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ON THE NONLINEAR RENEWAL THEOREM!

By MicHAEL WOODROOFE
The University of Michigan

Let Z,,Z,,... be jointly distributed random variables for which sup,
Z,=o wplandlet t=t,=inf(n>1: Z, >a) and R, =2, — a for
a > 0. Conditions under which R, has a limiting distribution as a — « are
developed. These require that the finite dimensional, conditional distribu-
tions of the increments Z,,, — Z,, k > 1, converge to the finite dimen-
sional distributions of a process for which the result is known, thus
weakening the slow change condition in earlier work. The main result is
applied to some sequences for which the limiting distributions are those of
the partial sums of an exchangeable process. These include the Euclidean
norms of a driftless random walk in several dimensions and sequences for
which the conditional distribution of Z,,; — Z,, given the past has a limit
w.p.lasn — o,

1. Introduction. Let (£, o7, P) denote a probability space,.let &7 C
&, C ... denote subsigma-algebras of &7 and let Z,, Z,,... be random vari-
ables, defined on (Q, &7, P), for which Z, is &/, measurable forall 2 = 1,2,...
and

(1) supZ, =~ w.p.l.
k=1

Such a sequence may be called an infinite supremum process. For any such
process, the first passage times and excesses

(2) t,=inf{k > 1: Z, > a}
and
(3) Ra = Zta —-a,

may be defined for all @ > 0 w.p.1. Let H, denote the distribution function of
R,; that is,

(4) H(r)=P{t, <o, R,<r}, Va,r=0.

The problem considered is to find conditions under which R, has a limiting
distribution H as a — «; that is, H, = H as a — », where = denotes weak
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ON THE NONLINEAR RENEWAL THEOREM 1791

convergence. The process Z,, Z,,... may be called a renewal process in this
case.

The best known examples of renewal processes are random walks (the
partial sums of i.i.d. random variables). If Z,, Z,, ... is a random walk with a
nonarithmetic step distribution and either a finite positive drift or zero drift
and finite second moments, then R, has limiting distribution H, where

(5) H(dr) = Z, >r}dr, r>0.

1
Bz

See, for example, Feller (1971), Section 11.3. (Here and below the same symbol
is used to denote a distribution function and the associated distribution.)

There has been recent interest in processes called perturbed random walks.
These are processes of the form

(6) Z,=8,+¢&, n=xl,
where S;, S,, ... is a nonarithmetic random walk with a positive drift u, ¢, is
independent of the sequence S, , — S,, k> 1, for all n and &,,&,,... are
slowly changing in the sense that there exists a p for which 3 <p < 1,

a
(7 a_"{ta = —} — 0 in probability as @ —»

"
and
(8) lim supP{ max |£, ., — &, = s} =0

§->0n>1 k=<én®

for all € >0.If Z,,Z,,... is a perturbed random walk, then the nonlinear
renewal theorem of Lai and Siegmund (1977, 1979) asserts that R, has the
same limiting distribution as if ¢, = 0 for all n = 1,2, ... [obtainable from (5)
and Z replaced by S]. Woodroofe (1982) and Siegmund (1985) describe
applications of this result to sequential analysis. For recent extensions, see
Zhang (1988, 1989).

The goal of this paper is to present an alternative formulation of the
nonlinear renewal theorem in which the conditions (6), (7) and (8) are relaxed.

A particular example to which existing nonlinear renewal theorems are not
applicable is that in which Z, =||S,ll, » > 1, where S, =X, + --- +X,,
n>1, X,,X,,... are iid. random vectors with mean vector 0 and a non-
singular convariance matrix, and || - || denotes the Euclidean norm. As an
application of the main theorem, it is shown that R, has the same limiting
distribution as R}, where Z* = (U, S,), n =1,2,..., (-, - ) denotes inner
product, and U denotes a random unit vector which is independent of
X, X,,... . As a second application, the theorem is applied to a class of
processes for which the conditional distribution of Z,,, — Z, given &/, hasa
(possibly random) limit w.p.1 as n — «. In both applications, the limiting
process is formed from the partial sums of an exchangeable process, so that
the random walk theory may be applied conditionally.
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2. The main theorem. To state the conditions, it is convenient to intro-
duce the prior sigma algebras and delayed processes,

Fo= oty and Z =27,

where £ =1,2,... and a > 0 (and &/, denotes the collection of A € o7 for
which An{t<n}e o/ for all n=1,2,... for any stopping time ¢). Let
Q,,, denote (versions of) the conditional distributions of (Z, ,,...,Z, ,),
given % ; that is,

Qa,m(w; B) = P{(Za,l""’Za,m) = Blg;}(w)

for Borel sets BC R™, w € O, m = 1,2,... and a > 0. The conditions require
that these (finite dimensional) distributions converge to those of an appropri-
ate renewal process Z;*, Z},... .

