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CONTINUITY PROPERTIES FOR RANDOM FIELDS

By JouN T. KENT
University of Leeds

Consider a random field on R?, d > 1. A simple condition is given on the
covariance function which ensures the existence of a version of the random
field in which the realizations are everywhere continuous. The proof involves
a rather delicate approximation of the random field by interpolating polyno-
mials of suitably high order.

1. Introduction. Let {X(¢): t € R?} be a real-valued stationary random
field on R? with mean 0, finite second moments and covariance function

o(h) = E{X(¢)X(t+ h)), heR"
If o(h) is m-times continuously differentiable with respect to 4 for m > 0, let
(1.1) 0n(h) = () = pu(h),

where p,,(h) is the polynomial of degree m given by the Taylor series expansion
of o(h) about & = 0, up to order m

Since o(h) is an even function of A, p,(h) is an even polynomial. In
particular if m = 2k + 1is odd, p,,(h) = pyy. (k). Further if o(4) is isotropic,
depending only on |k| = {LA[]?}'/?, we can write

k
(1~2) sz(h) = Por+1(h) = Z cj|h|2j

j=0

with (—1)7% > 0. It is not possible for any of the c; to equal 0 except for the
degenerate random field with o(%) = c,. [If ¢, > 0, then o(k)/c, represents the
characteristic function of an isotropic random vector Y = (Y[1],..., Y[d)), say,
with moments (— 1)’ ./ Co = E(Y[1]%/). None of these moments can vanish for
J =1 unless o(h) =c,, that is, P(Y=0)=1. Further if ¢, =0, then the
elementary inequality |o(%)| < ¢(0) implies o(4) = 0.]

The following theorem is the main result of this article.

THEOREM 1. If o(h) is d-times continuously differentiable and
(1.3) log(h)] = O(r%/log r|***) asr=|h| -0

for some y > 0, then there exists a version of the d-dimensional random field
{X(¢t): t € R?} with continuous realizations.
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REMARKS.

1. In d =1 dimension, with |o;(h)| = 0(0) — o(h), this theorem is a classic
result; see, for example, Cramér and Leadbetter (1967), pages 63—65.

2. In higher dimensions there has been some confusion in the literature over
suitable conditions needed to ensure continuous realizations. Ripley (1981),
pages 50 and 51, states incorrectly that the one-dimensional result will carry
over directly to higher-dimensional random fields. Adler gives a sufficient
condition due to Kozadenko and Jadrenko [cf. Adler (1981), page 47] which,
when specialized to the covariance function, implies ¢(0) — o(h) = o(|h|??) as
h — 0. Hence this condition is useless because it implies ¢; = 0 in (1.2) even
for the d = 1 dimensional case; only the trivial covariance function o(h) = ¢,
satisfies this condition.

3. In practice, a simpler condition to check than (1.3) is

(1.4) log(R)] = O(|h|**F) ash >0
for some B > 0. Clearly if (1.4) holds for any 8 > 0, then (1.3) holds for all
v > 0.

4. Condition (1.3) also holds if the mixed dth-order partial derivative of o(k)
satisfies

(1.5) |0%(h)/dh[1]... 3R[d]| = O(llog r|"3~Y) asr=|h|— 0.

5. For Gaussian random fields, continuity of the realizations follows under much
milder conditions, for example, 0(0) — o(h) = O(1/|log r|***) for some ¢ > 0
with r = |h| [Adler (1981), page 60].

6. Theorem 1 can also be extended to nonstationary processes with mean 0 and
covariance function o(s, t) = E{X(s)X(t)}. In this case suppose that for each
t, o(t + h,t — h) is d-times continuously differentiable with respect to 4. Let
Pp4(h; t) denote the corresponding polynomial in A, for each ¢. Then continu-
ity will follow if sup{|o(¢ — A, t + h) — p,(h; t)|} satisfies the bound in (1.2).
Here the supremum is taken over ¢ lying in each compact subset of R% The
key step, as the reader is invited to verify, is to show that Lemma 2 below can
be extended to the nonstationary situation.

7. The importance of the “irregular part” of o(%) in describing the behaviour of
the random field has been noted by other authors, for example, Cramér and
Leadbetter (1967), page 180, in the one-dimensional case, and Matheron
(1971), pages 13 and 14. However, the question of continuity of the realiza-
tions does not seem to have been adequately addressed before.

