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A STABILITY RESULT FOR THE PERIODOGRAM

By K. F. TURKMAN AND A. M. WALKER
University of Lisbon and University of Sheffield

Let {X,)"_; be a stationary Gaussian time series with zero mean, unit
variance, absolutely summable autocorrelation function and at least once
differentiable spectral density function which is strictly positive in [0, 7]. In
this paper it is shown that, if M, denotes the maximum of the normalized
periodogram of {X;, ..., X,} over the interval [0, 7], then, almost surely,

) liminf[ M, — 2log n + loglogn] = 0
n—oo
and
2) limsup[Mn—2logn—2(logn)‘s] = —
n—o
for any & > 0.

1. Introduction. Let {X,}7_; be a stationary time series with autocorre-
lation function r(z) and the spectral density function i(w). The periodogram
of {X,,..., X,} is defined by
2

, we<]l[0,7].

2

I(w) = n Y Xt
t=1

Then I, (w)/4m appears to be the natural estimator of A(w). Yet it is inconsis-
tent and its erratic behaviour is well known. In fact under quite general
conditions, An, Chen and Hannan (1983) showed that, almost surely,

(11) y I(w) .
. im max ——————— =
now welo,r] 4Th(w)log n

In this paper, a stronger result than (1.1) is obtained at the cost of imposing
stronger conditions on {X,J7_;. Namely, let {X,}7_, be a stationary Gaussian
time series with E[X,] = 0, E[X?] = 1 and the autocorrelation function r(u)
such that X§|r(u)l < « [and hence h(w) is continuous]. Further assume that
h(w) is strictly positive and has bounded first derivative in [0, 7].

Let
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1766 K. F. TURKMAN AND A. M. WALKER

Then, almost surely,

(1.2) liminf[ M, — 2log n + loglogn] > 0,
and for any 6 > 0,
(1.3) limsup[Mn — 2log n — 2(log n)‘s] = -

The outline of the paper is as follows. In Section 2 some preliminary results
on the covariance structure of the periodogram ordinates will be given. The
proofs of (1.3) and (1.2) will be given, respectively, in Sections 3 and 4.

2. Some preliminary results. Let

2 2 n
(21) X, (w)= Z X, cos wt, Y (w) = =~ Y X, sin wt

t=1 t=1

[so that I(0) = Xz(w) + Y,2(w)], and denote the variances of X (w) and Y,(w)
by o | 2 (w) and oy % (w), respectively.

LEMMA 2.1. Let ¢ > 0 be arbitrarily small and fixed. Then as n — o,
uniformly in o € [e, 7 — €],

(2.2) ox(w)= Y (1 - u)r(u)cos ou + 0(n™Y),
lul<n—-1 n

(2.3) op(w) = X (1 - Iu—l)r(u)cos ou + 0(n™1),
lul<n—1 n

(2.4) Cov(X,(w),Y (w)) = 0(n™1).

ProoF.
ox(w) = g Xn', f E[X,X_]cos wt cos ws.
s=1t=1

Ifu=s—tthen1$tsn—uwhenuanndl—ustsnwhenu<O.
Thus

1
(2.5) ox(w0)=—= Y (n-lu)r(u)eoswu +T,,

lul<n—-1

where

nT, = nil [r(u)niucos o(u + 2t)]

t=1

+ il [r(u) Zn', cosw(u+2t)].
u=-(n-1)

t=1-u
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Now
n—u n—u X
Y cosw(u +2t)| <| Y e?| < — <c(e)
t=1 t=1 lsin |
and
n
Y cosw(u + 2t)| <c(e)
t=1-u

for some constant c(e), uniformly for w € [e,7 — €], u € (=, ®). (2.2) now
follows from (2.5). (2.3) can be established similarly.

