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ASYMPTOTIC EXPANSIONS FOR THE EXPECTED VOLUME
OF A STABLE SAUSAGE

By SipNEY C. PORT

University of California, Los Angeles

Let X, be a transient stable process on R and let Tg = inf{t > 0:
X, € B} be the hitting time of B. Set Eg(¢t) = [P (T < t) dx. Asymptotic
expansions, as ¢ — o, to order 3 are obtained for all stable processes on R
that are not completely asymmetric and for all strictly stable processes on
M9, d > 2, whose transition density at time 1 is not zero at the origin. For
those processes that are strongly transient, nontrivial O estimates of the
error are also obtained. Expansions to order 2 together with O estimates of
the error are given for the completely asymmetric processes on R, the
strictly stable processes on ¢ whose transition density vanishes at 0 at
time 1 and for linear Brownian motion with nonzero mean. Asymptotic
expansions to order 3 together with O estimates of the error are given for
stable processes with drift on %¢ having exponent « < 1. Expansions to
order 3 are also given for stable processes with drift on $¢ having
exponent a > 1 when the associated drift free process is isotropic, and
expansions to order 2 with O estimate of the error are obtained for the
other stable processes with drift on ®¢ having exponent a > 1.

1. Introduction. Throughout this paper, X, will be a stable process on
R? that is transient. Recall that the log of the characteristic function of
X, — X, is of the form ¢(6), where

(1.1) W(6) = —i0 - b — A6 [W,(6, &) u(d¢),
with A > 0, u a probability measure on the unit sphere and with
TO 0 ¢
W,(0,€) = [1 - i tan( " Jsgn(o s)”m -f] e,

(1.2)

W B 6 2 01 _q
1(0’§)_(ﬁ§)+l;(@) n|d-¢, a=1.

We will always assume that u is not supported on a great circle. In this case,
X, has a bounded continuous density p(¢, x) that has bounded continuous
derivatives of all orders. Let p(1, 0) be the derivative of p(1, z) at z = 0. Then
p(1,0z = ¢ ,dp(1,0)z,/dx,.

If d=1, then u puts mass p at 1 and mass g=1—p at —1. Let
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B = p — q. We can then write (1.1) as
—¢(6) = A0]*(1 — ih sgn(8)) +i6b  (a+ 1)

.2 ,
(1.3) =201 + ip— sgn(0)In|0|| +i6b  (a=1),

(T
where A= tan(T)

The constant b is called the drift term. If b = 0 and « # 1, then p(t, x) has
the following property:

(1.4) p(t,x) =t=4/*p(1,¢t Y %).

If a=1,6=0 and [¢u(dé) = 0, then p(¢, x) also satisfies (1.4). Equation
(1.4) is called the scaling property. A stable process having the scaling property
is called strictly stable.

Let B be a bounded Borel set and let Tz = inf{¢ > 0: X, € B} be the hitting
time of B. There has long been interest in the asymptotic behavior as ¢ — « of
the quantity

Ep(t) = [P(Tp <1¢) dx.

There are two distinct interpretations of Ez(¢). The process {B + X,} is called
a stable sausage. The volume of the sausage at time ¢ is the Lebesgue measure
of U,_[B + X,]. The first interpretation of Eg(¢) is that it is the expected
volume of the sausage by time ¢.

A second interpretation of Egz(¢) is as follows. At time 0, distribute particles
on R as a point process having Lebesgue measure as its intensity measure.
Thereafter, let the particles move independently as processes equivalent to X,.
Then Eg(t) is the expected number of distinct particles to hit B by time ¢.

Early work by Spitzer [7] for Brownian motion and by Getoor [1] for strictly
stable processes produced asymptotic expansions of order 2 for Egz(¢). Later
Port and Stone [4] found an asymptotic expansion of order 2 for X, any Lévy
process. Even in Spitzer’s early work, interest is expressed in higher order
expansions of Eg(¢). In a footnote in [7], Spitzer states that by formal term-
by-term inversion of Laplace transforms, Kac obtained the third order term in
the expansion when X, is Brownian motion on %3, Just recently, Le Gall [2]
investigated the expansion of order 3 when X, is Brownian motion on R¢,
d > 3. Le Gall obtains the third order expansions for these Brownian motions.
Additionally, for d = 3 he obtains a nontrivial estimate of the error. The fact
that such an estimate is possible for d = 3 seems to depend very much on the
processes being Brownian motion on R3, for it uses the fact that for this
process one can explicitly compute P,(Tp, < ¢) for D a ball.

Our purpose in this paper is to give asymptotic expansions to order 3 for
stable processes. We will accomplish this goal for all strictly stable processes on
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R? with p(1,0) > 0, and for all stable processes on R with |8| # 1. For the
strictly stable processes with p(1,0) > 0 such that a < d /2 we will also obtain
an O estimate of the error in the expansions to order 3. An O estimate of the
error in third order expansions will also be obtained for the stable processes
with drift on R when a < 1/2. For d > 2 we will obtain third order expan-
sions together with an O estimate of the error for stable processes with drift
when a < 1. A third order expansion for stable processes with drift on %<
d > 2 will also be given for a > 1 when the corresponding drift free process is
isotropic. When the corresponding drift free process is nonisotropic, we will
obtain an O estimate for the error in a second order expansion for a process
with drift with & > 1, d > 2.

For the strictly stable processes with p(1,0) = 0, we can only obtain an O
estimate of the error in a second order expansion. We also obtain such
expansions for stable processes on # with drift with |8| = 1 and for completely
asymmetric Cauchy processes on R.

The methods used here, when applied to Brownian motion, are quite
different from Le Gall’s.

2. Preliminaries. The potential kernel of the process X, is g(x) =
Jop(¢, x) dt. Let ¢p(x) = P (T < ). There is a unique measure up supported
on B, called the capactary measure of B, such that ¢5(x) = [g(y — x)uz(dy).
The total mass of up is C(B). The dual process to X, is the process —X,.
Quantities relating to this process are denoted by . For example, ¢ g is the
hitting probability of B for the dual process. Recall the basic fact that
C(B) = C(B).

On the event [T < ], define the last hitting time L by

(2.1) Ly = sup{t > 0: X, € B}.
Let A be a bounded Borel set having Lebesgue measure 1. Set
(2.2) r(t) = [ ds [ P(X, € A)dx.
t A

Our main interest will be in processes such that r(¢) is regularly varying at .
For such processes, r(¢) has the following properties: (i) r(¢) is bounded,
continuous and decreasing. (ii) For any A, r(¢ + h)r(¢)~! > 1, ¢t > =, (iii) For
any a > 1, sup, r(#)r(at) ™! < ». Let

Pyp() = [B(*)$s(x) dx.

