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CONDITIONAL LIMIT DISTRIBUTIONS OF CRITICAL
BRANCHING BROWNIAN MOTIONS

By TzoNG-Yow LEE
University of Maryland, College Park

A critical branching Brownian motion in R¢ is studied where the initial
state is either a single particle or a homogeneous field with finite or infinite
density. Conditioned on survival in a bounded subset B of R? at a large
time ¢, some normalized limits of the number of particles in a bounded
subset A are obtained. When the initial state is a single particle, the
normalization factor is a power of ¢ in low dimensions, a power of log ¢ in
the critical dimension and a constant in high dimensions. Extensions to the
other initial states and/or more general critical offspring distributions are
discussed. Both factors affect the critical dimension. The results are moti-
vated by probabilistic consideration and are proved with the aid of analytic
technique of differential equations.

0. Introduction. This paper deals with some conditional limits of critical
branching Brownian motions (CBBM) in R¢, initially either a single particle or
a homogeneous random field. For simplicity of presentation we assume a
particle to follow a Brownian motion (BM) in R¢, obeying (H1)-(H3):

The particle lives an exponentially distributed lifetime of
1
mean 3.

(H1)

The particle is replaced at death by either no descendant or
two descendants at the same position with equal probability.

Each descendant follows a BM and obeys (H1) and (H2). All
(H3)  Brownian motions, lifetimes and decisions on death or birth
are independent of one another.

Several initial states will be considered. We denote by P, the probability
distribution of our CBBY, initially a single particle at x, by @, that initially a
random field u, with exponent 0 < a < 1, characterized by

(0.1) E#a{xl;'[X[l —f(xj)]} = exp[—fRdf(x)adx],

for 0 < f(x) <1, where X ={x;; j =1,2,...} denotes the position of parti-
cles. Throughout this paper we use E, (E°, resp.) for the expectation associ-
ated with P, (@,, resp.) and call a subset of R? proper when it is bounded
with positive Lebesgue measure. The present article deals with N,(¢), the
number of particles in a proper set A at time ¢.

(H2)
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The following quantities and related differential equations are important for
our discussion. Let {xj(t)} be the position of particles survival at time ¢. For
h,n € LR?) and n(x) € [0, 1] for x € R?, define

N(2)
m(t,x;h) = Ex{ Y h(xj(t))},
j=1

N@®)
o) =1 B{ TT[1 = (o))

where N(t) is the total number of particles existent at time ¢. They satisfy the
following:

A
(A) m, = 5m= 0 in R*XR? and m(0,x;h) = h(x),

A
(B) LuEut—-2—u+u2=O in R*XR? and u(0,x;h) = h(x).

See [10] and references therein for the derivation.
Let 1, denote the index function associated with A. It is easy to see

(02) Ex{NA(t)} =m(t7x;1A),
(0.3) Ple N4 =1 — u(t,x,1 — e %4) for6 >0,
(0.4) P{N,(t) >0} = f}im u(t,x;1 —e %4y =u(t,x;1,).

From a probabilistic viewpoint it is natural to look into E,i2{N,(¢)} and
P2 {N4(t) > 0} as t — », where the scaling ¢'/?y is suggested by BM. For
fixed y € R?, define

m(¢,t4%y;1,)
u(t,t%y;1,)
We anticipate the following type of limit theorem:

Conditioned on {N,(¢) > 0} and w.r.t. Pz, Nut)/c(t)
converges in distribution as ¢ — .

(0.5) c(t) = Ean{ Ny(t)INy(2) > 0} =

(0.6)

An elementary computation using (0.3) and (0.4) gives the generating
function of N,(¢)/c(2),

E,,{exp[ —0c(¢) "Ny()|INA(2) > 0}
(0.7) 1 u(t,tl/2 ;Oc(t)—llA)
u(t, t2y;1,)
for 6 > 0. (0.6) is therefore equivalent to:
u(t,t'/2y;0c(t) _IIA)
u(t,t%y;1,)
Our goal is to prove various limit theorems like (0.6) and (0.8). Regarding (0.6),