Here Z}¥,Z, ... is required to be an infinite supremum process, defined on
a probability space (Q0*, &7 *, P*) along with a random element W with values
in a complete separable metric space 7. It is assumed that there is a
consistent set of weakly continuous versions of the conditional probabilities

Q(w;B) = P{(Zy,...,Z%) € BIW = w},

defined for Borel sets BC R™, we # and m =1,2,.... Let T denote the
distribution of W and let

Hx¥(w;r) = P¥t* <o, R* <r|W = w}
(9)

=) Q;Z“(w;{ZERk:zjsa,Vj<k,a<sza+r})
k=1

for a,r > 0 and w € ¥, where t*¥ and R}* are defined by (2) and (3) with
Z,Z,,... replaced by Z}, Z, ... . It is required that there exist distributions
H(w; "), w € ¥, for which H*(w;-) = H(w; -) for a.e. w (T') as a — .
Then (W, R¥) has limiting distribution K as a — », where

(10) K(Fx[0,r]) = fFH(w;r)I‘(dw)

for Borel sets FC # and r > 0. R* has limiting distribution H(r) =
K(7'x[0,r]D, r = 0. A sequence W, Z;*, Z5, ... which satisfies the conditions
of this paragraph is called a conditional renewal process.

ExampLE 1. If Z} — Z}* |, k > 1, are conditionally i.i.d. given W and if the
conditional distributions satisfy the requirements for (5) w.p.1, then
W,Z}F,ZF,... is a conditional renewal process.

Let A,, denote the Prokhorov metric for probability measures on the Borel
sets of R™. Thus, if 4 and v are two such measures, then A, (u,v) is the
infimum of & > 0 for which u(B) < v(B,) + ¢ and v(B) < u(B,) + ¢ for all
Borel sets B c R™, where B, = {x € R™: dist(x, B) <&} for BC R™ and
e > 0. Weak convergence of probability measures in R™ is equivalent to
convergence in the Prokhorov metric.
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THE CONVERGENCE CONDITION. Suppose that there are %, -measurable ran-
k3

dom elements W, and a conditional renewal process W, Z¥, %2 ,... for which
(11) W,=>W

and

(12) lim [A,,[Qq,n» Q%(W,; )] dP =0,

where (now) = denotes convergence in distribution.

THEOREM 1. If the convergence condition is satisfied and if R, is stochasti-
cally bounded as a — «, then R, has the same limiting distribution H as R*.

If also d(W,,W,_,) = 0 in probability as a - » for every b > 0, then
(W,, R,) has the same limiting distribution K as (W, R*).

The theorem is proved in the next section. The remainder of this section is
devoted to discussion of the conditions.

Since A,, is a bounded metric, (12) is equivalent to the convergence of
A, lQ, ., @FW,; )] to zero in probability as a — « for all m > 1. This
condition may be replaced by a slightly stronger one which involves the first
passage times less directly. If there are random elements V,, n > 1, for which
the Prokhorov distance between the conditional distribution of Z,,, — Z,,
k=1,...,m,given A,, and @*(V,; - ) approaches zero w.p.1 as n — « for all
m = 1,2,..., then (12) holds, with W, = V, , since @, ,, is obtained by substi-
tuting ¢, for n.

ProrosiTioN 1. Let Z,,Z,,... be an infinite supremum process and
W,Z¥, Z5,... be a conditional renewal process. Suppose that there are %,-
measurable random elements W, and random variables Z},, Z},,... and
Ta107a,2:--+ for which Z, , =Z}, +r,, fora=0 and k > 1. Suppose fur-
ther that the Prokhorov distance between the conditional distribution of
(Z}y,...,ZF,,) given F, and QX(W,; -) approaches zero in probability as
a > forallm=1,2,... and that r, ;, — 0 in probability as a — « for all
k=1,2,....Then (12) holds.