Theorems 11.1 and 14.3 of [4] show that whenever r(¢) is regularly varying,
then for any A and any bounded Borel function f,

[15¢B(t <Tp<t+h; Xy €dz)f(3)

= hC(B){ag, fyr(t) +o(r(t)),
where (fig, [) = [f(2)ig(dz). The basis of our approach for obtaining asymp-
totic expansions to order 3 of Eg(¢), when r(¢) is regularly varying, is the
following lemma that is based on (2.3).

(2.3)
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LEmMA 2.1.  Suppose r(t) is regularly varying. Let
t A A N
Gp(t) = ]O[PM(TB € ds, Xr, € dz) P'hy(2).

If [5r(¢) dt < o then Gg(¢) = O(r(2). If [5r(¢)dt = o, then

Gy(t) ~ (]Otr(s)r(t —s)ds|C(B)>.

Proor. By Theorem 12.1 of [4], uniformly in x on compacts,
(2.4) Pigp(x) ~r(2)C(B).

The lemma now follows from (2.3), (2.4) and the properties of r(¢) via routine
Abelian arguments. O

Using Theorem 11.2 of [4], we find
(2.5) Eg(t) —tC(B) =B, 5(Tp < ¢t).

If [5r(¢) dt < o, then 15¢ g(Ty < ©) < o (see Proposition A14) and we can write
the right-hand side of (2.5) as

(2.6) B, p(Tp <) — Pyp(t < Ty < ).
Since
Pyp(t < Tp <) = [P'§p(x)$p(x) dx — Gp(2)
and
JP5(x)bn(x) dx = [ [Rp(da)up(db) [ (u = 1)p(u,b ~ a) du,
we can write (2.5) as
Ep(t) — tC(B) = P,p(Ts <) — [ [fip(da)up(db)

(2.7 .
x[ (v —t)p(u,b—a)du+ Gg(t).

If [5r(¢) dt = «, we write (2.5) as
Ep(t) — tC(B) = Pyp(Lp < t) + [Byp(Ts <, X, € dy) ().
Now
Byp(Ly<t) = [ [p(da)us(db) [ (u A 0)p(u,b~a) du.
Thus, in the case when [5r(¢) dt = », we can write (2.5) as

f, Ep(t) —tC(B) = [ [Ap(da)up(db)
(2.8) .
X f (uAt)p(u,b —a)du + Gg(t).
0
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Now the first order term in the expansion of Ez(¢) is tC(B). If [gr(¢) dt < o,
the second order term is 154, (T < ). Appropriate expansions of p(u,b — a)
will yield the third order term together with a term of the order r(¢). The error
term in this case is O(r(¢)). If [5r(¢) dt = «, the third order term is of the
order [ir(s)r(¢ —s)ds. In this case, appropriate expansions of p(u,b — a)
and (2.8) will yield the second order term and part of the third order term. The
remaining part of the third order term comes from the C(B)3{r(s)r(¢ — s)ds
term.

All strictly stable processes on R¢ with p(1,0) > 0 have r(¢) regularly
varying. As shown by Taylor [8], this is the case for all strictly stable processes
except those with @ < 1 and with u supported on a closed hemisphere. In
particular, on R, p(1,0) > 0 except for the completely asymmetric processes
with a < 1. Also, on # only the completely asymmetric stable processes with
drift with « < 2, the completely asymmetric Cauchy processes and linear
Brownian motion with drift fail to have r(¢) regularly varying. All of these
exceptional processes have [5r(¢)dt < ». For these processes we use (2.7) to
show

Ep(t) = tC(B) + [$5(x)$5(x) dx + &(2),
where an O estimate of £(¢) is obtained.

3. Expansions for strictly stable processes. Throughout this section,
X, will be a strictly stable process. We first consider those processes with
p(1,0) > 0. Then

p(t,x) ~p(1,0)t7%/*  t >
If a<d/2, [fri)dt <o If a=d/2, r(t) ~p1,0)¢t % and for a >d/2,
r@t) ~ (d/a) — 1) 1p(1,0)t1~¢/* We need to consider the cases a < d/2,
a =d/2 and a > d/2 separately. In Theorems 3.1-3.3, we assume the pro-
cesses are such that p(1,0) > 0.
THEOREM 3.1. For a < d/2 and p(1,0) > 0,
Ep(t) = tC(B) + [$5(x)dp(x) dx

-1

- C(B)zp(1,0)['(g - 2)(3— - 1)] t2-d/e

(d+ 1 2)(d +1 1)]—1.
XffﬁB(dx)MB(dy)ﬁ(l,O)(y — x)¢2-@+D/a

+ O(¢t-2/9).
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Note that if « < 1,2 — (d + 1)/a < 1 — d/a. In this case, the above shows
that

Ep(t) = tC(B) + [dp(x)¢p(x) dx

L e

[This expansion is always valid when the process is isotropic since p(1,0) = 0.]

1
t2md/e 4 O(¢1m4/),

THEOREM 3.2. If a > d/2 and p(1,0) > 0, set

Lg(t) = Eg(¢) —tC(B) - C(B)zp(l,O)[(g - 1)(2 - i)]_ltz-d/a

- C(B)3p(1,0)2[§ - 1]_2r(2 - %)2[r(4 - i—d)]_lt?»-zd/a.

If a > 2d/3, then
Lg(t) =o(t3724/2),
If a < 2d/3, then

Hy(2) = [ ulp(u,0) = p(u,2)] du
exists,
upHipg = //H1(J’ —x)ig(dx)up(dy)

exists and, for d # 3,
Lg(t) = —figHpp + 0(t3_2d/a),

-2
x(ffﬁa(dx)#s(dy)p(l,o)(y _ x))t2—4/a

+ o(t37%/%).

while for d = 3,

Lp(t) = —fpHup +

THEOREM 3.3. For a = d/2 and p(1,0) > 0,
°°p(1,82) 1p(1,82') —p(l,O) d
H,(z) = [‘[1 S ds +fo . ds (—2-)
exists for all z # 0 and

ApHaug = [ [Ap(dx)up(dy) Hy(y — )
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exists. Set
Ly(t) = Eg(t) - tC(B) — C(B)*p(1,0)[1 + In ]
N 3 2Int
~ finHap — 2C(B)°p(1,0°
Ifd=1,20r4, L) =o(nt)/t). Ifd = 3,
Int
Ly(t) = [( | Jis(ax)indn)pa. 0 - x)]t 4o 4 )

ReMARK 1. For isotropic processes, the quantities H,, H,, p(1,0) and
[ #5(x)? dx can be determined explicitly. This is accomplished by Propositions
A3-AS8 in the Appendix. By (1.4),

(3.1) r(t) ~ (i - 1)_ p(1,0)t1=4/«

This fact and Lemma 1.1 will handle the Gg(¢) term in (2.7) and (2.8). The
strictly stable density p(1,z) has a bounded second derivative. Using the
scaling property (1.4) and Taylor’s theorem, we can write

(3.2) p(u,2) —p(u,0) =u"@*D/%[p(1,0)2] +&(u,2),
where for some numerical constant M,
(3.3) le(u,z)| < My~ (@272,

The proofs of Theorems 3.1-3.3 will be carried out in a sequence of lemmas.