(0.8) converges as ¢ — o for 6 > 0.
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our results show three regimes of different limiting behaviors of N,(¢): c(¢) is
of the order of t/2 when d = 1, of log ¢t when d = 2 and of a constant when
d > 3. The existence of the critical dimension d = 2 can be seen from the
picture provided by CBBM as follows. Assuming the survival of the process at
a large time ¢, the number of particles is, roughly speaking, of the order of ¢
and they spread in a region of area of the order of #?/2 Let A be a proper set
in R9. This suggests that c(t), i.e., N,(¢) conditioned on survival, is of the
order of /2 when d = 1 and is finite when d > 3 as ¢ — «. A closer look, as
in the Introduction of [9], at CBBM actually anticipates ¢'/2 for d = 1, log ¢
for d = 2 and finite for d > 3. Some discussions from different points of view
can be found in [4, 6] and references therein.

From (0.5), c(¢), hence the critical dimension, can also be determined by the
behavior of u(t,t/2y;1,) and m(¢,t'/%y;1,) as t — . The latter quantity is
of the order of ¢~¢/2, From (0.8) we see that wu(t,t'/%y;0c(t)~'1,) as well as
u(t,t'/?y;1,) should be investigated. This is undertaken by a comparison
principle which we now illustrate to estimate the large time behaviors of
u(t,t/%y;1,) and c(t) Using functions of the form {((#)g(t,x), g(¢,x) =
(27¢)~ %472 exp| — |x|? /2t], the heat kernel, a simple computation ylelds that the
following ¢(¢) makes {(¢)g(¢, x) subsolutions of (B) [i.e.,, “ < ” is satisfied
instead of “= "’ in (B)] for ¢ > 1:

1 -1
+ (2m) V%112 - 1 ]

KO) (2m) 772( )

~ (2m)?2714"1/2 whend =1,

(0.9) ¢(t) = m +@2m)- logt] ~ (2m)(logt)”" whend = 2,

+ (27) ‘d/z( 4

5~ 1)_ (1- tl‘d/z)]

1
2(1)

1 T A
L(l)+(2w) /(2 1) ] when d > 3,

as t » . We thus have some subsolutions with the large time asymptotics
being
1

lxc|?
Et 1exp[——] ford =1, (tlogt)™ exp[ o ford = 2,

and k7972, k> 0, for d > 3. Supersolutions with the same magnitude of
asymptotics will be given in the proofs of the theorems. We conclude, using
(0.5), the preceding discussion with the suggested formula,
; O(t'/?) whend =1,
(0.10) c(t) ~{O(logt) whend =2,
0(1) when d > 3.
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The assertion (0.6) with these c(¢) will be verified in Theorems 1.4, 2.4 and
3.2, respectively.

The remainder of this section contains the motivation and statements of our
results in the order of their logical dependence and also some accounts for
generalizations. The proofs are placed in the subsequent sections (for example,
the proof of Lemma 1.1 is in Section 1). ‘

First of all, there are two fundamental facts, a scaling structure and a
comparison principle. Since both are intuitive and easy to prove, we omit their
proofs.

ScaLING LEMMA. Let Lju=u,— (A/2u +u® for p> 1, (JuXt,x) =
N/®=Dy(at, AV2%x) and J,Q = {(t, x)|(At, \V%x) € O} for a domain Q c R*X
R?. Then (L,u)(t,x) = 0 in Q if and only if (L,Ju)(t,x) = 0 in J,Q.

ComPARISON LEMMA. Suppose f € CYR) and u(t,x) and u(t, x) satisfy
(0.11)-(0.14):

(0.11) u is a supersolution and u is a subsolution,i.e.,

A A
(@), - K +f(Z) 20 and (u),— -su+f(u)<0

2
in (0,T) X R%;
(0.12) sup [z(¢, x)| + lu(t,x)l <o foreverys <T,
xeRd
(0.13) %(0,x) >u(0,x) forx <€ R

(0.14)  liminf inf [%(¢,x) —u(t,x)] =0 foreverys<T.

roo t<s,x=r

Then u(t, x) > u(t, x) in (0,T) X R®.