Cov(X,(w),Y,(w)) = l Y (n—lul)r(u)sin wu + T,
lul<n—-1
where
nTx = "il [r(u)niusin o(u + 2t)] + _Zl [r(u) i sin w(u + 2t)].
u=0 t=1 u=—-(n-1 t=1-u
Now

Y (n-—lul)r(u)sin wu =0,

lul<n—-1
and the sums
n—u n
Y sinw(u + 2¢)| and Y sinw(u + 2t)
t=1 t=1-u

are uniformly bounded for w € [¢, 7 — ¢] and u € (-, ). Hence (2.4) follows
from the absolute summability of r(z). O

Lemma 2.2. For any n > 0, let m(n) be the integer part of n/(log n)" and
let {wy, ..., W, be an equally spaced partition of [e,m — €], where ¢ > 0 is
arbitrarily small. Then when i # j,

C,

(11 Cov( X, (w0, Xole))| < o sm =
C,

(26) (2] |Cov(X, (0, V()| = oy
Cs

[8] |Cov(¥u(w), Yulw))| < o

for some constants C;, C,, Cs.
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Proor.

T ru)'S eos[(or + w))t + wyul]
u=0 t=1

S|~

Cov(X,(w;), X,(0;)) =

1 -1 n
+— X r(u) X cos[(w; +w)t + wul
"y —(n-1 t=1-u
(2.7) ot .
+— 2 r(u) L cos[(w; — w))t + wu]
nu=0 t=1
1 -1 n
+ — Z r(u) Z COS[(a)i—wj)t_Fwiu]'
n u=—-(n—-1) t=1-u
Now
Y n—u . )
Z COS[(wi + wj)t + wiu] < Z eiwiu ti(w, +w)t
t=1 =

1

= |sin $(w; + w,)|

<c

for some constant c. Similarly,

n
> cos[(wi + wj)t + wiu]
t=1-u

1
< <c.

Thus the first two sums in (2.7) are of order O(n~') uniformly in u, i, J.
However,

n_u nou . 1 cym(n
Y cos[(w; — w))t + wul|<| L e < —— <= ( .)
t=1 =1 |sin (0, — o))| li —Jjl
for some constant c;.
n c;m(n)
Y cos[(wi—wj)t+wju] < —1—(—
t=1-u |l _Jl

Thus the last two sums in (2.7) are bounded by
_ &
(log n)"i — jl~
Now [1] of (2.6) follows. [2] and [3] of (2.6) can be established similarly. O
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3. Upper bound.

DEFINITION. A finite trigonometric sum

n n
T, (x) =Y (a,costx + b,sintx) = Y, c,e**,
t=1 k=—n

where x is real and a,, b,, ¢, are independent of x, is called a trigonometric
polynomial of order n.

Note that the periodogram of {X,..., X,} is a trigonometric polynomial of
order n, since

n
In(w) =2 Z ckeikw7
k=-n

where
1 n=lkl
a=— 2 X X, opn-

n o4

THEOREM 3.1. Let T, (x) be a trigonometric polynomial of order n and let

M= max]|Tn(x)|.

xEla,b
Then
max |T,;(x)| < nM,
1

x€la,b
where T, (x) is the derivative of T,(x) with respect to x.
[See, for example, Zygmund (1959), Volume 2, page 11.]

In the subsequent lemmas we make use of the ideas suggested by Salem and
Zygmund (1954).

LEMMA 3.1. For any 6 € (0, 1), there exist a constant ¢ and an interval
A, =la,,b,] cl0,7] of length at least c(1 — 6)/n such that for every w € A,,,

almost surely,
I (w
BM < _n_(_)_

"= orh(w)

Proor. Let w, € [0, 7] be such that

_ In(wo)
" 2rh(w,)

If I(w) = 0M, for all w € [wy, m], we may clearly take A, = [w,, 7]. Other-
wise we may take A, = [w,, w,], where w; > w is the first point to the right
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of w, such that

I (0
0 Mn — n( 1) )
27h(w,)
To show that then |w, — wy| > ¢(1 — 6)/n, for some constant c, we proceed as
follows.
By the mean value theorem

In(wo) In(wl)

_0 = .
M = ) = G (@) ~ 27h(w])
| | d I,(w)
< -— ——— —————
=T e O | de 27h(w)
| | I (w) L(w)h'(w)
< p— —————————— —————————————
=0 @o wg}g‘,x'n'] 27Th(w) wel0, 7] 27Th2(a)) R