Proor. If m > 1and B c R™ is a Borel set, then
P{(Z,:,---» 2, ,) €BIFY <P{(Z},,...,Z},) € B,|%}
+ P{?lsanjflra’kl > 6|9;>,

and the roles of (Z, ,,...,Z, ,)and (Z},,..., Z¥ ) may be reversed. Letting
s m denote the conditional distribution of (Z},,..., Z} ), it follows that

Al@ s QF ] <6+ P{insaﬁlra’kl > 3|37;},

which approaches zero in the first mean as first @ — « and then 6 — 0. The
proposition follows easily. O
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CoroLLARY 1. If (6), (7) and (8) hold, then the convergence condition is
satisfied with W, = W =0 fora>0and Z¥ = S,, fork = 1,2

Proor. In this case, Z, , =S, , + ¢, for all @ >0 and % > 1, where
Sar=8i,4x— S, k=1, are independent of &, and have the same d1str1bu-
tion as S;, k > 1, for all a > 0, by the strong Markov property, and Ean =
& +x — &, — 0 in probability as @ — « for all £ > 1, as in Lai and Siegmund
1977). O

3. The proof. The broad brush strokes of the proof follow those of Lai
and Siegmund (1977): For large b and much larger a, the conditional distribu-
tion of R, ., given %, may be approximated by H;* r(W,; - ), the expectation
of which may be approx1mated by H. The dependence on W, and the use
of finite-dimensional distributions complicates the argument, however

The convergence condition is assumed throughout this section.

LemmA 1. Let W, Z, Z, ... be a conditional renewal process and let

D, = {w e . supQ,;“(w;{z €Rk: 2z, = a}) > 0}
k>1

U{w SV /& sup ian,;"(w;( — o, b]k) > O}

for a > 0. Then H *(w, ) is weakly continuous in w at every w, <€ D,
the complement of D,, for every a >0, and T(D,) =0 for a.e. a>0
(Lebesgue).

Proor. The first assertion of the lemma follows easily from (9) and the
Portmanteau theorem [Billingsley (1968), pages 11-14]. For the second, let A
denote Lebesgue measure and let D = {(a,w): w € D,}. Then D is easily seen
to be a Borel set R X # and D, is the a section of D for each a > 1. Now,
a.e. w-section D* = {a: (a, w) € D} is countable, so that A X I'(D) = 0, where
A X T' denotes the product measure. So, a.e. a section has ' measure zero, by
Fubini’s theorem. O

Let ¢ denote the set of a for which I'(D,) = 0. Then A(€") =0

For any 0 < ¢ <  and ¢ > 1, there are partitions 0 = by< -+ <b,=cof
[0, c] and values sl,.. , € € [e,2¢] for which A < 2c/£, ;—b,_1<e and
2c—b;te; e foralli=1,...,h. Thelists b;,...,b, and ¢,,..., &, will be
called partitions.

Let T, denote the distribution of W, for a > 0.

LEMMA 2. For 0 <e< 3, c € €N (1,%), m > 1 and fixed (but arbitrary)
versions of the partitions, let

Gy =Gy(e,¢) = {we 7: A [Hx(w; ), He ., (w; )] <&, Vis<hl,
Gy, = Gy(e,c,m) = {w e . Q,’::(w;( - 00,3c]m) < e}
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and
G = G(S,C, m) = Gl N Gz.

Then for any € > 0 and c, > 1, there are ¢ € €N (¢y,©), m = 1 and a, for
which T(G) =1 — ¢ <T,(G) forall a = a,.

Proor. For any 0 <e <2 and ¢, >1, I'(G,) » 1 as c — », since
H*(w; )= H(w; ) as a - » for a.e. w (). So, there is a ¢ > ¢, for which
I'(G,) = 1 — £/4. With this choice of ¢, A(G;) > 1as m — «, since Z*, Z, ...
is an infinite supremum process. So, there is an m for which I'(G,) > 1 — ¢/4
and, therefore, I'(G) = 1 — ¢/2. With the given choices of ¢ and m,
lim inf,, _, .T(G) = T'(G), since G differs from its interior by a set of I'-measure
zero. See Billingsley [(1968), pages 11-14]. So, there is an a, for which
[[(G)=1-¢foralla>a, O

PROPOSITION 2. Given 0 <& < 3 and ¢y > 1, let ¢, m, a, and G be as in
Lemma 2. Then there is an a, > a, for which

f [1 - H*(W,;r + 5¢)] dP — 5¢

{(W,eF}

<P(W,eF,R,<c,R, 5, >1}

< [1 - H*(W,;r — 5¢)] dP + 5¢
{W,eF}

for all a > a,, all r > 5¢ and all Borel sets F C G.

