5+ Y ej}\j/c?},
teT j=1

A,

{rtna;s}fY(t) >x/6 + i £j}\j/5},

Jj=1
n—1
A = Y(¢t) >x/0 + A./a),
n {?éag’f (t) > x/5 Ele, ,/o}

where ¥9_, means 0, we have

teT Jj=1

{supX(t) >x+ ) ej)\j} CcA

and

P(A) = lim P(A,) < liminf P(A,).
We also have

P(An) < P(An—l) + P(An n A::t—l),

n—2
A,nA_c U {Y(t) >x/G+ ) eN/6+¢, N, /0,
tes, Jj=1
n—2
and Y(¢') <x/a+ Y, £joj/6},

Jj=1

where t' € S

.1 is taken so that dy(¢,¢) <e,_, and n > 2. Applying Lemma
2.1 by setting

n—2

X, =%x/6+ ) e\;/3, Y =A,_./7, e=dy(t, t) <e,_,,
Jj=1

we have
P(Y(¢t) > x, + ey,, Y(¢') <x,)

= 2e¥(x, + 3,)¥(( 5, — &x,,)/2).
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Taking account of conditions (2.10) and (2.11), we have
e( 2, + ex,) (0, — ex,)

= en—l( yn + En—lxn)_l(yn - £n—1xn)_1
-1 -1

n—2 n—2
= en_lc?z{}\n_l + en_l(x + ) ej}\j)} {}\n_l —ealx+ X ej}\j)}
: =

Jj=1

o -1
-9 -1
<, 0 (>\n—1 + £n—lx) (An—l — &y X €y Ay Z Ej)
Jj=1

< 2¢, 152N,y + en-1%) (Apoy = 26,_0%)
As a consequence of the preceding estimates we obtain
P(A,NA; 1) < Ny(T, &,)p, < Nx(T, 0¢,)p,
and
P(A;) < Nx(T, 05,)¥(x/5).
This completes the proof of the lemma. O

LEMMA 2.3. Let X(t), t € T, be a centered Gaussian random field satisfying
(1.1). (Then there is a version with continuous sample functions, so that “sup”
may be replaced by “max”.) We also assume the existence of constants ¢ and o
such that (2.8) holds. Then, for all numbers a and x such that

(2.13) 0<a<l, ax<4/23,
we have

(2.14) P(?’ea%‘x(t) > x + 32/2(5/0)Qp(T, ag/2))

< (Ny(T, ag/2) + 27"~ /2)¥(x/5).

PrROOF. In Lemma 22 set ¢, = a2 ", where 0 <a <1 and A, =
8y2 GH(Ny(T, gt ,)). Then we have

co
Y e, < 32\/5(6/g)/ag/4H(NX(T, e)) de.
n=1 0
By applying Lemma 2.2 under the conditions

0<a<l, O0<ax<4/25<A)\/2,

we have

P(maxX(t) = x + 32/2(5/0)Qulae/2))

(2.15) i
= NX(T’ ag/2)\1,(x/6) + Z NX(T’ Qen)pn'

n=2
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Let us estimate the last term in the inequality above. The preceding defini-
tions imply

Ano1 = 8V2GH(Ny(T, ge,)) = 8/25

and
2e,_x <2ex=ax <425 <A,_,/2.
Therefore,
M1 — 26,1 x 2N, /2> 4/25,
A1+ e X=X, >8/25
and

(Anoy — 2¢,_4%)"/(3257) = N, _,/(12857) > log Ny(T, oe,,).

Using these inequalities to estimate the coefficients p, [see (2.12)] in (2.15), we
find that the last term is at most equal to

o0 N
477! Z Ny (T, an)sn—152(>‘n—1 + En—lx)_l(xn—l - zen—lx)_l

n=2
xexp{ —x%/(26%) — (A,_, — 2¢,_,x)*/(3252)}
< (167) 'aexp(—x2/(25%)) ¥ 27D
n=2
< 2'3/217‘16exp(—x2/(262))/x (for ax < 4/25)
= @2V7) ¥(x/5).
It follows from this estimate that (2.15) implies (2.14). O

COROLLARY 2.1. Put T = [b, c], a real interval, and assume the conditions
of Lemma 2.3. For any subinterval S of T, define |S| = length of S and
6%(S) = max, . gE(X(¢))% Then

P(maxgX(¢t) > u)

(2.16) hum_)sol:p . |S|5¢s}11(12251(1/u)) ¥(2/5(3)) < K,(o)
and
(2.17)  limsup sup qS‘l(QBl(l/u))P(rilaxsX(t) > u)
u=oo i 1826 (@51 /u) IS|¥(u/a(S))
< Ky(9).