REMARK. It is not difficult to remove condition (0.14) and cover more
general nonlinearity, e.g., f(¢, x, u). The present form serves our purpose well.

Now we begin with the low dimension d = 1. Some special solutions of (B)
play important roles in this case: U(¢, x) = ¢t~ 'F(¢~!/%¢), the unique positive
self-similar solution of (B) in R*X R (leaving out the initial condition) with
F'(0) = 0 and lim, _,, y2F(y) = 0; V(t, x;a), a > 0, the unique solution of (B)
with initial value ad,, where §, is the Dirac measure at the origin. See [1, 2]
for the existence, uniqueness and the following two properties of U and V:

F(y) ~ O(lyle™*/?) as |y| - .

For a > 0 there exists ¢ > 0 such that a(27¢)" /2 exp[—x2/2t] >
V(t, x;a) = [a(2mt) /% — clexp[—x2/2¢] for all ¢ >0 and x € R. Let M,
denote the totality of nonnegative measurable functions (from R? to R,
d €'N) smaller than % gxp[—|x|2/2m] for some positive & and m but not

identically zero and set A = [h(x)dx. Lemma 1.1 is a simple consequence of
[5] (see [4D.



BRANCHING BROWNIAN MOTION 293

LemMmA 1.1. Ifd=1and he M

expy then lim, . tu(¢,¢'/%y, h) = F(y) for
ally € R.

Lemma 1.1 enables us to estimate P,12{N,(#) > 0} and @{N,(#) > 0} in
Theorem 1.2.

THEOREM 1.2. Suppose d = 1 and A and B are proper. Then the foilowing
hold:

(0.15) }i_)n;tPtl/zy{NA(t) >0} = F(y) fory € R (independentofA);

ast — o, Q{N,(¢) > 0} tends to 0, 1 — exp[— [F(y)*/*dy] or
1 in accordance with 1 > a > 3, a = 3 or 3> a > 0; more-
(0.16) over, we have lim, ., t*"'/2Q{N,(t) > 0} = [F(y)*dy for
a>3and lim,_, t* 2?log Q{N,(t) = 0} = — [F(y)*dy for
3> a;
lim P2 ( Ny(2) > OINp(¢) >0} =1 forally €R,

t—> o

(0.17) i
th_r,l}oQ“{NA(t) > 0|Ng(t) >0} =1 fora € (0,1].

REMARK. From the fact P,2{N(¢) > 0} = (1 + #)~%, it follows that
limPtl/zy{NA(t) > 0IN(¢) > 0} =F(y).
t—

Applying the comparison lemma to
u(t,x) =u(t,x;h),

' 2
n (277)_1/2 exp[———l
and

u(t,x) = [1+ (2m) V2t + DV - 1))

lxc[?
—-1/2
>< —_——
[27(¢ + 1)] exp[ 5+ 1)
[see (0.9)], Lemma 1.1 yields F(y) > % exp[— |y|?/2] for all y € R, in particu-
lar, F(0) > 3> 0. We suspect lim,_ , P{N,(t) > O|N(¢) > 0} = F(0) to be
strictly less than 1 but do not have a proof.

Theorem 1.3 is an analytic result whose probabilistic implication, stated in
Theorem 1.4 is our main result for d = 1.
THEOREM 1.3. Supposed =1 and h € M., Then

lim tu (¢ — s,t/%y;t"/2h) = V(1,y;h) foralls € Randy € R.

t—> o
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THEOREM 1.4. Let B and A;, 1 <j <k, be proper sets in R and 6 > 0.
Then

k
lim E,1 /2, exp[—t'l/2 Y OjNAj(t)] Ng(t) > '0}
(0.18) ( /=1 )
=1- I~ forally €R,
F(y)

where |A| denotes the Lebesgue measure of A, i.e., conditioned on {Ng(t) > 0}
and w.rt. Ppp,, ¢ 2NA (t); 1 <j < k) converges in distribution to (|A IZ
1<j<k) as t > o, where Z is characterized by E{expl60Z]} =
V(1,y;60)/F(y) for 6 > 0.