Proor. With this choice of ¢ and m, there is an @, > a, for which
2

&
(1) P(A[Qunm@i(Ws)]=e) <5, Vazan
Now, if ¢ > 1 and R, <c, then ¢,,,, > t,, sothat R, ,. >riff Z;<a + 2¢c
for all j € (¢,, k) and Z, > a + 2¢ + r for some k > t,; that is,
{RaSC, Ra+20>r}
= U(R.<¢,Z, ;<2c—R,Vj<k,and Z, , > 2c — R, +r}.

a,J =
k=1

Now let F € G beaBorelset. Let 0 = b, <b; < -+ <b, =cande,...,¢,
be the partition described in Lemma 2 and let

C,=Cfa)={W,eF}n{b_, <R,<b},
A;={z€R™: z;<2c—b;—¢;,Vj<k and z, >2c —b,_, +r+2¢,3 k <m},
B,={2€R™z;<2 —b;_,,Vj<k,andz,>2c~b,+r,3k <m}

Uf{eeR™:z;<2c—b;_;,Vj<m]
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foralli =1,...,h and all @ > a,. Then for all such i and a, C, € %,
3
(14) {WaEF7Rasc’Ra+20>r}= UCin{Ra+2c>r}
i=1
and
Ci N {(Za,I’ . ‘7Za,m) = Ai,e} < Ci N {Ra+2c > 7‘}
< Ci N {(Za,li""Za,m) EBi)’
where A; . denotes an ¢ neighborhood of A;. By relation (13),

P(Cz N {(Za,li"'7za,m) EBi}) = /CQa,m(w;Bi)P(dw)
(16) ’ \

*(W.: B dP + =
=< ‘/;,[Qm( a’ i,e) + 8] 2¢

(15)

fori=1,...,h and a > a,. Moreover, for all i = 1,..., A, all a > @, and all
w € @G,

QF(w; B, ,) < Q;rkz(w; {zeR™: z2;<2c—b;_;+¢g_y,
Vj<kandzk>2c—bi—s+r,3k5m})
(17) + @ (w; (= »,3c]")
< (1= Hi oy oo Jwir —4e) 45
<(1-HX)(w;r— 5¢) + 2,
by definition of G. In particular, (17) holds when w is replaced by W, when
W, € G. So, combining (14)-(17),

h
P(W,eF,R,<c,R,,,,>r} < ¥ f [(1 - H*)(W,;r — 5¢) + 3e] dP + ¢
i=1 Cz

< (1-HX)(W,;r — 5¢) dP + 4e.
{W,eF}

This establishes the second inequality asserted in the proposition. The first
may be established similarly. O

Proor oF THEOREM 1. It suffices to show that for every continuity set F of
I' and every & > 0, there is a ¢ = ¢(F, §) > 0 for which

K[Fx(r +8,®)] — & < liminf P(W, € F, R, ,, > r}
(18) < limsupP{W’aEF7Ra+Zc>r}

a— o

<K[Fx(r-8,0)] +8
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for all r > 6, where K is as in (10). The first assertion of Theorem 1 then
follows directly by setting F = # and letting 6 — 0. For the second, W, may
be replaced by W, ,. for fixed § > 0 and then 6 may approach zero. The
proofs of the two extreme inequalities in (18) are similar, so only the last one
needs to be given in detail.

Given F and 6 > 0, let ¢ = §/9. Then there is a ¢, > 1 for which

P{R,<c}=1-¢,
(19) K[Fx(s +¢,0)] —¢ < fF[l — Hx(w;s)]T(dw)

<K[Fx(s—¢,°)] +¢

for all @ > 1, s >¢ and ¢ > ¢,. Next, let ¢, m and G = G(¢,c, m) be as in
Lemma 2, with the given ¢ > 0 and ¢, and let r > 8. Then there is an a; > a,
for which