Proor. The hypothesis of a unique maximum and the continuity of ¢(¢) see
Section 1, Remark 1) imply that N(T, ¢) = oo for ¢ = 0. Indeed, N = lim N(T, ¢)
certainly exists for ¢ = 0 because N(T, ¢) is nonincreasing. We will suppose that
N is finite and deduce a contradiction. Since N(T, ¢) is integer valued, we have
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N(T,e) = N for all small ¢ > 0. Thus, for every such &, there is an enet
containing N points. Letting ¢ = 0 and applying the compactness of [b, c] in
the pseudometric dy, we conclude that [, c] has a dense finite subset ¢, < ¢, <

- < ty. In particular there is a j, 1 <j < N, such that dx(t;, 7) = 0. Hence,
by the assumed uniqueness of the maximum it follows that T =1¢; and,
furthermore, that dy (¢, ¢,) > 0 if ¢, # ¢;. Thus, 7 = ¢; is an isolated point of
[b,c]): There exists § > 0 such that dX(s T)=8>0 for all s # 7. But this
contradicts the continuity of o(¢) at 7. Hence, the assumption N < oo is
impossible and so we conclude that N = co.

The conclusion of the last paragraph implies that there exists ¢ such that

g/42e>0 and H(Nyg(T,e)) =1/(/2¢?).
By Lemma 2.3 for any subinterval S of T, a and x such that
(2.18) 0<a<1l and ax < 4/25(S),

we have

P(maxX(t) > x + 322 (5(S)/a)Qp(S, ao/2))

teS
< Nx(S, ag/2) + (1/(2Vm))¥(x/5(S)).

Since @, is nondecreasing in sets S, it follows that

P(maxX(¢) 2 x + 32/2(3(S)/2)Qu(T, ag/2))
(2.19) tes

< [Nx(8, ao/2) + (1/(27))] ¥(x/5(S)).

Now for x > 1/Qy(T,2¢), choose a such that Q(T, as/2) = 1/x. Since
Qp(T,- ) is continuous and nondecreasing, it follows from the definition of ¢ that
a < 4g¢/0 < 1 and, in addition,

1/x = Qu(T, ag/?2) = acH(Ny(T, ag/4)) /4 = a/(4/20),

which implies that ax < 4/2 0 < 4y25(S). This implies that the conditions in
(2.18) are satisfied.
In (2.19) above set

(2.20) u=2x+32/2(5(S)/a)/x.

Then x < u and so Q;'(1/u) < Q;'(1/x) = ag/2. Thus, if |S| < ¢~ Y(Qp(1/u)),
then ¢(|S|) < ag/2 and so Ny (S, ag/2) = 1. It then follows from (2.19) that

(2.21) P(maécX(t) > u) < (1+ (/) ) ¥(x/5(8)).
te
From (2.20) and the fact that x < u it follows that

¥(x/5(S))/%(u/5(S)) < (u/x)exp[32/2 /o? + (3202 /a)’ /7]
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and so (2.21) implies

Plnagx(0 ) = 1+ ) o 5
(2.22) 2
ol (222

The relation above continues to hold if, in (2.20), 6(8S) is replaced by &. The
relation (2.16) now follows.

For the proof of (2.17), it suffices to make a small alteration in the preceding
argument. If |S| > ¢"(@p'(1/u)), then S may be written as the union of at
most

1S1/6~1(Qp'(1/u)) + 1 ‘
intervals, each of length at most ¢ %Qp'(1/u)). Therefore, Ny (S, as/2) <

IS|/¢~%(Qp'(1/u)) + 1 and so, in the previous estimate (2.22), we replace the
factor (1 + (2Vr)~!) by

11/~ (Qp (1 /u)) + 2 + (2Vm) .

The passage to the limit in (2.17) is now analogous to that in (2.16). This
completes the proof of the corollary. O

The next lemma is a modification of Berman [(1985b), Theorem 3.1].