LEemma 3.1. Ifa <d/2,

f;w(u —t)p(u,z)du =p(1,0)[(g - 2)(% _ 1)] s2-(d /e

d+1 d+1
= -2)= 1)
47 a
where for a constant M,

xg2@+h/a 4 g (¢, 2),
leo(2, 2)| < M, |z|?t2 @+ D/,

-1

p(l,O)z]

Proor. This follows from (1.4), (3.0) and (3.3). O

ProoF OF THEOREM 3.1. By Lemma 1.1, Ggz(¢) = O('~4/%). The
theorem now follows from Lemma 3.1, Equation (2 7) and the fact that
2-(d+2/a<1l-d/a O

Lemma 3.2. If a >d/2,

f:(u A £)p(u,0) du =p(1,0)[(§ _ 1)(2 _ g)]_ltz_d/a.
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Proor. This follows at once from the fact that p(u,0) = u~%/%p(1,0). O

LEmMa 3.3. If a>d/2,

tf:o[p(u,z) —p(u,0)] du = [(% - 1)_1p(1,0)z]t2‘(d+1)/“
+ 0(|2/%? - (d + 2) /).
Proor. This follows at once from (1.4), (3.2) and (3.3). O
LeEMMA 3.4. Suppose a >d/2. Ifd =1or 3,ord = 2 and a < 3/2, then
(3.4) H(z) = j;mu[p(u,O) —p(u,z)] du
exists, igHipup = [[Ap(dx)up(dy)H(y — x) exists and
[ulp(x,0) = p(u,2)] du

=Hy(z) + [(2 - (d+ 1)/a)_1p(1,0)z]t2—(d+1)/a

+ O(|Z|2t2_(d+2)/a).

(3.5)

Proor. Using (1.4), we see
u[p(u,O) _p(u1z)] = ul—d/a[p(l,o) _p(]-’u_l/az)]'
Since sup, p(1, z) < o, it follows that, whenever a > d /2,
[lulp(,0) - p(u,2)|du < c,,
0

~ for some constant c;. For d =1, d =2 and « <3/2, or d =3 and a < 2,
ul~@+b/« ig integrable on (1,%). Since |p(1, 2z)| is bounded, it follows from
(3.2) and (3.3) that for these cases

[ ulp(u,0) = p(u, 2)l du < cylzl,
for some constant c,. If d = 3, @ = 2, then for some constant c;,
u|p(1,0) — p(1,u™"22)| < cgu™??2|?.
Since u~3/2 is integrable on (1, x), it follows that for this process

[I”ulp(u,m — p(u,2)|du < c,l2?

for some constant c,. Since fig(dx)ug(dy) is a finite measure with compact
support, it follows that

[ [an(dz)us(dy) [ulp(u,0) = p(u,y = %)l du <=
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Equation (3.5) now follows from (3.2), (3.3) and the equation

/otu[p<u,o>—p(u,z)ldu=H1<z)—/fu[p(u,O)—p(u,zndu. O

LemMma 3.5. Ifd =2 and a = 3/2,

/:u[p(u,z) —p(u,0)] du = [p(1,0)z]In¢t + O(1).

Proor. Write

fotu[p(u,Z) —p(u,0)] du = folu[p(u,Z) —p(u,0)] du

+ [(ulp(u,2) - p(u,0)] du
1
and use (3.2) and (3.3). O

LemMa 3.6. Ifd =2 and a > 3/2,
-1
./:u[p(u’z) —p(u,0)] du = [(2 - g) p(l,O)z}th/a + 0(1).

Proor. Use (3.2) and (3.3). O
LemMma 3.7. If @ > d/2,
Gy(2) ~ C(B)°p(1,0)*[(d/a) — 1] °T(4 — 2(d/a)) "
XT(2 — (d/a))’3~ 24/,

Proor. This follows from Lemma 2.1, (3.1) and a well known Abelian
theorem on convolutions. O

Proor oF THEOREM 3.2. Note that for d =1or 2, 2 —(d + 1)/a <3 —
2(d/a), while for d =3, 2 —(d + 1)/a > 3 — 2(d/a). Also, if a > 2d/3,

t3-2d/0 5 w0 a5 t — ». These observations together with Lemmas 3.3-3.6
and (2.8) suffice to establish the theorem. O

LEmMMA 3.8. Let a = d/2 and let Hy(2) = (d/2)[{Ip(1, uz)/uldu. Then
ApHiup = [ [Hi(y — )ip(dx)pp(dy) <.

Also, for Hy(z) = (d/2)[¢(pQ, uz) — p(1, 0l/u) du, Hy(y — x) is
A g(dx)u g(dy) integrable.
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Proor. Since 154, g(Lg <t) < o for all £, we find that

fotud“ ffﬁB(dx)#B(dy)P(U,y —x) <,

2/d

Now using (1.4) and the change of variable s = ©~%/¢, we find

d . © 1
|3/ Jast@nusan [, sp(u, sy~ 2)) ds <=
Taking t = 1 shows {dzHgu < «. Since |p(1, 2)| is bounded,
1 du .
[7p(1,22) = p(1,0)|— < (sup|p(1,2)])i2],
0 u z
so Hj(y — x) is integrable as claimed. O

Lemma 3.9. If a =d/2,
o 2 -1
tf p(u,z)du=p(1,0) + [(3 + 1) p(1,0)z}t-2/d + O(|2)t=44).
t

ProoF. Tﬁis follows at once from (1.4) and (3.2). O
Lemma 3.10. If a = d/2,
[ [25(dx)nn(dy) [up(u,y - x) du
= figHyup — C(B)*p(1,0)In¢
- [Z— [ [fn(dx)ms(dy) 5(1,0)(y - x)]rw +0(174/9).
Proor. Note that for ¢ > 1,

t dy =
f()up(u,z)du—(g)ft_z/ds p(1,sz) ds

= (g)flws'lp(l, sz)ds + (izi-)/:s_l[p(l, sz) —p(1,0)] ds

d
‘T3
The lemma now follows from Lemma 3.8 and a Taylor series expansion of the
integrand of the last integral on the right to order 2. O

YR
+ p(1,0)Iln fo ;[p(l,sz) —p(1,0)] ds.

Levma 3.11. If a =d/2,
Gz(t) ~2C(B)%p(1,0)* *Int.