P{W,cFNG,R,<¢,Ryp>r} < [[1— H¥(W,;r—5¢)] dP + 5¢
F

for all a > a,, by Proposition 2. Moreover, it follows easily from the weak
continuity of H (w; - ) and (19) that

lim sup L[l - Hx(W,;r —5¢)] dP < fF[l — Hx(w;r — 6¢)]T'(dw) + ¢

< K[Fx(r — Te,©)] + 2e.
So,
P(W,eF,R,,,,>r} <P(W,e FNG,R,<cand R, ,, >r} + 2¢
< K[Fx(r — Te,®)] + 9¢ < K[Fx(r — 8,»)] + 6

for all sufficiently large a. The final inequality in (18) follows and the first may
be established by a similar argument. O

4. Boundedness conditions. In addition to the convergence conditions,
Theorem 1 requires that R, be stochastically bounded as a — «. This is
trivially the case if Z, — Z,_;, n > 2, and uniformly bounded. Some less
restrictive conditions are developed in this section.

Observe that for each @ > 0, Z, ,, k = 1,2,..., is another infinite supre-
mum process. So, the delayed first passage times and excesses,

t,y=inflk>21:Z,,>b} and R, ,=2Z, b,

’ta,b -
are well defined for all a,b > 0. It is convenient to write ¢_; , =¢, and
R—l,b = Rb fOI‘ b > 0.
PropoSITION 3. Foralla > 0 and r > 2,
P{Ra>r} S ZP{RJ’1>a+r_j_2}.

Jj=<a
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Proor. Let
M, = max{0,Z,,...,Z,}, n=20,1,2,....
Then
P{R,>r}=PM,<a,Z,,,>a+r,3n>0)

<Y Pj<M,<j+1,Z,.,>a+r,3nz=0}.

J<a

Ifr>20<j<a,j<M,<j+1land Z, ,>a+r for some integer n =
1,2,..., then, for the same n, t;<n, j<Zthj+1, Zj,k=Z,j+‘k—ths
Jt1l-j=1,Vk<n-—t and Zj,n_tj+1=Zn+1—th>a+r—_]—1>1,
sothat t;;, =n—¢;+1and R; ;, >(Z,,, -~ Z,)—1>a+r—j— 2. So,

> ’ J

P(j<M,<j+1,Z,,,>a+r,3n>20<P{R;;>a+r—j—2}

for 0 <j < a. The same inequality may be obtained when j = —1. The
proposition then follows easily. O

To exploit Proposition 3, some uniform integrability of the incre-
ments Z, — Z, _,, n > 2, is needed, along with some uniformity in the basic
condition (1).

THE UNIFORM INTEGRABILITY CONDITION. Let Zo=0and Y, =2,-Z2,_,
for n =1,2,...,and for p > 2, let M, , = El(Y,))?|24,], n > 1. Suppose that
llsup, M,, ll. < o for some 1 < a < » and some p > 2, where || - ||, denotes
the norm in L*(Q), &, P).

THE UNIFORM INFINITE SUPREMUM CONDITION. Suppose that there are con-

stants 0 < C < « and ¢ > 0 for which

sup P{¢;; >n} <Cn™9, Vnx>1.
j=-1 ’

In the next proposition, 8 = a/(a — 1) denotes the conjugate value to «
(and B = 1 if @ = x).

PrOPOSITION 4. Suppose that the uniform integrability and uniform
infinite supremum conditions are satisfied for some 1 <a <, p > 2 and
0 <g <pBandletp' =ap/(a+ q). Then there is a constant C for which

P{R; ,>r} <Cr %', V¥Yr>1,j>-1.

Proor. In the proof, C denotes a constant which is independent of j and
r, not necessarily the same from one usage to the next. For all r > 1 and
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Jj= —1, Pit;, > r”} < Cr~? by assumption and

PR, >r,t;,<r”}< ¥ P{t; 2n,Y, ., >r}

n<r?
< Y rF M,,, ,dP
n<rP tjazny
— 1/B
<t X Pl =) M,
n<r
<Cr? Y n9F<Crr,
n<r?

so
P(R;,>r} <P{t;, >r?} +P{R; , > r,t; , <rP} < Cr ¥
forall r>1and j> —-1. O

Corollary 2 is a direct consequence of Theorem 1 and Proposition 4.

COROLLARY 2. Suppose that the convergence, uniform integrability and
uniform infinite supremum conditions are all satisfied for some 1 < a < »,
p>2and 0<q<p and let p' =ap/(a +p). If gp' > 1, then R, has a
limiting distribution as a - © and R}, a > 1, are uniformly zntegrable for
0>y<gp' -1

5. The norm of a driftless random walk. In this section d > 2 is an
integer and X;, X,,... denote i.i.d., d-dimensional random vectors with mean
vector 0, a nonsingular covariance matrix 3 and finite third moments. <7, =
o{X,,...,X,}for n=1,2,... and

(20) Z,=18,l, n=1,

where || - || denotes the Euclidean norm and S, =X, + --- +X,, for all n =
1,2,.... With ¢, as in (2), let

Sak=St+k_St’ kZl,aZO.