< lo; - w0|[01 max |I;(w)|+ c, max In(w)],
wel0, 7] wel0, 7]

3

where
1
‘1= wrex}g,x‘rr] 27Th(w) ’
h'(w)
27 | 2mh¥(w) |

Hence using Theorem 3.1, we have
M, (1 - 8) < (0; — wp)(cn + c) M,
S0
(1-96) 1-9

-1
cin +c > ——. O
(1 2) n(cl+c2)

(01— wy) =

CoROLLARY. Let M, M®, M{® be, respectively, the maxima of I (w)/
27 h(w) over the intervals

log n log n log n log n
(3.1) g , T — g ],[0, g ] and [77— g ,77].
n n n n

Given any 0 € (0,1), there exist intervals AV, AP, A®, respectively, con-

no

tained in the intervals defined in (3.1), each of length at least c(1 — 6)/n and
such that for every o € A,

(3.2) OM® < M

< R . =1,2,3.
"= omh(w)
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The proof of (3.2) is exactly the same as that of Lemma 3.1 except that [0, 7]
is replaced by the intervals defined in (3.1) in each case.

LemMMa 3.2. Let k be a fixed positive integer and let n, be the integer part of
e1en* ™! Then  almost surely,
(3.3) limsup{Mn1 — 2log n,; — 2(log nl)l/k] = —»

n—>w

Proor. From the corollary to Lemma 3.1, for any 6 € (0, 1) there exists
AY cllogn,/n,,m — log n,/n,] of length at least c(1 — 6)/n,, for some con-
stant positive ¢, such that
(@)

/] (1)
M, 2#h(w)

for every w € A‘,}I. Hence, for every y > 0,

(1-9)
c
n

exp[OyM,(Lll)] < fA('}) exp[OyM,(}l)] do

Inl(w)
< Sy P[ m]d‘”

‘n-—lognl/nlex [ Inl(w) ]dw

B logn,/n, y27rh(w)

Thus, denoting by P(-) the probability measure over the o-field generated by
{X,}, we have

(3.4) [exp[oyMP]dP <c™? a _0) jl:gnl/gn"ll/"f p[ 2";5( ))]dew.

Now for every w € [log n/n, ™ — log n/n],
{ X, (o) Y (0)

V27h(w) " V2mh(w)

} ~ N(O’ 2n(“’)):

where
3. (w) =1, + O((log n)_l),

uniformly in o, I, being the 2-dimensional identity matrix. This can be shown
by proceeding as in the proof of Lemma 2.1 with ¢ being replaced by log n/n
and using the fact that as n — =,

Y (1 - %)r(u)cos ou =27h(w) + O(loin ),

lulsn—-1

uniformly in o. [See, for example, Priestley (1981), pages 417 and 418.]
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It follows by taking a polar transformation that the density function of
I, (w)
2mh(w)
is given by
p.(2) = %(1 + O((log nl)_l)) exp[ —éz(l + O((log nl)_l))]

as n — o, uniformly in ». Hence from (3.4), for any v, € (0, 3),

.[exP[oynM;(lll)] dP < ™M “"—lognl/nldwfooo(l N

20(1 - 0) logny/n, lOg nl)

c*
Xexp[ynz - %z(l " Togn )]dz
1

for some constant c*. Thus for all n such that ¢* < ;log n, (n > n,, say), we
have, on taking y, = 3 — c¢*/log n,

c* 1 c* -1
fexp[B‘ynM,(lll)] dP < nlw(l + Tog 1 )(20(1 — 0)(5 — m — ‘Yn))
1 1
nylogn,
el
Therefore, with § =6, =1 —-n"™, m > 0,

% [ exp] 0,3, M® ~ log n, — (log n,)"*] aP

n=n,

=0( Y nm lognlexp[‘(bgnl)l/k]) .

n=n,

From the known result that
Y ffndP<oo=> Y f, <, as.,
n=1 n=1

where {f,} is a sequence of positive random variables, it follows that, almost
surely,

o

Z exp[On’YnMr(Lli) - lOg ny— (lOg nl)l/k] < ®,

n=n,

which implies that
lim sup[OnynM,Ell) —logn, — (log nl)l/k] = —oo,

n—o

and thus
(3.5) limsup[M,(lll) — 2log n, — 2(log nl)l/k] = —oo,

n—>w
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Now let M® be as in (3.1). Then from the corollary to Lemma 3.1, by using
arguments similar to those leading to (3.4), we have
2mh(w)

For y < %, the right-hand side of (8.6) will be finite for sufficiently large n and
an upper bound for it can be obtained as follows.