502 S. C. PORT

Proor. Here r(t) ~ p(1,0)¢t 1. A routine Abelian argument shows that
[r(s)r(t = s)ds ~ 2p(1,0)*t ' Int.
0
The lemma now follows from this fact and Lemma 2.1. O

ProoF OF THEOREM 3.3. If d=1,2,(nt)/t >t 2% orifd=3,t7%3>
(nt)/t. If d =4, p(1,0) = 0. The theorem follows from these observations,
Lemmas 3.8-3.11 and (2.7). O

We will now consider those strictly stable processes with p(1,0) = 0. As
shown by Taylor [8], this can happen iff @« <1 and u lies in some closed
hemisphere. In this case, there is a closed convex cone k2 with vertex 0 such
that p(1,x) = 0 for all x ¢ k. Since p(1, x) is C*, it follows that p(1, x) and
all its derivatives vanish at 0. Using (1.4) we see that, uniformly in z on
compacts,

tlim t™"p(t,2) =0

for any positive n. Consequently, by (2.7), for all of these processes,
for(?) dt < « and the following holds.

THEOREM 3.4. Assume p(1,0) = 0. Then
Ep(t) = tC(B) + [d5(x)¢p(x) dx + &(t),
where £(t) = o(t™™) for any positive n.

4. Expansion for stable processes with drift on i with a < 1. For
stable processes on R with a # 1 we can write
(4.1) w(8) = —i0b — A|8]*(1 — ik sgn(9)),
where h = B tan(ma/2) and |B| < 1. In this section, we will give the expansion
of Eg(t) for such processes with b # 0. We need only consider the case b > 0.
The results for b < 0 follow from these by replacing 8 with —8 and b with ||
in the corresponding formulas. We assume |B| < 1. As usual, p(¢, x) is the
transition density. We let f(x) be the density of the corresponding drift free
process at time ¢ = 1. Then

(4.2) p(t,x) =t~ Vof(¢7/*(x + bt)).
THEOREM 4.1. Assume |B| < 1. If « < 1/2,

Ep(t) = tC(B) + [$5(x)$p(x) dx -

[ o

+ 011/,

.(4.3) — C(B)?
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If a > 1/2, set
L[( 1 1\t
Ly(t) = Egz(t) —tC(B) — C(B) (; - 1)(2 - ;) f(0)¢2~ e,
Then for 1/2 < a < 2/3,

Hy(z) = j:u[p(u,z) - u~Y4f(0)] du

exists,
ApHyup = ffﬁa(dx)ﬂs(dy)Ha(y - x)
exists and
o [(2 2\17"
Ly(t) = fipHyup - C(B) “(; ~2(3- ;)] F(0)b
49 v 10?2 -1) rfe-2) rfo- 2 oo
+ o(i3‘2/“),
where

ApHsup = [ [iip(de)np(dy) Hy(y — ).
If @« = 2/3, then

Hy(2) = ['u[p(u,2) - u=*f(0)] du
0
+f°°u[p(u,z) - u=%%f(0) — u=%f'(0)] du
1
exists and is [i g(dx)ug(dy) integrable and
(4.5) Lp(t) = C(B)*f(0)b[1 + Int] + 4wC(B)*f(0)* + g H,pup + o(1),
where igH,ug = [[Ag(dx)ug(dy)H(y — x). If a > 2/3,

22 o

re(w) 072 -1) rla-2) "rfa- ) e o
If o.=1/2, then
Hy(z) = flws‘lf(s(l + %z-)) + fols‘l[f((l + %z—)s) —f(O)] ds

Lg(t) = C(B)*
(4.6)




504 S. C. PORT
exists and is such that

ApHsup = [ [Ap(de)np(dy) Hs(y — x)
exists and

Ep(t) = tC(B) + AgHspup + C(B)’[ £(0)Int — £(0)In b + £(0)]

3 oInt In¢
+ 2C(B)°p(1,0) T +o0 - |

REMARK 2. Propositions A1l and A12 in the Appendix explicitly determine
the quantities £(0), f(0) and [p(x)d (%) dx.

LEmMA 4.1. For any z and u > 0,
(4.7)  p(u,2) = fO)u~"*=u'"2/2f(0)(b — 2/u) + &(z,u),
where

(4.8) le(z, u)| < u®~%/%|b + z/ul*sup| f'(x)].

x
Proor. Use (4.2) and Taylor’s Theorem. O

The proof of Theorem 4.1 uses Lemma 4.1 and arguments quite similar to
those used to prove Theorems 3.1-3.3. For this reason we will be brief.

LEmMA 4.2. If a < 1/2, then
~1
fm(u —t)p(u,z)du = [(1 - 2)(l - 1)] f(0)t2~ Ve + O(t1~1/).
t a a

Proor. Use Lemma 4.1. O

Lemma 4.3. If a > 1/2, then

f:(u At)u~'*f(0) du = [(% - 1)(2 _ %)]_lf(o)tz—l/a

and

tftm[p(u,z) —u~Yef(0)] du = (; - 2)_ F0)bt3~2/% + g(2,t),

where
suple(z,t)| = O(t*72/%).

zeB
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Proor. The first assertion is obvious. The second assertion follows from
Lemma 4.1. O

LemMMAa 4.4. If a > 2/3,
[ulp(u,2) = u/*f(0)] du = (3 = 2/a) " F(0)bt> ¥/ + &(2,1),
0

where

suple(z,t)| = O(t*7%/%).

z€B

If a =2/3, then

t 1 —3/2
fou[p(u,z) - u®2f(0)] du=fou[p(u,z) - u~%2f(0)] du

+]1°°u[p(1,z) — u~%2f(0) — u~%f'(0)] du
= H,(z2)

exists and is i g(dx)ug(dy) integrable and

[Ulp(,2) = u=>2f(0)] du = Hy(2) + bf (0)[1 + In¢]

0

+0(t7 V22| v |2[%).
If1/2 <a<2/3,
[0°°u[p(u, 2) — u~Vef(0)] du = Hy(2)

exists, g Hyup exists and

[ as(d=)us(dy) [[ulp(u,y = x) = u™/*f(0)] du
(49) gyt
g Hop - C(BY|[3- 2N roppee s oge-are.

Proor. Since f is bounded,
supflul‘l/“l f(ur~v*(b + 2/u)) — f(0)|du < =,
2eB”0

whenever a > 1/2. If a < 2/3, [fu?*~Y® du < ». Since f'(z) is bounded, it
follows that H,(2) exists for 1/2 < a < 2/3. Using Lemma 4.1 and the above
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facts, we see that (4.9) holds. The other assertions of the lemma also follow
from Lemma 4.1. D

LEMMA 4.5. Let a = 1/2. Then
zs
12

Hy(2) = flms‘lf(s(l + %‘;)) ds + fols-l[f(s(l +2 )) —f(O)]‘ds

exists and Hy(y — x) is fi g(dx)p g(dy) integrable. Let fgHyup be its integral.
Then

[in(dx)us(dy) [up(u,y - x) du

= AgHguyp — C(B)?f(0)In(b/¢) + O(1/¢)

and

[An(dx)us(dy)ef P,y = %) du = C(B)*f(0) + O(1/1).

Proor. Note that
(410) [ p(u,2)du = ¢[ w2 (u(b + 2/u)) du = £(0) + O(1/2).
¢ ¢ ,

Also, for ¢ > 1
¢ ¢ (b zu\\du ® zs\ ds
fo“p(“’z)d“_Lf(Z(HT))‘J‘f,,/f(“gi);‘

N i R
— £(0)In(b/t) + O(1/2).

