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THE CENTRAL LIMIT THEOREM FOR THE RIGHT EDGE OF
SUPERCRITICAL ORIENTED PERCOLATION

By THOMAS KUCZEK

Purdue University

This article contains a proof of the conjectured central limit theorem for
the growth of the right-hand edge for supercritical oriented percolation. The
technique of proof, finding points with regeneration-type properties termed
“break points,” may also apply to other processes.

1. Introduction. In a recent special invited paper concerning oriented per-
colation, Durrett (1984), it was noted as an open problem that a central limit
theorem held for the growth of the right edge of the process in the supercritical
case. The purpose of this article is to prove the central limit theorem for the
right edge by showing the existence of points with regeneration-type properties,
referred to as “break points.” The results then follow immediately by invoking a
very simple version of a central limit theorem. In a recent paper, Galves and
Presutti (1987) obtain the central limit theorem for the contact process case. The
technique presented here is an improvement in the sense that it is shorter,
simpler, gives more information on the “structure” of edge behavior and invokes
a much simpler central limit theorem to obtain the result. The i.i.d. nature of
edge growth should also make it possible to improve large deviation results for
the process.

2. Definitions and notation. We develop notation here which is generally
consistent with that of Sections 2 and 3 of Durrett (1984). First of all, we say
that (y, m) can be reached from (x, n), denoted (x, n) — (y, m), if there is an

open path from (x, n) to (y, m); that is, there is a sequence (x,, n,) = (x, n),

(%1, ny)y...5 (x5, ;) = (¥, m), where j=m —n such that the arc from
(x4_1 ny_y) to (x4, n,) is open for each 1 < & < (m — n). If we write (x, n) »
(¥, m), then no open path exists from (x, n) to (y, m). Let

C(x,n) = {(y’ m): (x’ y) - (y’ m)},

the set of all points we can reach from (x, n). Events of particular interest in
what follows are

Q(x,n) = {|C(x,n)| = °°}’

that is, the event that there is an infinite open path starting at (x, n), where |A|
denotes the number of points in A. As in Section 3 of Durrett (1984), we let
&= {(m,n) € Z%: m + n is even, n > 0).
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Now define
£7™ = (x: (x,n +m) €L and (y,m) - (x,n + m)}
and
r»m =gup£»™  (sup @ = —o0).

For the sake of readability, we will delete the superscript and write *? as r,
noting that r,, has the same meaning here as in Durrett (1984). Complications to
later arguments arise when ¢%9 = &. To avoid them, we define

&= £,
§ =¢00 itEQ0# o,
= {1} otherwise,
ra={x(x,n+1)eLand(y,n) » (x,n+1)
for some y € £}

if this set is nonempty,
= {n +1} otherwise,

and
r, =supé;.
Note that
¢09c¢rc{-n,—n+1,...,n-1,n},
-n<r/<n, r,<r,<n,
and

on {{09% g}, r,=r.

DEFINITION 2.1. A point (x,n) €% is a percolation point if and only if
IQ ., =1 Thus any particular point is a percolation point if there is an infinite
pen path originating from that point.

Thus we call the rightmost point of £/, (1, n), a percolation point if it is
located at a percolation point. So in particular, if £%9 # & and (r,, n) is located
at a percolation point, then we would call (7,, n) a percolation point.

3. Break points. We wish to simplify the study of the behavior of the right
edge of the process by breaking it into independent pleces To this end, define a
sequence of random variables {T;} by

=inf{n > 1: (1}, n) is a percolation point}  (inf@ = o),

N T2 =inf{n > T, +1: (r,;‘, n) is a percolation point},

T,... = inf{n > T,, + 1: (r,, n) is a percolation point}.