(3.6) fexP[OvM,EZl)] dP < Rln—_l—bjfolognl/nldwf exp[y }dP.

Let
(o) V(o)
U@) = 5 ey V@) = 5 h )
Then

eXp[yzw—h(—w)—] = exp[y(U, (@) + V, ()]

< %[exp[ZyUnl(w)] + exp[Zyan(w)”.

Now writing

we have

1
fexp[2'yUn1(w)] dP = W—

u,ny

= (1 - 4')"7u2,n1)_ ,
provided that 4yo,”, < 1. Also
I (w) 2 17
o}, <E|— = 1 - —|r(u)cos wu
e [ZWh(w)] 27h(w) Iulsgl—l( n, )

log n,
n, |’

=2+0(

uniformly for 0 < @ < , so that

liminf(1 - 4ys?, ) > 1 - 8y.

ny—>o

Thus for sufficiently large n,,

[ exp[2vU, (@)] dP = O(1),

and similarly

fexp[2yan(w)] dP = 0(1),
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uniformly in w. Hence

n logny/n In(w)
feXp[OyMﬁzl)] dP < c(l——laffoog / ldwf exp[m]dP

logn,
- o[ 24,

So taking 6 = 6, =1 —n~™, m > 0, we have

fexp[BnyM,(;‘? - 2ylogn, — 2y(log nl)l/k] dP

= O[(log nl)k“nm_z"(hg")k] .

Since
i (log n)**1pm-2vogn)* < o
n=1
it follows, by the same argument used to obtain (3.5), that
(3.7) lim sup [M,(fl) — 2log n, — 2(log nl)l/k] = —oo,
n—o

Let MY be as in (3.1). Then using exactly the same arguments as those
leading to (3.7), it can be shown that, almost surely,

limsup [ M® — 2log n, — 2(log n,)"*| = —w.
n1

n—ow

(3.3) now follows on observing that

M, = max[M®, MO, MO). O

ny? n;?

THEOREM 3.2. For any 8 > 0, almost surely,

(3.8) limsup[Mn — 2log n — 2(log n)‘s] = —oo,

n—o

Proor. Let k be a fixed integer and let d(n) be the integer part of
expl(log £(n))**1], where h(n) is the integer part of exp[(log n)!/*+D],
Then

Mn = Md(n) + Mn - Md(n)
< Md(n) +|Mn - Md(n)'
<My, + M},

where

I(w) Id(n)(w)
* — _
My = X | orh(@) ~ 27h(a) ]|
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Let u, = 2log n + 2(log n)*/*. Then
M, -u,< Md(n) —Ugmy T Ugny — Un + M}
and

limsup (M, — u,) < limsup (M, — &4,

n—o n—ow

+ limsup (u 4.,y — u,) + limsup M,*.
n—oo n—o
Note that d(n) is related to A(r) in the same way as n, is related to n. An
argument analogous to that used to prove Lemma 3.2 can thus be applied to
show that

(3.9) lim sup (My(ny = Uaemy) = —-

n—o

Also,

lim sup (% 40,y — %,) =0

n—>o
and hence (3.8) follows upon showing that
(3.10) lim sup M* = 0.

n—o
First note that d(n) < n and clearly we can suppose that d(n) < n.
Now

2 2 2

n . d(n) ] n )
E Xtemt < Z Xtezwt + Z Xtezwt
t=1 t=1 t=d(n)+1
d(n) ] n '
+2[ Y Xt Y Xt
t=1 t=d(n)+1
Thus
|In(w) - Id(n)(w)l
2 2 d(n) 2 2 n 2
<|— - Y Xt + —| Y Xe'!
(3.11) n d(n) i1 ¢ L P ¢
d(n) ' n .
4+ — Z X,e“"‘ Z Xtemt .
L] t=d(n)+1
Hence, on writing
n ot 2
2 |):t=d(n)+1Xte I