LEMMA 2.4. Under the same conditions as Lemma 2.3, but with the assump-
tion (1.3) in place of (1.1): For all numbers a and x such that

d(ae¥") <g,  32(2 +V2)Qu(a)d(ae ") < 0%/5,

(2.23) o(ae~%7")x < 8/25,
we have

p( max X(¢) > x + 16(2 + ﬁ)(&/g)ZQF(a))
(2.24) < Ny (T, ¢(ae™2""))¥(x/5)

+7 V¥ (x/5) Y 27"/% ¥ /TNy (T, ¢(ae~2'/7")).

n=2
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ProorF. We aim to apply Lemma 2.2 with
e, =¢(ae™”/") /g and A, =8/220D*(5/q).

With the exception of the second relation in (2.10), the conditions (2.10) and
(2.11) hold for (¢,) and (A,,) as direct consequences of the assumptions in (2.23).
The second condition in (2.10) requires the following verifying calculation:

n=1

n=1

=16(2 + v2) Y Go(ae2"/7) (272 — 2(»~1/2) /g2

< 16(2 +v2)(5/0)*Qr(a).

The conditions in (2.23) also imply 2¢;x < A;/2 and so 2¢,_,x < A,_;/2, and
hence A,,_; — 2¢,_,x = A,,_;/2. It then follows that

(Apy — 28,-1%)7/(325%) = 2"/a* > 27/5°
and
RN O en—lx)_l(xn—l - 2£n—lx)_1 <x YAl - 2“";;—1-95)_1
<2/(xh, ;) = 27"*9%/(5x)
and so p, in (2.12) satisfies
p, < 7 V% ¥(x/5)27 " % /T,

This completes the proof. O
As a corollary we have

COROLLARY 2.2. Assume the same conditions as in the hypothesis of Lemma
2.4. Then

. lmsup sup —
u—oo s js<@iiasm  Y(#/9(S))

< Ky(a)

and

Qr'(1/u)P(max, g X(¢) > u)

(2.26) limsup sup ST (2/5(S)) <

u=oo  §:|S|>Qpl1/u)

K,y(9).

PROOF. Let us show that the conclusion (2.24) holds also for any subinterval
S of T after the replacement of 6 by o(S) for the appropriate values of a
and x. Choose a: Qp(a) = 1/x. For x satisfying x% > 32(/2 + 1)(a/0)? >
32(y2 + 1)(5(8S)/0)? we have

(1/%) = Qu(a) = [ 2/ (ae™?) dt = (V2 /5(S))(ae™ 7).
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It follows that
¢(ae ") < 5(8)/(V2x) < g,
32(2 + V2 ) ¢(ae~27") /x < 32(2 + v2)3(S) /(V2x2%) < 62/5(S)
and
o(ae~?"")x = 5(8)/V2 < 8/25(8S).

Thus, the inequalities in (2.23) with (S) in the place of & are satisfied and so
(2.24) holds with the same replacement.
Define

(2.27) u=x+16(2 + v2)(5(S)/a)’/x.

Then note that for every ¢ > 0, we have Ny (S, ¢(¢)) < |S|/t + 1. From this and
from the definition of a it follows that

Ny (S, ¢(ae~2"/79%)) < |8|e?/*’ /g + 1
(2.28) (S, o )) < 18| /
< |81e®/7 " /Qp (1 /u) + 1.
If |S| < QF'(1/u), then Ny(S, p(ae~2"/7S*)) < €2"/%9” 4 1, Hence, by the
version of (2.24) for S in the place of T, it follows by a simple calculation that

P(magX(t) > u) < ‘I’(x/E(S))[eM—’z + 1+ 20772 ) 2772,
te n=2

Then (2.25) follows by taking account of the relation
lim ¥(x/5(S))/¥(u/5(S)) = exp(16(2 + V2)/5%),

uniformly for ¢ < 0(S) < 6. This completes the proof of (2.25). The proof of
(2.26) follows similarly from (2.24) and (2.28). O

3. Proof of Theorem 1.1. We begin with the following lemma.

LeEMMA 3.1. For the proof of (1.9) it suffices to replace the interval T = [0,1]
by any closed subinterval J such that:

(i) If = = 0 or 1, then J is nondegenerate and contains 7.
(ii) If 0 <7 <1, then 7 is contained in the interior of J.