Forl>a> 3,
lim E“{exp[—t_1/220jNAJ(t)]INB(t) > 0}

t—>

fV(l,x;20j|A|)adx 1
(0.19) 1- F(x)" dx for1>a> 3,
1 — exp| - /V(1,%;£6,l4,)" dx ]}

{1 - exp[—fF(x)l/2 dx]}

1

1- fora = 3.

This is a weak-convergence result similar to (0.18) w.r.t. @%, 1 > a > 3.

The case d = 2 is unlike d = 1 at least in that there is no self-similar
solution of (B) such as U. Practically, what we need in order to establish
similar results is some supersolutions and subsolutions with a matching
~ leading term. This is roughly the idea of Theorem 2.1. Our comparison
~ techniques should be also useful in asymptotic analysis of many nonlinear
differential equations other than (B).

THEOREM 2.1. For d = 2 and any small positive ¢ there exist u(t, x),
u(t, x) and t, which satisfy (0.20) and (0.21) for all t > t, and x € R*:
u=>0, Ly <0 and

1 l|?
(0.20) (¢1og?) 2exP[_ [2(1 +e)¢] }

Jc/?
>u(t,x) > (tlogt) '2(1 - e)exp[ oy l
u=0, Lz >0 and

. P
(0.21) (tlogt) "2(1+ e)exp[ 2a+od J

-5
>u(t,x) > (tlogt) 12 exp 57
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We also have:
Ifd=2 and h € M,,,, then lim,_ (tlog t)u(t,t'/?y; h) =
2 expl - lyl? /2] for ally € R2

By Theorem 2.1 we derive the asymptotic behavior of some survival proba-
bilities.

(0.22)

THEOREM 2.2. Let d = 2 and A and B be proper sets in R2. Then
2

(0.23) tll_{rolo(t log t) P2 { Ny(t) > 0} = 2exp[— Iﬁ,'—} forally € R?,

2
lim (log t)@{ N4(¢) = 0} = 47 and
t— oo
(0.24) log @,{ Nu(t) =0
lim gQ_a{ A( )_a } - —2“a‘1/2(2w),
= [t17%(logt) ]
in particular;
tlim QNu(¢) =0} =1, for1>a>0,
lim P12, { Ny(¢) > OINp(t) > 0} =1 and
(0.25) e

th'_glle{NA(t) > 0INg(¢) > 0} = 1.

ReEMARK. (0.24) is proved by showing that
lim (log t)fu(t, x;h)dx = 4m
t—o

~ for h € M_,,. This specific results gives a positive answer to an open problem
[71. Moreover it holds that lim, . (logt)fu(t, x;(log¢)"*h)dx = 4wh/
(47 + k) (a consequence of Theorem 2.3).

Theorem 2.3 establishes an analytic result crucial to Theorem 2.4, our main
result for d = 2.

THEOREM 2.3. Suppose d = 2 and h(x) € M. Then

tlim (tlogt)u(t — s,t*%y; (logt) 'h) = (1 + 4m(h)” )2exp[—|’—)’2|—]

forall s € R and y € R2.

THEOREM 2.4. Letd = 2 and let Band Aj, 1 < j < k, be proper sets in R
Then )
}L%Etl/zy{exp[ —(logt) 'L ojNAj(t)] INB(t) > 0}

(0.26) B
= [1 + am(z0,4,1) 7]
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forally €R®and 6;>0,1<j <k;

lim El{exp[— (log¢) ~* i

t—> o J 1

k -1
= [1 + 477( Z leAjl) } .

For d > 3 we take the following lemma from Theorem 8.1 of [8] [there,
p = (N + 2)/N should be p > (N + 2)/N].

OjNAj(t)J N(¢) > 0}

(0.27)

Lemma 3.1, Ifd > 3, h(x) = 0 and h € LY(R?), then
lim £4/%y (¢,tY2%y; h) = a(y, b)

t— o

exists and is positive for h # 0.

The limit distributions for d > 3 depend not only on |A i, 1<j <k, but
also on their shape and relative position. This is already suggested in (0.9) by
the dependence of the leading term of ¢(¢) on {(1) and is made clear in
Theorem 3.2.