M —3
domn = (B8 U "d(n)  2wh(w)
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and dividing both sides of (3.11) by 27 A(w),

d(n) d(n))

Mn* < (1 - _n_)Md(n) + (1 - Md(n),n

(3.12)

d -d
LY QIO

From (3.9) M, ,, = O(log n) and also, M, , has the same distribution as

n—d(n) 2

Z Xteiwt

t=1

2
olsli,ai(w n—d(n)

and we can show that almost surely as n — », M dn),» = O(log n) by applying
arguments of the same type as those of Lemma 3.2. Then from (3.12),

d(n) (1 ~ il(nl))l/zlogn);

(3.13) M,,*so((1— )logn) +0

Now

A1) exp](1og #(n))**" ~ logn],

and it is easily seen that
(log h(n))**" ~logn = =5, + 0(5,),
where
5,=(k+ 1)(logn)k/(k+1) exp[_(logn)l/(k+1)]'

Hence

d(n)
1——n—=5n+0(5n),

and as n — «,

(1 B d(n)

" )(log n)? - 0.

Hence (3.10) follows from (3.13). O

4. The lower bound. The proof of the lower bound (1.2) is slightly more
complicated, so in order to give a greater degree of clarity, we first summarize
the steps involved in the proof.

Let (0, @y, ..., @y, be the equally spaced partition of [¢, 7 — ¢] as de-
fined in Lemma 2.2.
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Let
XX o)) Yz(w)
M = max ’
n,m(n) 1<i<m(n) [ o.n2(w 2(0)

I (w;)

4.1 MD max ——*

(4.1) ) T emn) 2mh(w;)

and

u, =2logn —loglog n.
1. Show that for sufficiently large n,

min) ([ X2(w;)  Y(w,)
P(M < P + —|< +d
(Mo, < 1) < z=l_I1 [w%,,(wi) oy (@;) = Un "

for some d, such that % _,d, <« (Lemma 4.1).

2. Show that
om0 ([X2(0) ¥,
E P n 12 + n 12 S un < -
n=1 ll_[ 0')%,,(“’;‘) 0'1%,,(‘0;')
(Lemma 4.2).
3. Hence by the Borel-Cantelli lemma,
liminf[ M, .y = %,] = 0.

4. Show that M, ,,,, and M’ . are asymptotically of the same order. (1.2)
now follows on observing that, almost surely, M, >M® ) (Theorem 4.1).

As in Section 3, the above steps will first be proved for the particular
subsequence n; and then it will be shown that the result in fact holds for any
n. We now have a more detailed study of the steps involved.

n,m(n

LeEmMA 4.1.  For sufficiently large n,

m(n,)

P(Mnl,m(nl) =< unl) - t=l_.[1 p

<u
0')%,,1( ;) o 1%',,1( ;)

Xi(w) | Yi(e) )

(4.2)

< ce~(1—8Xlog nyk+1

for some constants ¢ > 0 and & € (0, 1).

Proor. Let

e - (222 5t20)

U'an( w;)’ O'Ynl( ;)
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and
m(ny)

R0 =P TT (2,(0) €4),

where
={(%,5): 22 +y% < unl}.
Then
(4.3) F )= [ - [ fixy) dxdy,
where f, is N(0, %,), 3, being the covariance matrix of the random variables
(4.4) {an w;),i=1,...,m(ny)}
and
X= (%5 Xmnp)s Y= (V1o s Ymnp)-

Also let

m(ny)

45)  F(0) = T P(Z,(0)c4) - fA fA fo(x,y) dx, dy,

where f,, is N(0, %), 3, being of the form diag(V, ..., Vin(ny))» Where V; is the

matrix
1 rx iY:
rxiy i 1 .