Then S, ,, k = 1, is independent of %, and S, ;, k = 1, has the same joint
distribution as S,, k=1, for all a > O by the strong Markov property for
random walks.

LEMMA 3. There is a constant C for which

Cb
G(u,b;n) =P{(u,8,) <b,VEk<n}< N

foralln =1,2,..., all b > 1 and u for which |lul = 1.
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Proor. This follows easily from Berry—Esseen bounds for the distributions
of maxima of partial sums. See Arak (1974). O

LEMMA 4. Let
U,=5./IS,), ax1.
Then
W, =(a"%,,U,) = [7,B(7)], as a -,

where B(s), 0 < s < », denotes a d-dimensional Brownian motion with mean
0 and covariance 2, per unit time, and T = inf{s > 0: || B(s)|| > 1}. Moreover,
IW,., — W,Il = 0 in probability as a — « for all b > 0.

Proor. It follows easily from the invariance principle that (¢,/a2, S,)=
(, B(7)), as a = . So, it suffices to show that R,/a — 0, (¢,,, — ta)/a2 -0
and [|S, , — S, [l/a — 0 in probability for all b > 0.

Since || X,]I has a finite second moment, || X, ||/ Vn —» 0 w.p.l as n - , so
that R_/a < (Vt /a)(llX /vt V¢ ) = 0 in probability. Moreover, for all a, b > 0
andall n = 1,2,.

P{ta+b - ta > n} =< P{ta,b > n} =< P{<Ua’ Sa,k> =< b7Vk < n}

(21) . Ch
= E{G(Ua, b,n)} < ﬁ,

by Lemma 3 and the independence of %, and S, ,, £ > 1. So t,,, — ¢, is
stochastically bounded in a > 1 for all 0 < b < «. The remainder of the lemma
follows easily. O

In the sequel, I' denotes the joint distribution of [r, B(7)], W= (T,U)
denotes a random vector which has distribution I' and is independent of
X, X,,...and Z} =(U, S, for k=1,2,....

Lemma 5. W,ZF, Z#,... is a conditional process with
1
22 H(u;dr) = m———=—P{(u,S, ) >r}dr
(22) (uidr) = Gra—g P 8. > 1)
and
=inf{k > 1: (©,S,) >0} a.e.u.
Proor. Since (u,S,), £k =1,2,..., is a one-dimensional random walk

with mean 0 and finite, positive variance for ||z|| = 1, it suffices to show that
the distribution of (u, X;) is nonarithmetic for a.e. u (I'). To see this, let
#(8) = E{exp(i(8, X,))}, 6 € R%, denote the characteristic function of X,.
Then the set of § € R? for which ¢() = 1 is a subgroup of R? and since X,
has a nonsingular convariance matrix, this subgroup must be discrete. It
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follows that ¢(tu) = 1 for some ¢ # 0 for at most countably many unit vectors
u; that is, (u, X;) has a nonarithmetic distribution for at most countably
many uw. O

THEOREM 2. Let X, X,,... be i.i.d. with mean vector 0, a nonsingular
covariance matrix % and a finite pth moment for some p > 3 and define Z,,
n > 1, by (20). Then (a~2t,,U,, R,) = (T, U, R), where (T, U) have distribu-
tion T and the conditional distribution of R given (T,U) = (¢, u) is H(u; )
a.e. (¢,u), where H is as in (22). Moreover, R?, a > 1, are uniformly inte-
grable for all 0 <y < ip — 1.

Proor. Since Z, - Z,_, <|IX,ll and X, is independent of Z,,...,Z, _,
for all n > 1, it is clear that the uniform integrability condition is satisfied
with a = « for some p > 3 and it follows directly from (21) that the uniform
infinite supremum condition is satisfied with q = 1. That the convergence
condition is satisfied follows from the independence of W, and S, 1 k=1, for
all a > 0, Proposition 1 and the simple relation

le + yll = llxll = (2¢x, ¥) + IylI?) /(lxll + lx + yl) for x + 0,
which implies
(Za,l’ ceey Za,m,) - [<Ua’ Sa,1>’ L] <Ua’ Sa,m>] - O

in probability as @ — « for every m > 1. O

CoroLrarY 3. If || X,|| has a finite pth moment for some p > 4, then

a? + 2pa
tr(3)

where p denotes the mean of the limiting distribution of R,,.