THEOREM 3.2. Letd > 3 and B and A;, 1 <j <k, be proper sets in R and
A= Uf=1 A;. Then

(0.28) lim t4/2,{ Ny(£) > 0) = a(y; 1),
tlimEtl/zy{exp[— f‘, OJ-NAj(t)} N,(¢) > O}
(0.29) /=t
o a(y;l - exp[—Zolej])
a(y;1,) ’
(0.30) tli_l)raloE1<exp[—ZBjNAj(t)]> = exp[—fa(y; 1- exp[—ZOlej]) dy].
(0.31)

With respect to Q,, a < 1, Ng(t) tends to » in distribution .

We now remark on some generalizations of the previously mentioned re-
sults.
1. Consider, for 1 < p < o and d € R,

(C) ut—E(D2+ D)u+u"=0 fort>0,x>0,

x
and let u(¢, x;h) be the solution with the Neumann boundary condition at
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x = 0 and initial value k(x). The symmetric extension of A is assumed to
belong to M,,,. The critical dimension of (C), in the sense of the behavior of
c(#) in (0.5) and (0.8), is 2/(p — 1). Analytic results parallel to those in this
article (Lemma 1.1, Theorems 1.3, 2.1 and 2.3 and Lemma 3.1) can be
obtained with obvious modification of the arguments adopted here and in the
quoted references. The computation leading to (0.9), for instance, yields

O(t@/a-1/tp-1) ford <2/(p - 1),
() ~ 0((logt)—1/(p_1)) ford=2/(p — 1),
constant depending on {(1) ford > 2/(p — 1).

2. For 1 <p <2 and d € R, (C) corresponds to a branching process with
Bessel process of index d, instead of BM, as its spatial motion and with its
critical offspring distribution belonging to the normal domain of attraction of
stable distribution with exponent p, 1 <p < 2. One can therefore derive
conditional limit theorems parallel to the case when p = 2 (Theorems 1.2, 1.4,
2.2, 2.4 and 3.2). Although our analytic results extend to 1 < p < » with no
difficulty, the probabilistic meaning for p > 2 is unknown and is interesting to
seek. Note that the critical dimension depends on p as well as a [see (0.1)].
Extensions to critical measure-valued processes require little modification
besides interpreting N,(¢) as the mass occupying A at time ¢. See [3] and
references therein for the construction of measure-valued processes. Partial
results for general p and for measure-valued processes were obtained in [4, 7].

3. Since only large time behavior of solutions of (C), which tend to zero, are
essential in this study, extensions to the following equation (D) are not difficult
(see [9] for some details of analysis required).

(D) u, — l(D2+

5 D)u +f(t,x,u)u? =0,

where f(¢, x, u) tends to a positive constant in an appropriate sense as ¢ — o,
x — o and u — 0. (D) corresponds to processes with waiting times and critical
offspring distributions depending on ¢ and x.

Proor oF LEmMMA 1.1. It was already proved in [5] (see [4]) that

lim supltu(t,x;h) — F(¢t~'/?x)| =0 for h € M, N C*(R).

t—)ooxER

For h € M,,, N C*(R), substituting x by ¢'/?y yields Lemma 1.1. In view of
the facts that u(¢, x; h) is increasing in 2 by the comparison lemma and that
for h € M, there exist o, and h_e€ M, N C*(R) such that h,>h > h_,
the differentiability condition is unnecessary and the proof is complete. O
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Proor or THEOREM 1.2. (0.15) follows immediately from (0.4) and Lemma
1.1. In order to prove (0.16), we note for @ € (0, 1] and d € N that

0

QN = 0) = B+{ TR N1) - 0}

j=1

(1.1) = E’*a{

The first task is to determine for d = 1 when [pu(¢, x;1,)*dx tends to
zero, a constant or infinity. Since there exists some ¢ > 1 such that 1, < cF(|x|)
and thus,

tu(e,t'%y;1,) < tu(t,t*%y; cF) < ctu(t,t*/%y; F)

(1.2) = ctu(t,t¥%y; U(1, x)) = ctu(t + 1,tY%y)

[et/(2 + DIF([¢/(2 + D]'?y),

where the second inequality is due to the comparison lemma using cu(t, x; F)
as a supersolution and u(¢, x, cF) as a subsolution. By Lemma 1.1, (1.2) and
the property of F in the paragraph preceding Lemma 1.1, the dominated
convergence theorem implies

s sa—1/2 . a — 1 1/2,,. @
th_{r;t j;au(t,x,lA) dx th_l?aloj;g[tu(t’t y;14)] dy

(1.3)
= [F(»)* dy.