Proceeding as in the proof of Lemma 3.8, we find Hj; is /i p(dx)up(dy)
integrable. The lemma now follows from this fact and Equations (4.10) and
(4.11). O

Proor OF THEOREM 4.1. The theorem follows from the above lemmas,
much the same as Theorems 3.1-3.3 follow from the lemmas in Section 3. We
omit the details. D

In Theorem 4.1 we omitted the cases 8 = —1and p=1.1f B = -1, then

p(t,x) = 0 whenever ¢ > —x/b. In particular, p(t;x) =0 for all x > 0. For
these processes, [r(t)dt < » and 3 ¢,(B) such that

Ep(t) = tC(B) + [$5(x)p(x) dx +&(2),

where &(¢) = 0 for ¢ > to(B). For B = {a}, E () = bt exactly.
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If B = 1, it was shown in ([3], Theorem 5) that, uniformly in x on compacts,

(412) p(t,x)‘/ze”I —)FI’
where
mra -1/
y.=(1—-a)a*/d"® cos(—z—) b~e/A~®
and
F, = a——l——(277'(1 - a))_l/zb"‘/z(l_")_1
! 2(1 — a) '

Using (4.12), it follows that
Ey(t) = tC(B) + [$5(x)$p(x) dx + O(¢™1/% ™).

If we take B = {0} and set E(t) = E(¢), then E(¢) is the expected value of
the Lebesgue measure of the range of the process up till time ¢. The constants
entering into the expansion of E(#) can be explicitly determined. These are
given in the appendix.

5. Expansions for stable processes with drift on ® for 1 <a <2.
Throughout this section, we will consider a stable process on R with 6 > 0
and a > 1. We will take A = 1. Our results will depend on well known
asymptotic expansions of f(x), the density of the corresponding drift free
process at ¢t = 1, as x — . Let

A =T(L+a)m (1 + h2)1/2sin(f2ﬂ + ztan-l(h))
and let
A, = —T(2a + 1)(27) (1 + h?)sin(ra + 2tan"' (k)).
THEOREM 5.1. Assume a > 1 and B > —1. Then the quantity
Hy(2) = ["ulp(u,2) = p(x,0)] du

exists and Hy(y — x) is fi g(dx)u5(dy) integrable. Let jp Hepp be the integral.
Ifl1<a<3/2,

Ex(t) = tC(B) + C(B)*[[(a - 1)(2 — a)] "'b=* 14, |2~
+C(B)*[[(3 - 2a)(2e — 2)] Tlpmeerig,
+C(B)I(2 - a)’T(4 - 2a)‘1b—2(a+1)Azl]t3-2a T o(£3-2).
If a =3/2, let .
Ag = j:[uP(U,O) — Ab5/2y 7172 —A2b'4u‘1] du.
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Then |Ag| < ® and
Eg(t) =¢tC(B) + C(B)*[4A,67%2Vt + Ay + Ab~*Int
+b~"/2 + C(B) A2b~ 5]
+hpHgup + o(1).
If 3/2 <a <2, let
A4 = fw[up(u) 0) - Alb—(“+1)u_“] du.
0
Then |A,| < © and
Eg(t) = tC(B) + C(B)*[(a = 1)(2 — )] "o~ D2~ 4+ 4 Houp
+ C(B)[ A, + Apb~@2*D[(3 — 2a)(2a — 2)] !
+C(B) ATb™**DI(2 — @)’ (4 — 2a) "'[#372 + o(£3-2),
LEMMA 5.1. Asx — o,
f(x) = Alx—(a+1) + Azx—(2a+l) + O(x—(3a+1)).

Also,
sup| f'(x)] |x|“*? = A5 < o
x

Proor. These well known facts can be found in [6]. O

LemMA 5.2. Hg(2) and figHgup exist.

Proor. Choose M such that sup,.5|2|/M < b/2. Using Lemma 5.1 and
the mean value theorem, we find that for some constant Ag,

fwulp(u’z) —p(u,0)|du SAwau_a du < (b/z)—(a+2).
M M
But
/Mu[p(u,z) —p(u,0)] du < fMul_l/“ du supf(x).
0 , o u
It follows that

sup < oo,

z€eB

fo u[p(u,z) — p(u,0)] du
Consequently, fipHgup exists. O

JLEMMA 5.3.

. A
t[ p(x,0)du = llb‘(“+1)t2“' + Ay(2a — 2) TTp@ D32 4 O(gh-3a),
t a —
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Proor. This follows at once from Lemma 5.1 via the scaling property (4.2)
of p(¢,0). O

LEMMA 5.4. Let
= ¢ —(a+1) 12—«
1_[up(u,0) du — Ab (2 —a) 2
0

If a <4/3,
I=Ay(3 - 2a) 1o~ @a+ 32« 4 Q(p-39),
If a = 4/3,
I=3A,6713t1/3 + O(Int).
If4/3 <a<3/2,

I= f:[up(u, 0) — Ajul=ep~@+D — A yy20-0p=@a+D] gy
+A,(3 - 2a)_lb—(2a+1)t3—2a + O(t4—3a).
Ifa=3/2
I= fm[up(u,O) — A V2752 — Ayumh 4] du + Ab 4 Int + O(¢V?).
0

If @« > 3/2,
Azb—(2a+1)

t3—2a + O t4—3a .
20 -3 ( )

I= fw[up(u,O) — Ap-@rbyl-e] gy —
0

Proor. These follow by routine calculations from Lemma 5.1. We illus-
_ trate by proving the assertion for @ > 3/2. If @ > 3/2, it follows from Lemma
5.1 that

ul—l/af(bul—l/a) _ Alb—(a+1)u1—a

is integrable on (0, ). Thus,
ftup(u,O) du = ftAlb'("‘”)ul'“ du
0 0

+[°°[u1—1/af(-bu1—1/a) _Alb—(a+1)u1—a] du
0

_fm[ul—l/af(bul—l/a) _Alb—(a+1)u1—a] du.
¢
Using Lemma 5.1 once again, we find

j-m[ul_l/af(bul—'l/a) _Alb—(a+1)ul—a] du
t

— [ Au-p=@r Dy 4 O(475), D
t
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LemMma 5.5.  For any compact set K,

lim supt"_lfm(u - t)|p(u,2z) —p(u,0)|du < .
t

l-® ek

Proor. This follows from Lemma 5.1 and the mean value theorem. O
LEMMA 5.6. Let
J= [mp(u,O)(u At)du — Ab~ @ V[(a — 1)(2 — a)] 12
0

For a < 3/2,

J = A6~ +D[(3 — 2a)(2a — 2)]'—1t3—2n +o(372).
For a = 3/2, let

Ay = j:o[up(u,O) — Ab52y 12 —A2b‘4u‘1] du.
Then

J=A;+A,[b*Int+b""2] +0(1).
For 2> a > 3/2, let

Ay = [ up(u,0) - Ap=+Dyu <] du.
0

Then
J=A,+Ab%*D[(2a — 3)(2a — 2)] “1g8-2a 4 o(t372%),

Proor. The lemma follows at once from Lemmas 5.3 and 5.4. O

LEMMA 5.7.