The proof of Theorem 1 will occupy Sections 2-4. In Section 2 basic notation
and interpolating polynomials are described. Properties of increments and their
links with interpolating polynomials are given in Section 3. A suitably accurate
sequence of approximations to X(¢) based on interpolating polynomials is con-
structed in Section 4. In Section 5 an example is given showing that the
condition (1.3) in the theorem cannot be significantly relaxed.
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2. Notation. The letters i, j, k2, m, n will denote integers. In particular,
d > 1 is the dimension of the random field {X(¢): ¢ € R9).

A vector ¢t € R? will be called a site, and its components will be indicated
using square brackets, ¢ = (¢[1],..., ¢{{d]). The letters s and ¢ will be used for
sites in R

Let Z¢9= (u € Z% u[l] > 0 for I =1,..., d)} denote the nonnegative integer
lattice. The letters u, v, y, z will be used for elements of Z¢. Similarly let
Ly(k) = {u € Z% u[l] <k) denote the cubic lattice in Z¢ containing the
(k + 1)9 sites for which each component takes values in {0,1,..., k}.

Let C;= {t€ R%: 0<t[l]]<1forl=1,...,d} denote the unit cube in R%
For n > 1 we can partition C; into 27" cells of the form I, ,, where

(2.1) I, ,=2"y+27"C;,  yeLy2"-1),

is the cube with lower corner at 2"y and side length 27"
For u € Z¢ two norms are useful:

(i) ful, = Xul!] and (i) lull, = max{u[]}.

Note that Ly(k) = {u € Z% |lull,, < k).

For sites ¢ € R% only one norm is of interest, |||, = {Z¢[{]?}'/?, which we
abbreviate as ||t||, = [¢].

For u € Z% and t € R% define the monomial

d
e = [1e[1]".
=1

Polynomials in ¢ can be built up from linear combinations of such monomials.
There are two convenient ways to specify the degree of such a polynomial. Say
that a polynomial (with at least one nonzero highest-order coeflicient)

Y a,t

el <%

has overall degree k, whereas

Y a,t*
el <%
has individual degree k. Thus the polynomial p, (k) in (1.1) has overall degree
equal to m is m is even, and equal to m — 1 if m is odd.

A useful class of polynomials is the class of interpolating polynomials; see, for
example, Kunz (1957), pages 264-266. Fix 2 > 0, s € R%, A > 0, and let f(¢) be a
function defined on the cube s + AC,. The interpolating polynomial for f(t) of
individual degree k takes the form

(2.2) a0 = T Al /A
whete "
(2.3) A,= Y a,f(s+Ao/k).

llolle, <%
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The coefficients a,,, which depend on %k and d, but not on the function f(¢) or
on s or A, are determined by the (& + 1)% constraints

q(s + Ao/k) = f(s + Mo/k), v e Ly(k).

If &k > 1, it is easy to check that g(?), restricted to a face of the cube s + )\Cd,
represents an interpolating polynomial in R?~!, passing through the (k + 1)9-!
sites of s + AL (%) lying in that face.

3. Interpolating polynomials and increments. This section contains the
key results of the article. After defining the notion of an increment, we show
that each of the coeflicients in the difference of two interpolating polynomials is
an increment, and that in the formula for the variance of a suitable increment,
the covariance function o(+) can be replaced by a,,(-).

The use of interpolating polynomials in this context seems rather special.
Indeed it is difficult to imagine any other method of approximation which will
have similar properties. Increments also play an important role in the study of
intrinsic random fields [Matheron (1971, 1973)].

DEFINITION. Let f(¢) be a function of £ € R? and let 2> 0. A linear
combination Ya;f(¢;) based on weights a; € R at sites ¢, € R%, i=1,...,n is
called a kth-order increment for f(t) if for all u € Z¢ with ||u||, < k, we have

n
Y aiti=0
i=1
That is, Xa, f(¢,) =0 whenever f is a polynomial in ¢ of overall degree less than
or equal to k

LEMMA 1. For k > 0 let q,(t) and q(t) be the interpolating polynomials of
individual degree k for a function f(t), on two cubes, s, + \,\C; and s, + A ,C,,
respectively. Set q(t) = q,(t) — q4(t). Then the coefficient of each power of t in
q(t) is a kth-order increment for f(t), based on the sites used to define the
interpolating polynomials.