Then, by using arguments similar to those given by Leadbetter, Lindgren and
Rootzén (1983), pages 81-83, we have

afh(x y)
F (1) - F,(0)] < [* - dxdy| ah
| ! ! | ‘/;) |:1<‘<J<m(n1) v '/:4 '/;4
il Ifw(x,y) ]
- [ S22 dxdy| | dh
(46) +'/;) _lsi<jEsm(n1)Irxi’yj| '/:4 '/:4 Bxi ay x y’-
1- fh( )y) ’
+ dh
'/(; 1<z<jsm(n1) y, % f f 3 ayj J

= S(’H) + S(nl) + S('l1) say,

where f, is N(0,3,), 3, being a covariance matrlx of the form 3, = b3, +
(1-h)3,, where 0 <h <1, and r r, _ are, respectively, the corre-

xx’xy’

lation coefficients of the pairs {an(w) X (o} {X, (), Y, (0))},
{Y,(0,),7, (0.

n+%J



A STABILITY RESULT FOR THE PERIODOGRAM 1779

We now obtain an upper bound for S{*V. First we note that we can write

afn(x,
ff fa( y)dxdy

(4.7)

2

A...IA[IAL% dx; dy; dx; dyj]dx*dy*

where x*,y* are (m(n,) — 2)-dimensional vectors.
On integrating with respect to x; and x; in the inner integral, we see that
the right-hand side of (4.7) is equal to

(4.8) fA"' A[Jnl,l — 2 _Jn1,3+Jn1,4] dx*dy*|,
where
B U, —y2 ., \u, —y2,x*y,y,y*| dy; dy;
vt |yi|$\/u_m'/|’yj'5\/u_nlfh(\/ Y \/ 1 Y yjy) Vi
and J, ,,d, 3, ,aresimilar integrals except that (‘/un1 - yZ, ‘/un1 -yP)

are, respectively, replaced by

(=Vota, =5F N, =5 ) (Vien = 9% = o =57

and
(= =52, = yfun, = 37).
Now clearly
’/:4 o j;qJnl,idX*dy* = ‘/Rz . fRanl,idX*dy*’ 1=1,...,4,
where

Ry={(x,y): —o <x <o, —0 <y <},
Thus (4.8) is not greater than

LoJh
1<j<4
where
JE = FilVtms = 7N, = 92703, s .
vt lyils‘/u,,l‘/l’yjls‘/unlh‘/ ! \/ 1 J J '

fh being the marginal density of
{an(wi) Xn(wj) Ynl(wi) Yn(wj) }

Uan(wi) ’ O'X,,(wj) ’ O'Ynl(wi) ’ ‘TY,,(“’J')
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under N(0,3,) and J.* 5, J.* 5, J % , are similarly defined. The covariance ma-

trix associated with £, is of the form I, + O((log n,)~™), I, being the four-
dimensional identity matrix. Hence

f'h(\/unl —y2 ., — ¥ ,yi,yj)
1
(27)*
uniformly for ly,| < Vny ly;l < ‘/unl. Thus

— -
Jn*l,l < clunle un1+k1un1(105n1) ,

[1 + O((log nl)_n)]e_“n1+0(un1(lognl)‘")’

k, and c; being positive constants. With similar arguments, bounds of the
same form for J.* ;, i = 2,3, 4, can be obtained.
Also, since u,, = 2logn, — loglogn, < 2logn,,

J¥ . < 2¢,n72(log ny)letm/ ke,

ny,i
where k, may be arbitrarily large. Hence
(4.9) JF ;< 2¢n7%*°,
where 6 > 0 may be arbitrarily small.

From (4.9), result [1] of (2.6) in Lemma 2.2 and (4.6), we see that for
sufficiently large n,,

1
— _
sav<C X =7 (log ) D D
1<i<j<m(ny) l<u<m(n,)
< Ciny'*%(1 + log ny)

—_ *
< Clnl 1+48 ,

where § < §* < 1, since we may assume that 1 + log n, < n§"~°.

Hence

S < O e~ @-8M0em)* ] 4 O(1

(410) xx 1 . [ ( )]
< ce—(l —6*)log n) .