2 - a)?

Ga(t) ~ T(4 - 2a)

C(B)3A%b—2(a+l)t3—2a-

ProoF. Using (4.2) and Lemma 5.1, we see that r(¢) ~ A;b~@*D¢t1~« The
lemma now follows from Lemma 2.1. O

Proor oF THEOREM 5.1. The theorem follows easily from Lemmas 5.5-5.7
via (2.8). If B = —1 it was shown in Theorem 8 of [3] that
(5.1) p(t,x)te" > F,, t— o,

~where
b Ta a/(a—1)
ve = (a — 1)'— cos(—)
a 2
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and
F, = [2m(a — 1)] " 2q~ V/Xe-Dpd-a/2a=1),

Using (5.1), it easily follows that
Eg(t) = tC(B) + [$p(x)$p(x) dx + O(t™ /%),

Let E(#) = Ey(#). Then the constants entering into the expansion can be
explicitly determined. These can be found in the Appendix. O

6. Expansions for asymmetric Cauchy processes on R. In this sec-
tion we will consider asymmetric Cauchy processes on R. We will take
A = 7 /2. This will enable us to use the asymptotic expansion of p(1, x) = f(x)
given by Zolotarev [9].

THEOREM 6.1. If —1<B <0,

(L+p)B~% _, (nlnt)t
2In¢ +(1+p)B 41n%¢ ]

Ez(t) = tC(B) + C(B)?

11
+ lﬂ‘z[(l + B)In(=B) 5 B(1+B)

oC + (B 1+8\% ¢ t

+2C +(B) 2B In?¢ +O(ln2t)'
If 0 < B < 1, the expansion of Eg(t) is obtained from the above by replacing

B with —pB. Henceforth we assume B < 0.

The following expansion of f can be found in Theorem 2.5.4 of [9].

LeEmMMA 6.1. If B> —1, then as x — ®,
f(x) = 21+ B)x 2 + 1B(1+ B)(In x)x 2 — B(L + B)x~ + O((In? x)x~*).
Also, for some constant B,
If(x)]<Bx~%  x>0.

Set
B, = (1+B)/2,
B,=B(1+8)/2,
B, = —-p(1+p).

‘Lemma 6.1 and the scaling property

x
(6.1) p(t, x) =t'lp(1,? - Bln t)
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form the basis for the proof of Theorem 6.1. Applying Lemma 6.1, we find for
u>1,

0 1 B, B, Inlnu
p(u,0) = ul|piInu * B InPu
In?In u
+[B;+ByIn(—-B)|B %u"'In"Pu + 0( iy )

Integrating from ¢ to «, we find

o BB~ %t _yInln¢
tftp(u,O)du— In¢ ~ B:p 2In2¢

(6.2)

B, B B.1 _3 ¢ t
T B Ban(-B) |8 oy

t—o,

Now

Bt t
(6.3) fotup(u,O)du=fotuf(—Blnu)du= ﬁ211112t "'O(Inzt)‘

LEMMA 6.2. Ast — o,

f:(u ANt)p(u,t)du

_gnlnt

t
= B -2 ___ ———
1P + Bop 2In?¢

Int

t N ¢
* InU2t 0(1n2t)'

1
B, + Bz(Z + ln(—B))]B‘3 + B,872

Proor. This follows at once from (6.2) and (6.3). O

LemMMA 6.3. For any z
H,(z) =f0u|p(u,2) —p(u,0)|du <=

and for a compact set K

sup H,(z) < c.
zeK

Proor. This follows from Lemma 6.1 and the mean value theorem. O

‘ LEMMA 6.4.

B

B;\? 5
Gp(t) ~2(?) C(B) -
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Proor. This follows from Lemma 6.3 and the fact that here r(z) ~
(B,/B®/Int. O

Proor or THEOREM 6.1. Note that

Byp(Ls<t) = [ [An(dn)up(dy) [ (u A D)p(u,y - ) du

= C(B)zf:(u At)p(u,0)du + ¢,
where
e = [ fan(dn)us(dy) [ Lp(u,y = =) = p(u,0](x A1) du.

By Lemma 6.3
le] < C(B)2sug H,(z).

z€eB
Using Lemmas 6.2 and 6.4, Equations (6.4) and (2.8) and the fact that
t/In% ¢t — =, we obtain Theorem 6.1.
We will now consider the case when 8 = —1.
Theorem 2.5.2 of [9] shows that

_px—1
ex/2 e

f(x) ~ \[2':7—6 R x — oo,
Thus, uniformly in z on compacts,
* 1 o
J ples2)(u = ) du ~ o [ (= )uT e du
o ~t/e
= [j;) se™*/°(¢t +s) " ds v r O(+V2%1/°).

Using (2.7), r(t) = O(¢~'/%¢7'/¢) and the above, we find

Eg(t) = tC(B) + [$5(x)p(x) dx + O(t7/%7*/°). o

7. Linear Brownian motion with drift. The stable process with drift b
for & = 2 is linear Brownian motion with mean —b¢ and transition density
p(t, x) = (4mt)~1/2e~=+bD*/4 The function E,(¢) can be explicitly computed.
Using Proposition A9, we find

&3

1) Bt = B ernids+ 2 [fas [ur et
( ') a() _'k J;- e S 2¢; £ sL;u e u.
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A simple computation shows

t2$'1/

0 w

2 -1/2,-b%s /4
e—b23/4 ds — i B /.oo 2s e ds
b U v

Another computation shows

b2 ., s
-1/2,-b%u /4
—zﬁj;dsj;u e du

b s
=bt — —— | d -1/2,-b%u/4 g
2\/%-_/; S/ou ¢ *

2 b2 o ™
= bt — 3 + e [[ u-1/2o=0%u/4 gy — tf w-1/2e=0%u/4 gy |
T |Vt p
Hence
E (¢t bt 2
a( ) - b
® 2(s + 1,‘)*1/2
_ ,-b%t/a —b2s /4
(7.2) e foe [—17

+ 23; [(s + )" —t(s + t)_l/z]} ds.

If we now expand the integrand in (7.2), we find

2 hd )
E(t) ~bt = 7 + e/ L atm0ryo,
=0

where a, = —2/ Vm and for j > 0,

I b VZ: b? —j.,+ b [(1/2\ [-1/2
SRR U A L P Y= (VA U A P
Let B be a compact set and let p = g.l.b. of B and g = Lu.b. of B. Then

Ep() = Bg#) + (¢ = p) = [P(T5 > 1) d.