ProoF. Using (2.2), expand g,(¢) in powers of ¢* rather than {(¢ — s;)/A}%
similarly for g,(¢). Then we can express

g(t)= X Bt"

ulle, <
where
B, = Z {b&)f(sl + Al”/k) + bu(¢2¢>)f(32 + sz/k)}
llolle, <%
“for suitable constants b{) and b®. We wish to show each B, is a kth-order

increment for f(¢).
Suppose f(t) is a polynomial of overall degree less than or equal to k. Since an
interpolating polynomial reproduces such functions exactly (indeed it reproduces
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all polynomials with individual degree less than or equal to k), we have
q.(t) = go(t) = f(t) for all t € R Hence q(¢) =0 for all ¢ which implies
B, = 0 for all u. Therefore, by the definition of a kth-order increment, Lemma 1
follows. O

LEMMA 2. Suppose that o(h) is m-times continuously differentiable (m > 0)
and Ya;X(t;) is a kth-order increment for the random field X(t), where k
satisfies 2k > m if m is even and 2k > m — 1 if m is odd. Then

var{ Yo, X(t,)} = Loyaj0(t; — t;)

(3.1)
= Zaiajam(ti - tj)'

ProoF. The first line of (3.1) follows from elementary properties of the
covariance function. It is the second line which needs proof.

A typical term of the polynomial p,(A) in (1.1) is proportional to A* with
llu|l, < m if is even and ||u|, <m — 1 if m is odd. In either case ||u|, < 2k.
Expanding (¢, — ¢;)" into powers of ¢; and ¢; yields a sum in which a typical
term is proportional to ¢{¢/”°, where 0 < o[l] < u[l], I =1,..., d. Since ||u|, <
2k, note that either ||v||; < & or ||ju — v||; < k. Hence

n
Z aiajti"tj'.‘_" = {Zait;’} { Zajt}‘_"} =0
J=

i 1

from which it follows that Ya;a;p,(¢; — ¢;) = 0. Therefore o(¢; — t;) can be
replaced by ¢,(¢;, — ¢;) in (3.1). O

4. Approximation of the random field. In this section we shall approxi-
mate the random field X(¢) on the unit cube, ¢ € C,, by a sequence of continu-
ous functions {X,(¢)} which, with probability 1, converges uniformly on C, to a
function X_(¢), where X_(¢) equals X(¢) at a countably dense set of sites in C;.
This limiting function X_(t) defines the desired continuous version of the
random field on C,. Further, once we have a continuous version on C,, it is
straightforward to construct a continuous version on all of R

Fix k£ > 1. (A suitable choice for £ will be made below.) For n > 1, the
function X,(¢) is constructed as follows. On the cubic cell I,, , in (2.1), set X, (¢)
to be the interpolating polynomial of individual degree % for the random field
X(¢t). In particular, X, (27 "y) = X(27"y) for all y € L, (2"). From the last
paragraph of Section 2, we see that on the face between two adjacent cells, X, (¢)
reduces to the same (d — 1)-dimensional interpolating polynomial through the
same (k + 1)?7! sites. Therefore X,(t) is continuous (though not differentiable)
across the boundaries of adjacent cells, and so X,(¢) is continuous through-

“out C,.

The next lemma shows that X, ,(¢) and X,(t) are likely to be close together
on each of the cells I, ,. Suppose o(4) is m-times continuously differentiable
and that % > 1 satisfies 2k > m if m is even and 2k > m — 1 if m is odd. For
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r> 0, set
ox(r) = sup{lo,(h)|: |h| < d*/?r}.
Also, define
Woir,.= SuP{|Xn+1(t) - X, () te In+1,z}
for z € L (2"*! — 1).

LEMMA 3. Foreachz € L,2"*' — 1),
(1) EW2, . < cof(2")

for some constant ¢ not depending on n.

Proor. Eachcell I, ,, y € L (2" — 1), at level n of the construction is split
into 27 cells at level n + 1. One such cell is I,,,, ,, with z = 23y. (The other cells
are obtained by adding 1 to a proper subset of the components of z.) For
tel we have from (2.2) and (2.3)

n+1, 2

Xoert) = X,(1) = T Dan X (1) 2 (- 27 72))
- Z{BauX(s) 2t - 279)"

u

{TawX(t,) - 2 ha, X(s,) | {20 1(t - 277 12))"

v

Y.B{2"*\(t - 277712)}" say,
u

where the sums are over u, v € L,(k). Here t,=2"""'2+ 2" "' /k and s, =
27"y + 27 ™ /k.

For any real numbers a,,..., ay, recall the elementary inequality (Le;)? <
NXa?. Also note that {2"*(¢ — 27”7 '2)}* lies between 0 and 1 for each ¢t €
L., . Thus

n

W2, . <(k+1)?LB.
. u

Now from Lemma 1, each B, is a kth-order increment for X(¢). Using Lemma 2
to calculate EB? and noting that the distance between any two points in I, , is
bounded by d'/22~" yields the statement of the lemma with

c=2(k+ 1)2dmax{a§‘,: u,0€ Ey(k)}.