1324 T. KUCZEK

Note that the event (T, = n} for n > i is not measurable with respect to the
o-algebra of observable events up to and including time r, and so cannot be a
stopping time with respect to this ¢-algebra. This is because the event {T; = n}
depends in part on future behavior. It will be shown, however, that members of
the sequence {T;} have stopping timelike properties. Define

n="T,

n="T,-T,

Tn+1 = Toir— T
where 7, , is set equal to 0 if T}, and/or T; is infinite. Also define
X, =rp,

— ! !
Xy, =rp, — g,

= pt — pt
Xn+1 - rT,H,l rTn,

where X, is set equal to 0 if 7 and/or r; are undefined. We refer to the
collection of points {(r7,T;)} as break points, since, as the following theorem
shows, they break the behavior of the right-hand edge into i.i.d. pieces when the
origin is a percolation point.

THEOREM. Conditioned on the event Q, o, the random vectors {(X;, 7;)} are
independent and identically distributed with all moments.

Proor. It will first be shown that =, has all moments unconditionally. This
will imply that 7, has all moments conditioned on any set of positive probability.
In particular, this will imply that =, has all moments conditioned on the event
that the origin is a percolation point. An immediate consequence is that X, has
all moments conditioned on the event that the origin is a percolation point. It
will then be shown that, conditioned on the event that the origin is a percolation
point, the random vectors are independent and identically distributed.

In order to prove the existence of all moments for 7,, we will first write 7, as a
random sum of random variables which have bounded tails. To this end, define

Y(x,n) = inf{m: §&" = @}  (inf & = ).

In Section 12 of Durrett (1984), it was shown that if p > p, that there exist
constants ¢ and y such that .

P(n < Y(0,0) < o0) < ce™ ™.
If-we let p, = P(Y(0,0) < o) and gy = 1 — py, then
P(n < Y(0,0)[Y(0,0) < o) < (c/py)e .
Since the array {Y(x,n): (x,n) € £} is identically distributed, though not
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independent,
P(n < Y(x, n)[¥(x, n) < %) < (¢/pg)e™™.

In order to write 7, as a random sum of random variables, we define the
following events and random variables recursively. In the first step, let

A, = {(r{,1) is a percolation point}

and
Y, = Y(r{,1).
Then let
A, = AN {(r,’,lﬂ, Y, + 1) is a percolation point}
and
Y, = Y(ri'q+1, Y+ 1)’
=00 if ¥} = c0.
Then
A= AN AN {(r{,l+y2+1, Y, + Y, + 1) is a percolation point}

and

Y= Y("i'q+Y2+1’Y1 + Y+ 1),
=0 Y +Y=o0w
so in general
A =ATN - nASO {(Fgs sy Yo+ o + Y, + 1)
is a percolation point}
and
Y= Y(ri'r'l+ T R D A 1),
=00 Y+ - +Y,=oc0.
Finally, define N by
N = inf{i: 1L, = 1}.
The following series of lemmas will shoW that
N-1

n=1+ EY;

i=1

LEMMA 1. If (x,n) is not a percolation point and (x,n) = (y, m), then
(y, m) is not a percolation point..

Proor. If (y,m) - (z,1), then (x,n) = (2,1) also. Therefore all points
connected to (y, m) by an open arc are also connected to (x, n) by an open arc,
which implies that if (y, m) were a percolation point, (x, n) would be also. O
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LEmMA 2. If (1), n) is not a percolation point, then (r,,,,, n + m) is not a
percolation point for m = 0,1,...,Y(r/, n) — 1.

ProOF. The result is immediate if m = 0 [i.e., Y(r/, n) = 1], so assume
Y(r,, n) > 1. It will be shown that for m = 1,2,..., Y(r,, n) — 1, that (r/, n) -
(7} m»n + m). The result will then follow from Lemma 1. By definition of
Y(r/, n), ¢&m + @& for m=1,2,...,Y(r,, n) — 1. This being the case, it will
suffice to show that (r,/, n) —» (1}, ., n + m), for m = 1,2,...,Y(r,/, n) — 1. The
result then follows from Lemma 1. Given that ¢(U»™ # @ for m =
1,2,...,¥(r], n) — 1, it follows that &, , = {x: (3, n) = (x, n + m) for some
y € £.}. Now suppose that (x,n) — (1., n+ m) for some x € £/. Since
gram x g3 ye ¢, such that (r,,n) > (y,n + m). Since y <r/. ., these
paths must intersect, which implies (r/, n) - (r/,,,, n + m) [see Figure 2 of
Durrett (1984)]. O

+m?