E(t,) = +o(a), asa — o,

Proor. Since ||S,Il> Ku,S,)| for all |lull=1 and all n =1,2,..., it
follows easily from Stein’s lemma that E(¢,) < « for all a. [See Woodroofe
(1982), pages 29-30, for Stein’s lemma.] So, by Wald’s lemma,

(23) tr(3)E(t,) = E{IS, I?} = E{(a + R,)?) = a® + 2¢E(R,) + E(R2).

Here E(R,) - p as a - x, since R, a > 1, are uniformly integrable. So, it
suffices to show that E(R2) = o(a). This may be seen as follows. Let Y, =
sup, ., 1 X,I?/ Vn. Then E(R2) < VE (¢t WE (Y2) for all a, by Schwarz’ in-
equality and E(Y,2) > 0 as a — », since I X,ll is assumed to have a pth
moment for some p > 4. It then follows easily from (23) that E(t,) = O(a?).
So E(R2) = o(a), as required. O

REMARK 1. Theorem 2 is valid when d = 1, if the distribution of X, is
nonarithmetic. An analogous result holds in the arithmetic case. Simpler
proofs exist for d = 1, however.
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REMARK 2. Theorem 2 is valid under the condition that || X, || has a finite
pth moment for some p > 2. The (fairly lengthy) proof uses Spitzer’s identity
and Stein’s lemma in place of the Berry—Esseen bounds in Lemma 3. It seems
reasonable to hope that Theorem 2 is valid assuming only second moments
and a nonsingular convariance matrix.

REMARK 3. If the distribution of X, is spherically symmetric in Theorem
2, then the distributions of Z*, Z, ... are those of a random walk. Otherwise,
they are not, so that the theorem of Lai and Siegmund cannot be applicable,
even if ladder heights are considered. See Corollary 1.

6. Asymptotically exchangeable increments. Let # denote a com-
plete separable metric space and let {F(w;-): w € #} be a collection of
distribution functions for which F(w; x) is jointly measurable in (w, x) € #'X
R and F(w;-) is weakly continuous in w € ¥%. Next, let wg, w,, w,,...
denote jointly distributed random elements with values in #; let Z,2Z,,...
denote random variables for which the conditional distribution of Z,—Z,_,
given wy,...,w,_,Zy,...,Z,_, is F(w,_;;- ) w.p.lforall 2 =1,2,... and
let &, = olw,,...,w,,Z,,...,Z,}for n=1,2,....

Such models arise in the theory of sequentially designed experiments when
subjects are allocated to treatments according to an adaptive coin design, as in
Wei (1978). See Heckman (1985) and Eisele (1989) for specific examples.

In addition to the assumptions of the first paragraph it is assumed through-
out this section that

(24) w,= limw, 3Iw.p.l
n—oo
The existence of w, w,, w,, ... for which (24) holds is equivalent to requiring

that the conditional distribution of Z,,, — Z_ given Z,,...,Z, have a weak
limit w.p.1 as n — =, since one may let w, be that conditional distribution.
Let T denote the distribution of w,. It is also assumed that for a.e. w n,
F(w; - ) is nonarithmetic and

0 < u(w) = fo(w;dx) < w,

Let W denote a random element with distribution T. Let XF X5, ...
denote random variables which are conditionally independent and identically
distributed with common distribution F(w; - ) given W = w for every w € ¥
andlet Z} =X*+ --- +X* forn=1,2,....

Lemma 6. W,Z¥, Z¥,... is a conditional renewal process with

H(w;dr) = PX{Z* > r}dr, r>0,

1
EX(ZY)
where
r=inf{n > 1: Z* > 0}
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fora.e. we #andallr > 0. P} and E} denote conditional probability and
expectation given W = w. Moreover, the convergence condition is satisfied with
W,=w, fora=0.

Proor. That W, Z}, Z5,... is a conditional renewal process follows easily
from Example 1.