Proor. For simplicity, consider just the case 0 < 7 < 1, as the other case is
similar. Decompose [0, 1] into three subintervals, [0, 7] N J¢, o and [7,1] N J°.
Assume that the first of these is not empty, so that its closure is an interval
[0, b] for some b < 7.
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A result of Fernique (1971) implies that
E[exp{a sup |X(t)|2}] <K, < o,
[0, 8]

for 0 < a <1/(26([0, b])); hence, by Chebyshev’s inequality, for u > 0,
P(suppq 4| X(8)| = u) < K, exp(—au®). Therefore, if we choose a such that
(20)7! < a < (256([0, b])) ", then

limsupP( sup X(t) > u) Y(u/0) = 0.
u— oo [0, b]

Similarly, if [7,1] N J° is not empty, then its closure is an interval [c,1] for
some 7 < ¢ and we have

lim supP( sup X(¢) > u) /¥(u/s) = 0.
_ u— o0 [e,1]
From these two relations and the elementary inequality

P( sup X(t) > u) < P( sup X(¢) > u)
[0,1] [0, 51

+P(supX(t) > u) + P( sup X(t) > u),
J [e1]

it follows that the lim sup of the ratio in (1.9) is unchanged if the interval [0, 1] in
the numerator is replaced by J. Since g(¢) has a unique minimum 0 at ¢ = 7, the
domain of integration [0,1] in the denominator may also be replaced by <J. This
completes the proof. O

In the next several lemmas, the interval oJ is chosen in the following way. For
arbitrary ¢, 0 < ¢ < g, choose oJ satisfying the requirement in Lemma 3.1, so that

(3.1) mino(t) > o — e.
ted

This can be done because o(¢) is continuous. Let § > 1 be arbitrary.

LEMMA 3.2.

lim sup P(max(“ ‘GJ»u25<t)zl)X(t) = “)
- —
(3.2) U= ‘I’(u/o){l +e(q(u)) I/Jﬁ{t: u?g(t)=1)€ &(t) dt}

< 0K(o —¢).

PROOF. Suppose first that = = 1, so that g(¢) is nonincreasing and g(1) = 0.
Define

(3.3) B;=Bj(u)=closureof {t: t€dJ, j<u¥g(t) <j+1}, j=1,2,...
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B; is a closed interval because g is monotonic; we also have

(3.4) 1/0(¢t) > 1/5(t) = oj/u® +1/0 forte B,.
By subadditivity,
0
(3.5) P( max X(t) > u) <Y P(maxX(t) > u),
(t: ted, v2g(t)=1) j=1 B;

and the latter series may be represented as the sum of the two series

(3.6) Y P(maxX(t) > u)
jimes(By<qw) B

and

(3.7) y P( max X(¢) > u).
jimes(B)>q(u) B

Corollaries 2.1 and 2.2 imply
P(maxBjX(t) > u)

lim sup sup

< K(o — ¢).
u—oco j:mes(B)<q(u) \Ir(u/(maxBlo(t))) (0 8)

Hence, for arbitrary 6 > 1, the series (3.6) is, for sufficiently large u, at most
equal to

(3.8) 0K (o — e)jg,l\lf(m).

By virtue of (3.4),

(3.9) \P(Eaé—(—ﬁ) < ‘I'(o_uj + %)

Since

\I,(ﬂ + _Lf) A Y

u o
. (u
-l
o
(3.9) implies that the series (3.6) is at most equal to

0Ke(o_—1 €) \I'(i:-).

(3.10)

(3.11)

Next we estimate the series (3.7). By Corollaries 2.1 and 2.2, with B; and J in
the places of S and T, respectively, we have for all sufficiently large u, for
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arbitrary 6 > 1,

P(mBajxX(t) > u) <0K(o —¢)

mes|( Bj) u
¥ )
aw) | maxgo(t)
uniformly, for j > 1. By (3.9) and (3.10), the right-hand member above is
dominated by

0K (o — €)(q(u)) ¥ (u/0)mes(B;)e™’
and so the series (3.7) is dominated by

(3.12) 8K (o — &)(q(u)) " ¥(u/o) glmes(Bj)e‘i.

J
Since, by the definition (3.3) of B;, we have

mes(B;)e™/ < ef e 80 dt,
B

7

the bound (3.12) and the relation
0
(3.13) y f e UM gt = / oV g
j=1"B; {t: ted, ug(t)=1)}

yield the following bound for the series (3.7) for large u:

(3.14) 0K (o — €)(q(u)) ¥ (u/o)e f e~ W80 g,
(t: ted, ug(t)=1}
Combining the bounds (3.11) and (3.14) for the series (3.6) and (3.7), respec-
tively, we find that the series in (3.5) has the asymptotic bound

6K (s ¥(u/0){ 1+ ea(u)) ™ |

and this establishes (3.2).