LEMMA 3. Given that Y,,Y,,..., Yy are defined and finite, P(Yy,, <
m|Y,,...,Yy) = P(Y(0,0) < m).

Proor. Let n,,...,ng be integers such that 1 < n; < o fori=1,2,..., K,
and let M = ZX n,. The event (Y, = n,,Y, = n,,..., Yy = ny} is determined by

i=1
open or closed bonds between lattice points in the set {(x, n): (¢, n) € £ and
n=0,1,...,2% n,). The event {Y,,, < m} is determined by open or closed
bonds between lattice points in the set {(x,n): (x,n)€ ¥ and n =
TE n,TX n,+1,...,TX n, + m). The bonds between lattice points in one set
are open or closed independently of the behavior of bonds between lattice points
in the other set. Noting that

P(Yg,,<m|Y;=n.....Ye=ng)=P(Y(riy;, M) <m|Y, =n,,..., Yy = ng),
by the previous remark
P(Y(rjp, M) <m|Yy=n,,...,Yc=ng) = P(Y(rj, M) < m).
Since {Y(x, n)} are identically distributed,
P(Y(r%, N) <m) = P(Y(0,0) < m). ]

LEMMA 4. P(N=K)=q,p& Y, K=1,2,....

ProOF. P(N =K)=P(A{N --- NA%_, N Ag) by definition of N. By
Lemma 3,

P(A;N - NA% , N Ag) = P(Af 0 -+ NA%_,)P(Ag),
where P(Ag) = q,. Lemma 3 also implies that
P(AfN -+ NAg ;) = P(A{N -+ NA% ) P(Ag_y),
where P(A%_,) = p,- Repeating the argument,
P(Afn - NA% ) =P
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yielding
P(A;N -+~ NA%_, N Ag) =pg g,

and, hence the result. O
LEMMA 5. 1 + IN7Y, is finite with probability 1.

PrROOF. By Lemma 4, (N — 1) is finite with probability 1. By definition of N,
given that {N = n}, Y,...,Y,_, are finite and Y, infinite with probability 1. O

LEMMA 6. 7, =1+ ZN7'Y; with probability 1.

Proor. First note that Y, = oo, by definition of N, implying that
(r{ysnyy,1 + ZNY) is a percolation point. This implies that = <1 + TNy,
almost surely Now it remains to be shown that 1 + XN 7'Y; is the first time,
after time 0, that the rightmost point is a percolation pomt Note that at times
,1+Y,..,1+ Eﬁv_fY the rightmost point cannot be a percolation point,
because the next Y; in the sequence is finite. For time points in between elements
of the sequence 1,1 + Y;,...,1 + ¥V, the rightmost point cannot be located
at a percolation point, since Lernma 2 would then imply that one of
(r{,1),(r{ 4 yy 1+ Yy),.o0, (P pp2y, 1 + EN5%Y)) is a percolation point. O

In view of the preceding lemmas, it should be intuitively obvious that 7, is
stochastically bounded by a geometric sum of an i.id. sequence of random
variables with exponentially bounded tails, which are independent of the geo-
metric random variable which we sum to. It is, however, necessary to show this
formally since the sequence {Y;} is “not quite” independent of N, since it is used
to define N.

LEMMA 7.
K
P(Yy=my,...,Y,=m|N—1=K) = [TP(Y(0,0) = m;|¥(0,0) < o0).
i=1

PROOF.
P(Yg=mg,...,Y;=m|N-1=K)
P({YK mg,..., Y, = ml}n{N_]‘_K})
P(N -1=K)
From Lemma 4 and by definition of N,
P({Yy=mg,....Y,=m}Nn{N-1=K})
P(N-1=K)
_P(Y,=mg,.... Yy =my, Yy, = )

- QOP(g( .
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Factoring the numerator of the latter term, we obtain
P(Yg = mg,..., Y, =my, Yg,, = )
=P(Yg, = 0|Yx=mg,....,Y, =m)P(Yy =myg,...,Y, = m,).
Applying Lemma 3,
P(Yg,, = oYy = mg,..., Y, = my) = qo.