(j+ 1

If B is the closed interval [p, q], then P(Tg > t) =0 for all x € B. For a
general compact B

, P(Tp>1) < P(T, > t).
Using Proposition A9, we see that
P(Ts > t) = O(t™3/2% /%),
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Thus, in general,
(7.3) EB(t) = E(O)(t) + (q _p) + O(t_3/2e_b2t/4).
Using the expansion of E(#) given in (7.2), we can write

2
Ep(t) =bt+ o +(q — p)age /412 4 O(t3/ 2"/,

8. Expansions for processes with drift on R¢, d > 2. In this section
we will consider a stable process with drift on R¢, d > 2. As usual, p(¢, x) will

be the transition density and f(x) will be the density of the corresponding
drift free process at time 1. Then

(8.1) p(t,x) =t=4/*f(1~V%(b + x/t)).
THEOREM 8.1. Suppose a < 1. Let b = (by,...,b,) and let
d d FU

;=% " X mf(o)bil by

=1 ij=1 i

Let n be such that (n — 1)/n <a <n/(n + 1). Then

Ep(t) = tC(B) + [$5(x)$p(x) dx

(8.2) ne1 o ‘
+ Y DjC(B)Jtz"'J—(d"'J)/a + O(t1m4/%),
j=0
where

Proor. Using 8.1, we find

n—1
p(u,x) = Y cjul ~@H/e 4 Q(ur~@rm/e),
j=0
Hence,
. n-—1 ) )
(83) '/; (u — t)p(u,x) du = JgoDjtj+2—(d+J)/a + O(tl—d/a)'

Equation (8.2) now follows from (8.3) and (2.7). O

THEOREM 8.2. Let a > 1 and assume the corresponding drift free process is
isotropic. Let

B, = [(-1)""'I(na/2 + 1)4@*/%(1 + tan*(ma/4))
Xsin(n(wa/4 + tan_l(wa/4)))]/[7rn!(477)d/2].

n/2
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Let n be such that (n + 1)/n < a but n/(n — 1) > a. Then
Ep(t) = tC(B) + [ds(x)¢p(x) dx

n ij—(d+aj)C(B)jtj+2—d—aj

— — +0(2747).
i@traj—j-1D(d+eaj—j-2) ( )

+

Proor. This follows from the asymptotic expansion of f(x), given in
Proposition A.13, and (2.7). O

REMARK 3. What can be said of the expansion of Ez(¢) when the associated
drift free process is nonisotropic and «a > 1? The difficulty here is lack of
knowledge about the asymptotic behavior of f(x) as x tends to « along the
direction . Examples show that it can be of the order |x|~!*% instead of
|| ~@*®), Pruitt and Taylor [5] investigated the behavior of f(x) as x tends to
«. In general, no asymptotics seem possible except in special cases, but they do
show that f(x) = O(|x|~*®). This suffices to show that all these processes
are such that [5r(¢) dt < » and to yield the expansion

Ey(t) = tC(B) + [$5(x)$5(x) dx + O(¢ (D +@-2V/e),

APPENDIX

The stable subordinator with exponent a/2 is the stable process with
exponent a/2 and B = 1. Let its transition density be &, (¢, ). Then

(A1) '/:oe_s“ha/z(t, w)du =e ",

Let p(t, x) be the density of the isotropic stable process with exponent a and
A = 1. Then

(A.2) p(t,x) — fwha/z(t’u)e—|x|2/4u(4ﬂ_u)—d/2 du’
0

ProrosiTiON A.1. Forany N >0

w 2 2N
-N — | Z - -1, 2N/a
(A.3) foha/z(t,u)u du (a)r( - )r(zy) t .
‘PROOF. Write
,. ) 3
-N _ —suoN-1
u T N)foe s ds



THE VOLUME OF A STABLE SAUSAGE 517
Then the left-hand side of (A. 3) is
N 1 —ts@/2
T ( ) / ds.

The change of variable v = s*/2 in the above integral now yields the right-hand
side of (A.3). O

ReMARK 4. In order not to have to single out Brownian motion from the
other isotropic stable processes, we will interpret the stable subordinator with
exponent 1 to be uniform motion to the right with unit speed. So done, all of
the formulas derived for the isotropic stable processes via (A.2) are then valid
for a = 2.

PROPOSITION A.2.

® 1 a—1
(A.4) fotha/z(t,u)dt= O

Proor. The function [Jth, ,, dt is continuous. Using (A.1), we find its
Laplace transform to be s~ It follows that (A.4) holds. O

ProposiTION A.3. If a > d/2 and the process is a strictly stable isotropic
process,

A “tp(t,0) — p(t,x)] dt

oot 4 e

Proor. Using (A.2) and (A.4), we find

(A.5)

© couor—l
t,0) — dt = [ ——[1 - e " /%] (4mu) " du.
[ tlp(,0) = p(t, )] di = [ s [1 = et () ™ d
Making the change of variable |x|?/4u = s and using the fact that

w d\™ ! (d
o —sVod/D—a—1 J. — _Z Z_
j;(l e %)s ds (a 2) F(2 a+1),
we find that (A.5) holds. O

ProposITION A.4. For any strictly stable process with a = d/2 and z # 0,
2 o z
(E)Hz(z) f (1 l——lu) ldu
+f)

(A%6) (1 u——) _p(l,O)]u_l du — p(1,0)In |z|.
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Proor. Make the change of variable s|z| = u in the integrals defining
Hy(2). O

For an isotropic stable process with @ = d/2 (d must be 1, 3 or 4), the
integral expression in (A.6) is a constant I, that can be determined explicitly.

ProPosITION A.5. Let y be Euler’s constant and let y(x) = I'(x)/T'(x).
Then

I, = (2m) " ¥*(2/d)T(d/2) '[In4 + ((4/d) — 1)y — 4/d + ¢(d/2)],

1
I = (——)[1n4 —4-2In2 - 4vy],
m

A7 I, = -——1 [l 4 —2In2 2 4 ]
( ) 3"—(6‘"2) n n _—3 37’
(47) 2

= 2 [In4 —y].