With similar arguments, it can be shown that S{?, S{;¥ have bounds of the

same form as (4.10). (4.2) follows on observing that its left-hand side is equal

to |F, (1) — F,(0). O

LEmMMA 4.2. Letk >2and n < 3 — 1/(k + 1), so that (k + 103 — ) > 1.
Then, almost surely,
(4.11) lim inf[M

n—o

- unl] > 0.

ny, m(ny)

Proor. From (4.2) we have, for sufficiently large n,

mr) [ X2(w;) V()
P(Mn,,m(n,) <u,)< 1131 P L L

—(1— k+1
<u, |+ ce”-oMlogm) T

R (@) oF(w)
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where c, 8 are constants such that ¢ > 0 and 0 < § < 1. Using the fact that
{X, (@), Y,(»)} has a normal distribution and the fact that Cov(X (), Y, (»)) =
O(n~1) uniformly in € [¢, 7 — €], we have

m(n,) X2 w: Y2 .

11 P( r(@) | Yi(e) cu,

i=1 U)%,,l(wi) 01%,,1(‘0;‘) -

m(n,)
= JT [1 - e @/Pun(1 + 0(1))]
(4.12) =1
< exp[—m(n,)e"/?¥m(1 + o(1))]
= exp| — ! e—logn+(1/2)loglogn1(1 + 0(1))
(log ny)"
< exp| —(log n,)"/*7"(1 + o(1))].
Since
i e—(l—ﬁ)(logn)k“ <
n=1
and

o0
E e—(logn)<k+1x1/2—n)(1 + 0(1)) <,

n=1
when (k + 1)(3 — n) > 1, it follows from (4.2) and (4.12) that
Y P(M, pny S up) <,
n=1

which implies (4.11) by the Borel-Cantelli lemma. O

THEOREM 4.1. Let

M I (o)
" el 27h(@)
Then
(4.13) liminf[ M, — 2log n + loglog n] > 0.
n—o
Proor. Let
I(w;)
1) = L AL
mm(ny) 15?;?n}inl) 2mh(w;)
Since
log n
o3 (w)) = 2wh(w;) + O & )
1
log n
Uiz’nl(wi) =27mh(w;) + 0( i 1),
1
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we have
Xr?l wi) + Ynzl(wl) — Inl(wi) 1+ O(lognl)
0')%,,1(0);') 0'12',,1(0’;') 2mh(w;) n; ’
giving
log n
(4.14) Mr(tll),m(nl)(l +0 i : )) =My, ey
1
Now let (¢ + 1X(3 — ) > 1, so that (4.11) holds. Then from (4.14),
lim [M® iy — 0] 2 0.
Clearly
Mnl = M'(llg m(ny)*
Hence
(4.15) liminf[M, —u, ] >0.

Let d(n) and M} be defined as in Lemma 3.3. Then, as |M,, — M| > M *,
M, =My + M, = Myg,y =2 My — M,F.
Hence, if u, = 2log n — loglog n, then
M, —u,2My,y— Ugpy+ Ugy — U, — M}
and

liminf(M, — u,) > liminf(My,, — u4,,)) + liminf (u 40, — u,)
n—oo n—ow

n—o

+ liminf(—M*).

n—o

Since d(n) is related to h(n) in the same way as n, is related to n, an
argument analogous to that used to obtain (4.15) can be applied to show that,
almost surely,

lim inf (M) — % 4(,)) = 0.
n—o

Also from (3.10) we have
liminf(—M}*) = 0,

n—o
and it is easily seen that
r}i—l}l(ud(") —u,)=0.

Hence
liminf(M, — u,) > 0. o

n—o

Some further comments. Let {X,);_, be a stationary Gaussian time series
with E(X,) = 0, E(X?) = 1 and the autocorrelation function r(x) not neces-
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sarily absolutely summable. Then we have the following conjecture: If

y I(0)
= max ,
" welo,m] Lyy<n_1(1 = lul/n)r(u)cos wu

then, almost surely,

li M, 1

nl—lgo 2logn
The proof of the above conjecture can probably be given in a similar way.
However, there would be quite a few technical complications.
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