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ON A PROBLEM OF H. P. MCKEAN: INDEPENDENCE OF
BROWNIAN HITTING TIMES AND PLACES!

By LorgN D. PiTT
University of Virginia

We show that for bounded domains A € RN with 0 € A, if the exit time
7, and exit place X(7,) are independent for a Brownian motion starting at 0,
then A is essentially a ball centered at 0. Extensions are given when X(t) is a
Brownian motion with constant drift and when A is unbounded.

1. Introduction and statement of results. We denote the open ball of
radius r > 0 in R"N and center at the origin 0 with B,. The standard Brownian
motion in RY starting at 0 is written as {X(¢): ¢ > 0}, and the first exit time of
X(t) from B, will be written as ¢, = inf{¢ > 0: X(t) & B,}. For each r, the exit
time £, and the exit place X(¢,) are independent random variables. To the best
of our knowledge, it was H. P. McKean (private communication) who first raised
the converse question: If A ¢ R” is a bounded domain containing the origin 0
and if the exit time 7, = inf{#: X(¢) ¢ A} and exit place X(7,) are independent,
does it follow that for some r, = 0 we have A = B, ?

In this note we show that the answer is essentlally yes. The qualifier “essen-
tially” is necessary here because in dimensions N > 2, Brownian motion does not
hit sets of zero Newtonian capacity (logarithmic capacity when N = 2). Thus if
A C B and B — A has zero capacity the sets A and B cannot be distinguished
by the Brownian motion X(¢). We avoid this difficulty in the following state-
ment of our main result.

THEOREM 1. The exit time 1, and exit place X(7,) are independent iff there
exists anry > 0 with A C B, and 7y =t, a.s.

CoMMENTS. If 7, and X(7,) are independent the theorem implies that with
probability 1, X(#) never hits C = B, — A on (0, o). It follows that C is polar
and has capacity 0; see Port and Stone [5], page 191. The set C is too small for
the Brownian particle to notice its absence.

We give two proofs of Theorem 1. The first, a very simple proof based on
exponential martingales, does not seem to generalize to arbitrary unbounded
domains. The second proof was suggested by the referee and does generalize to
arbitrary domains and even variable coefficient diffusions. This proof is essen-
tially a large deviation argument.
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It is most remarkable that Theorem 1 remains true as stated when X(t) is
replaced by a Brownian motion with constant drift,

(1) Y(t) = X(¢) + tv for fixed v € R".

The surprising fact that 7(Y, A) = inf{¢ > 0: Y(¢) € A} and Y(7(Y, A)) are
independent goes back to G. E. H. Reuter (unpublished) and has been extended
by Kent [1], Stern [7] and Wendel [9]. A definitive version, and much more, is in
the article of Pitman and Yor [4].

That Theorem 1 holds in this case is an immediate consequence of

THEOREM 2. Let Y(t) be given by (1) and let A C RN be a domain contain-
ing 0 with P{1, < o0} > 0. Then P{1(Y, A) < o} > 0 and 1, and X(1,) are
independent conditionally on {1, < oo} iff (Y, A) and Y(7(Y, A)) are indepen-
dent conditionally on {1(Y, A) < o0}.

REMARK. The simple proofs that we give of Theorems 1 and 2 are almost
algebraic in nature and shed little light on the general question of how robust
these results may be. A more quantitative approach would be valuable. In
particular we would like to know:

If X(7,) and 7, are nearly independent, in some sense, is it possible to
conclude that in some sense A is almost a ball?

2. Proofs.

FIRST PROOF OF THEOREM 1. We argue using the exponential martingales
which McKean [2] popularized. Namely, for A = (A,...,Ay) € RN and X(¢) =
(X(2),..., Xn(1)), let A - X(£) denote the usual inner product. Then

M\(t) = exp{\- X(¢) — 32}, ¢=0,

is a martingale with M,(0) = 1. Since A is assumed bounded, we note that M,(¢)
is uniformly bounded for ¢ < 7,. Hence, by the optional sampling theorem, we
have 1 = EM,(0) = EM,(X(74)) or

1= Eexp{A- X(1) = 3\’ra)}.

By the assumed independence of 7, and X(7,) we have

Eexp{A-X(74)} = [Eexp{ - %|>\|2”A}]

and thus the moment generating function Eexp{A - X(7,)} = ¥/(A) is a radial
function of A. If u(E) = P{X(7,) € E} is the exit distribution, then J(A) =
[ e**u(dx) and we see p is a rotation invariant measure.