Proor. Using (A.2), we find after a small calculation that
I,= (1/2)(477)*‘1/2[14/"°h(u)u-d/2 du+ [ In(4u)u~4/?h(u) du],
0 0
where
1 [ ]
A= ["(e*—1)s"tds + [ e %s1ds.
Jy(er =D+ |
Integration by parts shows
A= 00e"slnsds = —1y.
A Y

Using (A.3), we see that
I, = (4m)"*(2/d)T(d/2) '[In4 - v]

+(1/2)(47) _d/2fm(ln w)u=%?h(u) du.
0
To evaluate
J = fmh(u)u"d/2 In udu,
0
observe that

fme"s“s(d/m"1 In(1/s) ds
0

= [/me"t(d/z)‘ldt]ﬂ_d/z Inu - [fme“t‘(d/z)'lln tdt|u—9/?
0 0

=T(d/2)u"%%Inu - I'(d/2)u"%/2
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Hence,
1 w o r'(d/2)
- —suo(d/2)—1 - \®/47 -d/2
J I,(d/z)j;)/oh(u)e s In(s) ds + I(d/2) /ou h(u) du.
Using (A.3) and (A.1), we find
1 ® i a2 d\(4\ (d\ "
I — - —=Ir(=] .
T Tamhe " insds +9( (3 )r(3)

The change of variable ¢ = s¢/* now shows
1 4\% > 4\ (d
J = —m(g) ./(;e tlntdt + (E)F(z
4\ (d\"'[(4 d
-(a)r(z) [()o-v-o(3)]
Thus,

I, = (4m)"¥*(2/d)T(d/2) '[In4 + (4/d — 1)y — 4/d + ¢(d/2)].
Using the fact that

J—/
'SH
—
N | R
N —

¥(1/2) = — (v + 2In2),
¥(3/2) =2 -y - 2In2,
we find (A.7) holds. O

PropOSITION A.6. For an isotropic stable process with exponent a
p(1,0) = (4m)~“*(2/a)T(d/a)T(d/2) .
Proor. This known fact follows from (A.2) and (A.3). O

ProposiTION A.7. For an isotropic stable process with exponent a < d,
g(x) = kllxla_d’

where
d - -1
ky = F(—z——)[4°‘/277d/2f‘(a/2)] .
Proor. This is a well known fact. It follows, easily from the fact that
Joh g ot w) dt = [1/(T(a/2)]u@/?~* and (A.2). O
ProposITION A.8. For an isotropic stable process with a < d/2,

[#(x)? dx = ko [la = bP*~*up(da)up(db),
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ety o]

Proor. This follows from the fact that

$5(x) = [kilx — a|*"*up(da)

and the Riesz composition formula. O

where

ProposITION A.9. Let X, be linear Brownian moz,;wn with mean —bt,
b > 0, and transition density p(t x) = (d7rt) /2~ &+O0° /4 Let E(t) = E,(2).
Then E(dt) has density
2

2 . .
A8 t) = —— ¢~ 1/2p—b%/4 4 ~1/2,-b%/4 g
and P(T,,, € dt) has density f,(t,y) given by
(A9)  filt,y) = e b0 /2 0/ 4y — x|(4mt) =/ 200 /4,

Proor. Using the fact that
f e M= /M (4mt) V2 dt = e—\/flxl(mﬂ)",
0

it follows that

© b2
gM(x) = f e Mp(t,x) dt = e b*/2 " IXIVB/4+A (2 T +A )
0

Now
ar. &y %)
(A.10) E. e o = )
Integrating over x, we find
(A.11)
w iy 1 2 [b? b?
j‘;E(dt)e =W=X _4_+/\=_b2__1+ﬁ

— +A
4

The right-hand side of (A.11) is the Laplace transform-of the right-hand side of
(A.8). Thus, (A.8) holds. Using (A.10), we see that

(A:12) E e o = ¢ b0—/2g= V¥ /4N |y — g|.

Now

e_\/x|y_x|
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is the Laplace transform of |y — x|(4mt)~3/2%e~©'~°/4 Thus, the right-hand
side of (A.12) is the Laplace transform of the right-hand side of (A.9). Thus,
(A.9) holds. O

ProposiTiON A.10. For any strictly stable process with o < d, for z # 0,

(A.13) F(z2) —fp(u 2)udu = alz|?*~ dU(l I)

where

(A.14) U(I—z—l) = j(; sd‘z"‘_lp(l, l—z—ls) ds.

In particular, ford =1,

(A.15) aU( IZI) :_—((11;%% cos[2tan“1(h) - sgn(z)il—;zﬂ}.

Additionally,
(A.16) [65(x)¢5(x) dx = [ [Ap(dx)pup(dy) F(y — x).
Proor. Note that

[ba(x)bp(x) dx = [ [ap(dx)np(dy) [&(y — 2)g(z — %) dz.

Now

fg(y—z)g(z—x)dz—f [[ p(s, y—z)dsfmp(t,z—x)dt]dz

=f up(u,y —x)du.
0

Hence, (A.16) holds. Using the scaling property and the change of variable
u~1/%z| = s shows (A.13) holds. For d = 1 we use the fact that

1 .
p(l,+ts) = —/ e % cos(0°h F 6s) d6.
™70

Multiplying both sides by s~ 2¢, interchanging the order of integration and
evaluating the integrals show that (A.15) holds. O

ProposITION A.11. Let f be the density of a stable distribution on R of
exponent a # 1. Then

f(0) = ~l—I‘( )(1 + 27! ’* cos(a~ tan"1(h)),

£(0) = —ir( )(1+h2) % Gin(a~1 tan~1(k)).
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Proor. Note that

f(0) = lfwe“’“ cos(0°h)6 do
n ’

1l .
£1(0) = — —[ e~ sin(6°h)6 d6.
770
The proposition now follows by evaluating the integrals. O

PrOPOSITION A.12. Let X, be a stable process on R with drift b > 0. Then
for a <1/2

N _ —a l-a 1 + a -1/2(1—a)
Bl D) 0(x) ds = Crab~ et T Jr( 1o @+ 1)

tan1(h) — %(1 - = ia)]

(A.17)

X cos
l—-a

where forp = 1/2 + (1/7a)tan" Y[ Bh],
(A.18) C=(1-a)b[l-a(l-p)] "

Proor. Observe that
Pl %) bo %) dx = C2 [ul =1/ 2f(u™"/b) du,

where C is the capacity of a point. It was shown in [3] that (A.18) holds.
Evaluation of the integral above can be carried out as in Proposition A.10. This
evaluation yields (A.17). O

PROPOSITION A.13. Let f(x) be the isotropic stable density on R? with
a < 2. Then

i na+d
f(x) = Z (4,”)—(1/21*(_2__)4(a+d)/2An|x|—(d+an)’ x — o,
n=1

where

. (—1)"‘11"(%“ + 1)

n

, T\ [ ma T
" (1+tan —4—) sm[n—4—+ntan (—4—)]

Proor. This follows from A2 for ¢ = 1 and the asymptotic expansion of
h o s2(w) given in [6]. O

ProposITION A.14.
(A.19) [r(2)dt <o o [$y(x)dp(x) du <
0
for all bounded Borel sets B.
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Proor. Note that
r(t) ~ [p(s,0)ds, o,
t
SO

Lwr(t) dt <o e /:dt/mp(s,O) ds < o,
t

Now
[p(s,y-x)ds ~ [(p(s,0), -,
t t

uniformly in x, y in compact sets. Hence

[\ o0, =) ds|atanrntay) ~ C(BY[p(s,0) i,

j[[[ dt[ p(s, y—x)ds]p,B(dx)p,B(dy) <oo=»j dt[ p(s,0) ds < .
But

[dt ["p(s,y ~x)ds = [e(z ~x)e(y - 2) dz.
so (A.19) holds. O
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