In view of (1.1) this proves (0.16) for the case a < ; immediately. For a > 3,
note from (1.3) that lim, , , fu(¢, x;1,)* dx = 0. Thus,

limt“‘1/2{1 - exp[—fu(t,x; lA)adx]}

t—> o

lim £2-1/2Q { N(¢) > 0)

lim ¢2~1/2 fu(t,x; 1,)% dx

t—o

lim ftu(t, t %y, lA)a dy

t— o

[F(»)* dy.
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Next, we turn to (0.17). An elementary computation gives
Ptl/Zy{NA(t) > OINB(t) > 0}

(1.4)  [Pany{Ny(#) > 0} + Pas,{ Np(¢) > 0} = Pz { Ny 5(2) > 0}]
- Pt1/2y{NB(t) > 0} '

From (1.4) and Lemma 1.1 the first assertion of (0.17) follows. A similar

computation with P, replaced by @,, 1 > a > 0, proves the second asser-

tion of (0.17) and ends the proof. O

Proor or THEOREM 1.3. Define
b(y;h) = inf liminftu(t - S,tl/zy;t-l/Zh),
(1 5) sER t—w
' B(y;h) = sup limsuptu(t — s,t'/2y;t~'/%h).
SsER t—w»
Theorem 1.3 is equivalent to
(1.8) b(y,h) = V(1,y;h) and B(y,h) < V(1,5;%).

The proof for b(y; h) is broken up into four steps and a similar proof for
B(y; h) will be omitted.
StEP 1.
b(y,h) = b(y;G,h), where (G,h)(x) = A2h(A2%x).

By the scaling lemma, Au(A(z —s), AV2%x; (AT)"Y2h) = u(t — s, x;
T-'2G,h) for t > s and T > 0, which implies

© b(y;Gih) = inf liminf (AT )u (AT — As, (AT)2y; (AT) " ?h) = b(y; h).

AT — ©
STEP 2.
b(y;h) = b(y; Hyh),
where

(Hk)(x) = [(2mn) "2 exp[— antl }h(y) dy.

A simple computation shows that (¢ + 6~ !|&|lx ")~ ! is a solution of (B) with
a constant initial value 6||A|l. for any dimension and 8 > 0. It then follows
easily that u(t, x; 0h) satisfies u, — (A/2)u + (¢ + 6~ Y|kl )~ 'u > 0 and from
the maximum principle that

(1.7) u(t, x;6h) = |RlIZ1(¢ + 6~ AlZY)  (HR)(x),

where the r.h.s. is the exact solution of v, — (A/2)v + (¢t + 6~ YAl 1w

0
and v(0, x) = h. Finally, letting ¢t = A and 0 = T~ /2, (1.7) yields for d = 1
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that
b(y, h)

inf liminf Tu(T — s, T*/%y; T~'/%h)

s€ER T-wx
inf Liminf Tu(T — (s + A), TY2y;u(A, - ;T~?h))

s€eR T-w

inf liminf Tu(T — ¢, T*2y; Al (A + T'/2|hli-") " H,h)

teR T-o
in}fi; li}ninfg(T)Tu(T —t,TY%y; T"Y?H,h)
te — 00

v

b(y; Hyh) forany A >0,
where g(T) = TV?|hl2"A + TV A=) 7111 as T - «.

The last inequality holds because g(T)u is a subsolution of (B). The
inequality in the other direction follows easily from u(A, x;¢~'/?h) < t~'/?H,h
(by the maximum principle).

StEP 3. Define

12 |
g.(x) = (2mc) exp| — >~ |, ¢>0.