By factoring and repeatedly applying Lemma 3,
K
P(YK= mK,...,Yl = ml) = ]:IIP(Y(O,O) = mi),
so that
K
P(YK =mg,...., Y, =my, Y, = °°) = QOI_—.[IP(Y(O’O) = mi)'

Finally, noting that
P(Y(0,0) = m;|¥(0,0) < o) = P(Y(0,0) = m;)/po,

we have the result. O

To complete the proof that =, has all moments, let
gn-1(s) = EsV!
and
g(s) = E(s"®91¥(0,0) < o)

denote the generating functions of N — 1 and Y(0, 0), conditional on the event
{¥0,0) < o}, respectively. From Lemma 7, the generating function of TN, is
&n-1(8(s)). Because 7, = 1 + LN7'Y,, 7, will have all moments if 7Y, does,
and Y'Y, has all moments if its moment generating function extends to a
neighborhood of s = 1. But this is true because g,_,(s) and g(s) each extend
beyond s = 1.

In order to show the i.i.d. nature of {( X, 7,)}, a few more lemmas are in order.

LeEMMA 8. If the origin is a percolation point, then (0,0) — (r,,n) for
n=12.... '

PrROOF. On Q ), §,# ¢, n=1,2,.... Given this fact, note that §{ = ;.
Given that £, =, and £,,, # @, £, = £,,1, so that §, = §, on Q for
all n. O

Lemma 9. If (0,0) = (r,, n) and (r,, n) is a percolation point, then the
origin is a percolation point and (1, n) = (Fyipm, 0+ m) form=1,2,....

Proor. The first statement follows from Lemma 1. To see that (7,, n) —
(7 1 + m), note that (x,n) - (r,,,,, n + m) for some x € £%%,. Since



CLT FOR ORIENTED PERCOLATION 1329

(1, n) = (y, n + m) for some y € £%.%, [because (r,, n) is a percolation point],
these arcs must cross so that (7,, n) = (7,,,,,, » + m) [see Figure 2 of Durrett
(1984)]. O

Before proving the next lemma, define S&*™ for (x,n) € £ and m = 1,2, ...
by

Sxm =1,
and for m = 2,3,...,
8™ =m if(r&=m,i+n)» (r®”n+m),i=12,...,m—1

and (x,n) > (5™, n + m),
=m+ 1 otherwise.

LEMMA 10. {{(X,, ) = (x,m)} N Qg )} = {{S*? =m} N {rPV =2} N
/(x, m)J:

PROOF. (D) If (x, m) is a percolation point (2, ) and r>? = x, then by
Lemma 9, the origin is a percolation point (£ o). To see that (x, m) is the first
time the rightmost point is a percolation point, note that if any previous
rightmost point was a percolation point, say (r,, n), 1 < n < m, then (r,, n) -
(r,,, m) =(x,m) by Lemma 9. This contradicts {S, = m} which states
(r,,n) »(r,,m),n=12,...,m—1.

(c) If the origin is a percolation point (£4 ), then (0,0) = (7,, m). If
(Xy, ) = (x, m), then (r,,, m) = (x, m), giving @, ,,, and {r{>% = x}. Since
(x, m) is the first percolation point, (r,, n) » (7,,, m) for n =1,2,...,m — 1, by
Lemma 1 (contrapositive). O

Before proceeding to the final section of the proof, note that by Lemma 10
P({89? = m) N {r0 =2} Ny, m)

P( 9(0,0)) .