A similar calculation yields the same bound for each of the other 294 — 1 cells
dt level n + 1 lying within I, ,. O

We now have the necessary bounds to complete the proof of Theorem 1 in the
standard manner [see, e.g., Cramér and Leadbetter (1967), pages 63—65]. The
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Markov inequality in (4.1) tells us that

P(|Wyi,2l 2 &,) < cox(277) /2
for any numbers ¢, > 0, and since there are 24V cells at level n + 1,
P(sup{|X,.,.(t) - Xn(t)|: te C,;) >¢,) < 2%ntleg*(277) /e2

n

4.2
(42) =§, say.
Next we make use of the assumptions in Theorem 1. Suppose (1.3) holds and
suppose k > [d/2] (k=1 in d =1 dimension). Then we can let m =d in
Lemma 3 and (4.2). Choose ¢, = n=®*"/%, Then ¥¢, < co and

Y8, = X 0(2927n/[n3+72])
=)Y0(n"17"?) < .

The key point of assumption (1.3) is to ensure that ¢,*(27") is small enough to
balance the factor 2%**1) in (4.2).

Hence by the first Borel-Cantelli lemma, with probability 1, {X,(¢), t € C,}
forms a uniformly Cauchy sequence and converges to a limiting continuous
random field X, (¢). Further if ¢ is a rational vector of the form t = 2 "oy,
u € Ly(2™), for some n, > 1, then X, (¢) = X(t) for n > nyand so X, (t) = X(¢)
for this value of ¢.

Note that the smallest suitable degree for the interpolating polynomials is
k =1 in dimensions d = 1,2,3 and k& = [d/2] in higher dimensions.

5. Example. We now give an example to show that the conditions in
Theorem 1 cannot be significantly weakened. Let ¢(h), h € R?, be a rotation-
ally symmetric function of A, both absolutely integrable and square integrable.
Let {T;: j > 1} be a labelling of the events from a realization of a Poisson

process in R?, of intensity 1. A convenient random field for our purposes is
defined by

X(t) = f o(t—T), teR

J=1

It is straightforward to show that {X(¢)} is stationary with mean [¢(t)dt
and covariance function

a(h) = (¢*¢)(h)
= [o()o(h —¢) at,

where * denotes convolution. Also, if ¢(k) is the Fourier transform of a
rotationally symmetric function f(w), w € R?,

(5.1) ¢(h) = [exp(ih - ©)f(w) do,

then f(w) is the Fourier transform of (27) %(h) and o(h) is the Fourier
transform of (27)% %(w).
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If we write ¢¥*(r) = ¢(h) for r = |h|, and f *(p) = f(w) for p = |w|, then (5.1)
can be simplified using polar coordinates to

#(r) = @m) P [T62,u o (10) 1 %(p) o

[see, e.g., Sneddon (1972), page 82], where J(r) and K (r) below denote the
usual Bessel functions.
For our purposes a convenient family of choices for f and ¢ is

f0) = 1/(1 +10p?) "7,
5 7rd/2|h|v
%(h) = 570+ 42)
[Abramowitz and Stegun (1972), page 488, formula 11.4.44].

It is easily checked that f,(w) and ¢,(h) are square integrable and ¢, (h) is
integrable if and only if » > —d/4. Further, since f2%w)= f(w) with p =
2v + d/2, we see that

o (k) = (¢74,)(h) = (27)“4,(h).

Note that p > 0 when » > —d/4.
Elementary properties of the Bessel function K;(r) yield the following prop-
erties for functions ¢(A) as A — 0 [Abramowitz and Stegun (1972), page 375]:

1. If » <0, ¢(h) = O(|h|?’) > o0 as h —> 0.
2. If » > 0 is not an integer, then we can express

$(h) = X a; |h> + O(|h>).

J<v

K,(|h))

3. Ifr=m>0isan integer, then we can express
$(h) = ¥ a;,|h* + O(|h|*"{log| k] ).

j<m

We can now link the behaviour of X(¢) with the conditions of Theorem 1. For
—d/4<v <0 (0 <p<d/2), X(t) will have discontinuous realizations [since
¢,(h) = oo as |h| = 0] and the conditions of Theorem 1 will not be met. On the
other hand, for » > 0 (p > d/2), X(t) will have continuous realizations and the
conditions of Theorem 1 will be met [take 0 < 8 < min(1,2u — d) in (1.4)]. For
this model the realizations of X(¢) will look like landscapes of randomly placed
volcanoes, each with an infinite peak (—d/4 < » < 0) or a finite peak (v > 0).

Therefore the conditions in Theorem 1 cannot be significantly relaxed; in
particular, it is not possible to replace r? by any smaller power of r in (1.3).
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