To complete our argument, we let I' equal the closed support of p and we
define rO = inf{|y|: y € T'}. Since T is closed and p is rotation invariant, we see
that S,, = {x: |x| = r;} < I. As a consequence, each point x in S is an accumu-
lation pomt of the complement A°of A. Thus S, C A, since A° 1s closed. Since
0 € A and A is connected we see A C B, and thus 74 < ¢,. By the definition of
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1y, we see for each r < r, that p{B,} = 0 or, what is the same, that |X(7,)| > r
a.s. Hence, 7, > t, a.s. Letting r 1 r, shows 7, > ¢,, a.s. and completes the proof.
O

SECOND PROOF OF THEOREM 1. Again let p(dx) be the distribution of X(1,),
let T' be the closed support of p and let x, € I' be such that |xy| =r, =
inf{|x|: x € I'}. As seen before, it suffices to show that I' = S, = {x: |x| = r,}.
Since A is bounded this will follow if we show
@) P{X(7y)| > (1 + 48)r} =0

holds for each 8 € (0, }).
Fixing § and letting B(t) be a one-dimensional Brownian motion, elementary
arguments give

P{r, < t,|X(7y)| > (1 4+ 48)ry} < P{sup|X(s)| > (1+ 48)r0}

s<t

(3) < const. P{supB(s) > (1+ 38)r0}

s<t
1
< const. t'/2 exp{— -2—t((1 + 38)r0)2}.

From the independence assumption it follows that
P{ry < t,|X(7)| > (1 + 48)r,}
P{r, <t}

(4) P{|X(ry) > (1 + 48)r} =

and an upper bound on P{|X(74)| > (1 + 48)r,} will follow from any lower
bound on P{r, < ¢}. For this let H = {y & A: |y — xo| < 6rp}. By definition of
X9, (H) > 0 and H has positive capacity. Let »(dy) be the nonzero equilibrium
measure of H and let Ly be the last exit time of X(¢) from H [either assume
N > 2 or kill X(¢) at an exponential rate]. If p,(y) is the density of X(s), then
(see [5], page 61)

Plry <) 2 P(Ly <t} = [v(d) ['p.(y) ds

(1 +98)°

mt<s<t}

> const. tinf{ps(y): y € H and

1
> const. t* N2 exp{ - —2—t((1 + 28)r0)2}.
Combining this with (3) and (4) and letting ¢ — 0 gives the desired result (2). O

PrOOF OF THEOREM 2. We will prove a more general theorem first: On
the space C = C(RVY,[0,0)), let Z(w) = w(t), F=0{Z,:0<s} and & =
6{Z:0 < s < t}. Let P° be the law on (C, #) of {X(¢)} and let P® be the
law of (Y(¢)}. Let T be any %,, stopping time, not necessarily finite but with
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PYT < o0} > 0. Then we will show:

T and X(¢) are independent conditionally on {T < oo} with
respect to P° iff they are independent conditionally with
respect to P°.

By the Cameron-Martin formula ([6], page 81 or [2], page 97), the laws P°
and P’ are equivalent when restricted to each &%, and on %, the Radon-
Nikodym derivative is the exponential martingale

dP°/dP° = M(t) = exp{v - Z, — }|v|’t}.

More generally, for any stopping time T and any ¢, M (T A t) is the restriction
of dP°/dP° to Zp ... Since M(T A t) = M(T) on {T < ¢t} we see that on
({T < 0}, #1,) the two laws are equivalent and for any nonnegative %,
measurable function f,

f fdP® = f fM(T) dP°.
(T<oo) (T<w)
Thus we have, for the moment generating functions

V(A a) = f{T<°°}exp{)\ - Z(T) - 1T} dP®

= exp{\ - Z(T) — 1a’T}M,(T) dP°

(T<w)

= exp{(A + v) - Z(T) — 4(a + |v|?)T} dP°

{T<w)
= Yo(A + V,a + |v?).