Note also that the events {S®® = m} and {r*? = x} are determined by bonds
between points of £’ =N Z' X {0,1,..., m}, whereas Q, ,, is determined by
bonds between points of £” = £NZ' X {m,m + 1,...} and so

({599 = m) 0 (109 = ) N8,
- P({S80 = m) 0 (129 = ) P(8e ).
Since P(Q,, ) = P(Q,q))s \
P((X,,m) = (=, m)lﬂ(o,o)) = P({S,S?'O) =m}n {r®%= x})
To finish the proof, let

P((Xl, ) = (%, m)|ﬂ(o,0)) =

l;= éxi (L,=0)

i=1
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and

t;= ZJ: m; (& =0).

i=1

By Lemma 10,
K
{ ﬂ {(Xi’ "'i) = (xi’ m,)}} n 9(0,0)
i=1

K
= {S,‘n";") = ml} N {'}52’0) = xl} N Qe my N {(Xis 7)) = (x5, my)}.
i-2

Relabeling the origin as (x;, m;) in Lemma 10 and noting that (7,) is the first
time after time m, that the rightmost point is a percolation point, we have

{(Xz’ ) = (x,, mz)} N Q(acpml)
= {Slst’;hml) = m2} n {r'slzlyml) = x2} N 9(12, tz)'

Repeating the argument,

[0 () = )| 9

K
= { N {Srgf'“t"_l) = m;} N {’rszl{_l’ o)) = xt}} 0 Ly, b

i=1
The event {{S{-v42 =m.;} N {rl-+4D = x}} depends only on the behavior
of bonds between points in X {¢;,_,,¢;_, + 1,..., t;}, implying that

K
P( n {{S'(nlii—ly 61 = mi} N {r'sllii—l» ti) = xl}} N Q(lx» ‘K))

i=1

I
':N

~
I
-

P(589) 1 (o010 = ) P(0g,.)

I
':k

P({s®0 = m;) 0 {109 = £,})P(Q,0))-

..
I
—

This finally gives
P({(Xv ) = (%, m1)} n--- n{(XK’ %) = (xg, mx)}|ﬂ(o,0))

K
- f1A(s0 - m) o (580 - 5). ;
i=1
“ COROLLARY 1. On the set of nonextinction, (ry — an)/ Vn -4 N(O, ¢?).

PROOF. Let N, =sup{m: L7, < n}, so that ry ,, is the location of the
right-hand edge at the first “regeneration point” after time n. Observe that
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In,+1 and r, are offspring of ry so that
N, +1 N,

[N+ — TN | < X on- Z"'—’TNH
i=1 i=1

and
N,

n

|r,—ryl<n-— DI TN, +1
i=1

implying
[T, +1 = Tal < 275 410

It is clear from renewal theory, for example, Feller (1966), that 7y ., converges
in law to a proper random variable, implying that

(r, - "N,,+1)/‘v/’7 -p0
So it is only necessary to show
(41— an)/Vn =4 N(0, o).

The proof is not technically difficult, and may be found in Siegmund (1975)
which concerns the time until ruin in collective risk. In this article it is assumed
(keeping our notation) that the sequence of random vectors {(X;,r;)} are
independent and identically distributed with finite means and variances, and
that 7, > 0. Lemma 2 on page 158 states (again using our notation):

LEMMA 2. Assume EX, > 0 and let ® denote the standard normal distribu-
tion function. Then
lim P{(ry ., — (EX,/En)n)/n'/? < x}

n—oo

= o((En)"*x/(E(X,Er, - nEX,Y) ).

To complete the proof of the corollary, it only remains to show that
o? = E(X,Er, - nEX,)’ > 0.

This will occur if X; and 7, are not constant multiples of each other. However,
keeping in mind that

P({(Xv ) = (%, ml)}) = P({S;(nol'o) = ml} ﬁ {rrfﬂ’o) = xl})’
it is easy to see that
P({S,(nol'o) = ml} N {r,sg'o) = xl}) >0
if m, is a positive integer greater than 1and x, = —m,, —-m, + 2,...,m, — 2. O
4. Discussion. The study of any interacting particle system, even one

defined on Z, is complicated by the complex stochastic conditioning involved. In
the case studied here, proving the existence of break points greatly simplifies the
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study of the process. Break points do not occur at stopping times, since we
condition on a future event. However, what occurs is that we stop at a stopping
time and ask a question about the (independent) future. This is why break points
occur at times which have stopping time like properties.
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