This completes the proof of the lemma in the case * = 1. The case r =0 is
entirely analogous: The function g(¢) is nondecreasing instead of nonincreasing.
The third case is reducible to the other two cases. Indeed, in the proof of this
case the set B; is the union of at most two disjoint intervals, and mes(B;) is the
sum of their lengths. This follows from the fact that g(¢) is monotonic on each of
the intervals [0, 7] and [7,1]. O

e~ '8 dt},

t: ted, u’g(t)=1})

LEMMA 3.3.

lim sup P(max“: ted, uzg(t)snx(t) > u)
(3.15) uoco ¥(u/0){1+ (mes(t: t € J,u’(t) <1))/(q(u))}
< K(o - s)_
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Proor. Put
U, = {u:u>0,mes(t: t € J,u’g(t) <1) < q(u)}
and
U, = {u:u>0,mes(t: t€J,u’s(t) <1)>q(u)}.
Corollaries 2.1 and 2.2 imply [since (¢ u’g(t) < 1) is an interval]

lim sup (\I'(u/o))_lP( max X(t) > u) <K(o—¢)

ue U, u- o {t: ted, u’g(t)<1)
and

; Q(U)P(max{t:teJ,u2g(t)s1)X(t) = u)
lim sup 5
wely, u—oo Y(u/o)mes(t:teJ,u’g(t) <1)

< K(o —¢).
These two inequalities imply (3.15). O

LEMMA 34. The inequality (3.15) continues to hold when mes(t: t €
J, u’g(t) < 1) is replaced by

efe'”zg(‘) dt.
J

Proor. This is a simple consequence of the inequality

mes(t: t € J,u’g(t) <1) < fel‘“zg(‘) dt. m]
J

PROOF OF THEOREM 1.1. For arbitrary ¢, 0 < ¢ < o, choose a closed subin-
terval J of [0,1] so that (3.1) holds. By Lemma 3.1, P(max, ;X(¢) > u) is
asymptotically equal to P(max ;X(t) > u). The latter is at most equal to

P( max X(t) = u) + P( max X(t) = u)
{t: ted, u’g(t)=1) {t: ted, ug(t)<1}

By Lemmas 3.2, 3.3 and 3.4, the latter sum has an asymptotic bound

20K (o — e){l + (e/q(u))j;le_"zg(‘) dt}‘I'(u/o).

Since ¢ > 0 is arbitary and K(o) is continuous, we may replace K(o — &) above
by K(o). Similarly, since # > 1 is arbitrary, we may replace 6 by 1. Thus we
obtain the right-hand member of (1.9). O

4. Sharpness of the asymptotic bound. In this section we assume the
condition (1.3) and take g(u) in (1.8) as the function Q5 '(1/u). From the trivial
inequality max X(¢) > X(7) it follows that P(max X(¢) > u) has the lower
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bound ¥(u/0). Hence, if

(4.1) lim (g(u))™" fle‘“zg(‘) dt=0
u— oo 0

for g(t) defined in (1.6), then the asymptotic order of the bound provided by
Theorem 1.1 clearly cannot be reduced. The result extends to the case where (4.1)
is replaced by

(4.2) limsup(q(u))_lfle‘"zg(‘) dt < 0.
0

u— o0
For example, if X(¢) is the standard Brownian motion, then the function ¢(¢) in
(1.2) is V¢, so that Qp(t) = ¢Vt for some ¢ > 0. Define 5(¢) as max(V¢, \E ), so
that g(¢) = min(y2, t~'/?) — 1. The limit in (4.1) exists and is equal to 2¢2 The
asymptotic order of the bound furnished by Theorem 1.1 is equal to that of the
well known value of P(max X(¢) > u) in this case, namely, 2¥(u).
Now we consider the remaining case, namely, where (4.2) is not assumed. We

describe a class of Gaussian processes satisfying the conditions of Theorem 1.1
and for which

43 lmint P(max[O,I]X(t) >u)
(4.3) Pt ‘I'(u/o){l + (e/q(u))[le=¥8® dt}

for a suitable majorant o(#).