It is clear that W, = W as a — «. For the rest of the convergence condition,
write Fg(w) = [rg(x)F(w;dx) for w € # and bounded continuous functions
g on R.For fixed m > 1, let g4,..., g,, denote bounded continuous functions
on R,say g,/ <1for k=1,...,m. Then

E{ 11 gk(x,,+k)|%} ~ T1 Feu(w,)
k=1 k=1

m
=X
k=1

k-1 m
E{ ].:.l:lgj(Xn+j)[ng(wn+k—1)] - Fgy(w,)] A=12L1ng(wn)|%}

A
Ts

IE{ Fg(w, 1) — Fgr(w,)|,} I’
1

which approaches zero w.p.1 as n — «. The remainder of the convergence
condition follows easity. O

To complete the verification of the conditions of Theorem 1, it is necessary
to show that R, is (well defined and) stochastically bounded. If the conditional
means are (uniformly) bounded away from 0 and ~ and the conditional
variances are bounded above, then stochastic boundedness of R,, a > 1, may
be deduced from Proposition 2.2 of Lalley and Lorden (1986). Alternative
conditions are the existence of p > 2, 8 > 0, y > 1 and ¢ > 0 for which

m+n
(25) P{ inf Y w(w,) < 2cny} =0(nP) asn-ow
mz0p_ i1
and
(26) llsupv,(w,)ll1 < e,
n=>0
where

v,(w) = flx—u(w)lpF(w;dx), we Y.

If (26) holds, then the uniform integrability condition is (clearly) satisfied
with @ = 1 and p of (26).

Lemma 7. If (25) and (26) hold, then the uniform infinite supremum
condition is satisfied with ¢ = min{B, p(y — 3)}.
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Proor. For a fixed (but arbitrary) j > —1, Z; , may be written in the
form Z; , =M, + {,, n > 1, where

n
M, = kgl [th+k - th+k—1 - E(th+k - th+k—1|<9/tj+k—1)]
and

gn = Z /’L(wtj+k—1)
k=1

for all n =1,2,... . Let y be as in (25) and let n be so large that cn” > 1.
Then y > 1.

P{t;,>n} <P{Z;, <1} < P(M, < —cn"} + P{{, < 2cn”)

and
m+n
P{{, < 2cn"} < P{ inf Y wu(w,) < 20n"} =0(n7#),
mz0p i1
as n — . Next, observe that M, M,,... is a martingale and let s2,s%,...
denote the square functions for M, M,,... . Then there is an absolute con-

stant B for which
P{IM,| > cn} < ¢ PnPE{|M,|"}
< Bc™Pn"PYE{ls, |7}
< Bc‘Pn‘P“"l/z)E{ supw,( wk_l)}.
k=1
The lemma follows immediately. O
TrEOREM 3. If (24)-(26) hold with pq/(1 + q) > 1, where q is as in

Lemma 7, then (W,, R,) has the same limiting distribution as (W, R*) and
R}, a > 1, are uniformly integrable for all 0 < v <pq/(1 +q)— 1.

Proor. This follows easily from Theorem 1, Corollary 2 and Lemmas 7
and 8. O

ExampLE 2. Let wg, uy, 4y, ... denote random variables for which u, = 2
and

Plu,,, =1lug,...,u,} =q(w,) =1 —Plu,,.;=0lug,...,u,}

with w, = (ug + -+ +u,)/(n + Dforall n = 1,2,..., where g is a continu-
ous function from [0, 1] into [0, 1] for which (24) holds. If F, and F, are two
nonarithmetic distribution functions with positive means and finite pth mo-
ments, and if

F(w;*) = [1-q(w)]F, + g(w)F, forwe #=]0,1],

then the conditions of Theorem 3 are satisfied with p,y=1l andany 8 > 0
for sufficiently small ¢ > 0.
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adaptive biased coin design and w,,

(b) If g(w) = w, then ugy, u,,u,, ... is a Polya urn process and w,, has the
arcsine distribution [that is, P{w, < w} = (2/7) arcsine (Yw) for all 0 <
w < 1].

(@ If gqlw)=1-w for 0 <w < 1, this is an example of Wei’s (1978)
=1
=1

Conditions on ¢ under which (24) holds may be found in Hill, Lane and
Sudderth (1980).

REMARK 4. It is hoped that Theorem 3 may find applications to statistical
problems with adaptive biased coin designs. However, it is not applicable to the
original biased coin design of Efron (1971) and Theorem 1 seems awkward for
such problems, since the condition (11) is difficult to check.
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