If Y (A, a) is finite for all A € R" and a > 0 we know that T and Z(T') are
conditionally independent on {T < o0} w.r.t. P® iff ¥ has a factorization of the
form ¢ (A, @) = F(A)G(a). But the identity ¢ (A, a) = (A + v, a + |v|?) shows
this factorization is equivalent to a factorization of y,, which in turn is equiva-
lent to the independence of T' and Z(T') conditionally on {T < oo} w.r.t. P°,

To complete the proof it only remains to show: If T' and Z(T) are indepen-
dent conditionally on {T < o0} w.r.t. P° (resp., P®), then for all A,

(5) f eM XM gp0 < o (r%p., eM 2D dP° < o |.
{T<oo} {T<oo)
For this we fix a ¢ > 0 with PYT < ¢) > 0. Then P%T < t) > 0. Defining
M = max{|X(s)|: s <t} we have

/ eMZD) gpo < E%MM <
{T<t}
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and since P°(M > m + t|v|} < P°{M > m} holds for all m > 0 we also have

[ &M dP® < BreMM < oo,
(T<t)
With the P° independence assumption we have

o > PYT < oo}/;T< }e"'Z(T) “lips y dP°
o0

= e}\.Z(T) dpP?® . / 1(T<t} dPO,
{T<ow} {T<w}

thereby showing the P° half of (5). Replacing P° with PV gives the other half
and completes the proof of Theorem 2. O

3. Extensions. All of the results and proofs given have significant exten-
sions. The first. proof of Theorem 1 does not require that A is bounded, but only
that the martingales {M\(¢ A 7,)} each be uniformly integrable for some
nonempty open set A = {A} € R". For example, this will be the case if A is
contained in some half space H, ;= {x:x-A <&} or if Ee* < oo for some
a> 0.

A further extension is that 7, may be replaced with a stopping time 7. Thus
one may prove: If X(¢) is Brownian motion, if T is a stopping time with
Ee*T < o for some a >0 and if T and X(T) are independent, then the
distribution p of X(T') is isotropic.

~ The second proof of Theorem 1 has other significant extensions. First, if the
assumption that A is bounded is replaced with P{7, < c0} > 0 and the indepen-
dence of X(7,) and 7, is replaced with independence conditional on {7, < o0},
then the argument given shows that the closed support I’ of the distribution of
X(7y) is contained in S . If I'¢ S, and if {X(¢#)} is transient, then
P{7, < o0} < 1. Thus one may generalize Theorem 1 to

THEOREM 1. If N > 3 andif A C RY is a domain satisfying P{r, < o0} = 1,
then 1, and X(7,) are independent iff there is an r, > 0 with 1, = ¢, a.s.

The basic idea in the second proof is very general and will work whenever
there are good estimates for

P{ry <& x(1y) €B} ase—0

with’B c T equal to the support of the distribution of X(1,).

This is standard large deviations problem, as may be seen by making the time
change t — Ve t. The simplest case is that of a regular diffusion without drift on
a bounded domain with smooth boundary. This case is covered in essential detail
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in numerous places, e.g., [8], Section 6, and with the smooth boundary assump-
tion the case with drift readily follows from the case without drift by estimation
of the maximum deviation of the process with drift from that without. Omitting
details we outline the results here.

Let L = (¥ a,.j(x)a2/ax,. dx;+ X b(x)d/dx; be a uniformly elliptic diffusion
generator on R with smooth bounded coefficient. Fix x, and let X(¢) and X(¢)
be the diffusion processes starting from x, with generators L and eL, ¢ > 0.If A
contains x, and is bounded, 7, and 7, , will denote the exit times from A by
X(t) and X (t). Thenfor BC T = 9A,

P{'rA <eg X(my) € B} = P{‘TA,E <1; XE(TA,E) € B}.

Write a(x) = (a,;(x)) for the coefficient matrix and for x and y in A define

o, ¥) = inf{ KGO OONT

where the inf is taken over all smooth functions f(¢) with f(0) = x, f(1) = y and
f)e Afor0<t<1.
For relatively open B C T the large deviation principle gives
limelog P{7y <e&; X(7y) € B} = —1 ingqbl(xo, x).
xe

e—0
But, if 7, and X(7,) are independent this equals
lin(l)e[logP{TA < e} + log P{X(7,) € B}],

which does not depend on B. Hence inf{¢,(x,, x): x € B} does not depend on
B c T and I’ must be a sphere with respect to the distance d(x, y) = yé,(x, ).
Namely, for some r, > 0, T' = {x: ¢,(x,, x) = 13}

This is not sufficient for 7, and X(7,) to be independent. Pinsky [3] investi-
gated the case when L is the Laplacian on a Riemannian manifold (M, g) and
has shown that if for all small balls B(x,, ¢) = A and all x,, 7, and X(7,) are
independent, then the metric g is an Einstein metric.

Acknowledgment. I wish to thank the referee for his valuable comments,
especially for his recommendation that we consider the problem for Brownian
motion with constant drift, and for his alternative proof of Theorem 1.
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