THEOREM 4.1. Let X(t),0 < t < 1, satisfy the following conditions:

(1) (1.3) holds.
(ii) o(t) is nondecreasing on [0, ] and nonincreasing on [1,1].
(iii) There is a nonnegative function y(t), 0 < t < 1, of regular variation for
t — 0, of index a, for some 0 < a < 2, such that

E(X(2) - X(5))° _

(4.4) s#t, glt—»f (|t — s|)
and
ws) lo(t) Zols)l _

s#t, f,ﬂt-w y(it — s|)
Then there is a suitable function o(t) such that (4.3) holds and

(4.6) (q(u))™" fole—'ﬂgw dt > oo.

PROOF. According to Lemma 3.1,

P(I[r(}ﬁ}](X(t) > u) ~ P(I}lea}(X(t) > u)

for any closed nondegenerate interval J containing 7. Hence if oJ is of sufficiently
small length, then for the process X(t¢), ¢ € J, the function ¢ in (1.2) may



MAXIMUM OF A GAUSSIAN PROCESS 649

without loss of generality be replaced by y2y(%), which dominates it. Hence,
¢(h) may be assumed to be regularly varying of index a/2 for 2 — 0. By an
application of the Karamata representation of regularly varying functions and
by the definition (1.3) of Qp, it follows that

(47)  Tim Qu(R)/r/2(h) = Tim VE Qu(h) /6(R) = V3 [ e~/ at.
h—0 h—0 0

Since, by assumption, o(¢) may play the role of o(¢), the function g(¢) in (1.6)

may be taken as
g(t) = (1/0)(1/0(t) — 1/0).

Let v = v(u) be a positive function satisfying

(4.8) lim u?y(1/v) = 1.
u—> o0

[If y~! represents the asymptotic inverse of y, then v ~ 1/y~(1/u?).] Let L,
be the sojourn time of X(¢) above the level u: L, = mes(#: 0 < t < 1, X(¢) > u).
According to Berman [(1987), Theorem 6.1], we have

. J¢ ydP(vL, <)
lim
u— o0 vEL
at all continuity points x, where G is the distribution function of a random
variable ¢ identified as follows:

Let W(t), —o0 <t < o0, be a Gaussian process with mean 0 and covariance
function EW(s)W(t) = 3(|s|* + |¢|* — |s — t|*), and let Z be a random variable
independent of the process W(-) and having a standard exponential distribution.
Then define
(4.10) ¢ =mes(t: —o0 < t < o0, W(t) — |t|*/20% + 6Z > 0).
¢ is almost surely positive because W(t) is almost surely continuous, W(0) = 0
and Z > 0. Hence,

(4.11) G(x)>0 forx>0.
According to Berman [(1985a), Lemma 2.2], the relation (4.9) implies

. P(vL,>x) ©
(4.12) ulilr:o'W—j; y~1dG(y)

at all continuity points x of G. By (4.11), the right-hand member of (4.12) is
positive at least for all sufficiently small x > 0.
The relations (4.7) and (4.8) imply

(4.13) lim v(u)q(u) =C
for some 0 < C < 0. Furthermore, by Berman [(1987), Theorem 3.1},

(4.9)

= G(x)

u

(4.14) EL, ~ ¥(u/o) ['e~s® dt,
0

with g(¢) as defined here. Thus, (4.11), (4.12), (4.13) and (4.14) imply
u)P(oL, > x
(4.15) lim inf a(u) P(eL, 5 )
u—ow W(u/o)fje 4D dt
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Furthermore, by (4.13) and Lemma 4.4 of Berman (1987), the assertion (4.6)
holds. From this and (4.15) it follows that

4.16 lim inf P(oL, > x) >0
(4.16) s \I'(u/o){l + (e/q(u))[le~*¢® dt}

for all sufficiently small x > 0. Since vL, > x for any x > 0 implies
max, 13 X(¢) > u, (4.16) implies (4.3) and the conclusion of the theorem holds. O

ExXAMPLE 4.1. Let X(t), 0 <t <1, be the Brownian bridge, the Gaussian
process with mean 0 and covariance function min(s, ¢) — st. Here ¢%(¢) =
t(1 — t), so that we may take 6%(¢) as 6%(¢) with 7 = ¢ = 1. It is easy to see that
E(X(t) — X(s))?~ |t—s|, for s, t—> . The upper asymptotic bound for
P(max X(t) > u), based on Theorem 1.1, is of the order u¥(2u). The conditions
of Theorem 4.1 also hold: We take y(¢) = ¢ and note that

g(t) ~2[(¢(1 - £)) ™ - 2] ~ 4(t - 1)* fort— 1,
and so the lower asymptotic bound for P(max X(¢) > u) is also of order u¥(2u).
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