We prove b(y; h) = b(y; hg,) for all A € M,,,. For h € M,,, we have a(A)|1
and b(A)11 as A — o such that
(1.8) a(A)**hg,u)(x) = (H,G,h)(x) = b(1)**Rg,,\(x) forx € R.
The first inequality together with the results of Steps 1 and 2 yields
b(y; k) = b(y; HiGyh) < b(y;a(1)**Rg,w)

= b(y;a(1)*hg,) < a(A)**b(y; he,)-

The last inequality is obtained by the comparison lemma. Letting A tend to «
yields b(y; h) < b(y; hg,). The opposite inequality is obtained similarly, using
the second inequality of (1.8) and the results of Steps 1 and 2.

StEP 4. b(y;h) > V(1,y;h) for all h € M.
b(y,h) = b(y; hgy)

= inf liminfe lu(e™! — s;e7 1/ %y; 6
s€ER -0

2

gl)

inf lim i(l)lfu(l —¢s,y; hg.)
s £

v

inflimiélfu(l —e8,y;V(e,x; h))
N ’ (see the paragraph preceding Lemma 1.1)
inf liminfV(1 — es +&,y;h) = V(1,y; k).

s e—0
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The opposite inequality is obtained using V(¢, x; a) > [a(@7t)~1/2 —
clexp[—x2/2t] for t > 0 and x € R for some constant c.

We omit the similar proof of B(y,h) < V(1,y;h), which requires only
minor modification. The proof of Theorem 1.3 is complete. O

Proor oF THEOREM 1.4. In view of (0.17) we need only consider the case
B=U j‘=1 A; when proving (0.18) and (0.19). A straightforward computation
yields

lim Etl/zy
t— o

Ng(t) > 0}

exp[ e E 6; NA(t)]

Jj=1

[Etuzy{exp[—t-1/220jNAj(t)]> — Pap,{Ny(2) = 0}]

= lim

t—o Pt1/2y{NB(t) > 0}
(19 _ ;g M8 y51 - exp[—¢71/2L6;1,,])
oo u(t,t%y;1g)

lim, ., tu(t, tY/%y, =12y Olej)
lim, ., tu(t,t/%y;15)
_ V(l,y, ZBJ'AJI)
F(y),

where the third equality is by the comparison lemma and the fact that
{1 - exp[—#'/2£6,1, }/(¢7'/?L 6,1, ) tends to 1 as ¢ - = uniformly for x €
.Uk, A and equals 0forx ¢ U k_l A;. The last equality is due to Lemma 1.1
and Theorem 1.3. This proves (0. 18).
(0.19) is proved by a computation similar to (1.9) and (1.1); an exchange of
limit and integration is needed and can be easily justified by the dominated
convergence theorem as in (1.2) and (1.3). O

2.

Proor oF THEOREM 2.1. Recall from (0.9) that there is a subsolution
{()g(t,x) ~ (tlog ¢)~ ! expl — IxI 2 /9t] as t — . The present Theorem 2.1 as-
serts that 2(¢ log #)~!exp[—|x|?/2¢] is the universal large time asymptotic
behavior obeyed by all positive solutions of (B) with M., initial value. The
idea which leads us to find this factor 2, roughly, is the following. Let
w = (tlogt) 'exp[—|x|°/2t] and let Lu =u, — (A/2)u + u® A straightfor-
ward computation yields that

Ll l|? Jxc|?
L(kw) = (tlogt) (kzexp[— ——t—] -k exp[— 5—})
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This immediately shows that kw, 0 < k& < 1, are subsolutions of (B). From this
we also expect the first two leading terms of solutions u(¢, x) of (B) to be

(2.1) u(t,x) = kw + t~*(logt) 2g(¢ %) + o(t(log¢) %),

for some smooth function g because this leads to
' 2

Lu=(tlogt)” {kzexp[——tl-] - kexp[——ét—]

(é+f-v+l) (t7 %)} + o(tlogt) >
5t 3 8 g

In order to make the leading term of Lu vanish, 2 must be such that
l|?

A x 2
(§+§'V+I)g](x)—k exp[ le]—kexp Y

has a solution g in a reasonable class of functions. We need a fact concerning

= —(A /2+ (x/2)-V+1I):His “self-ad_]omt” with respect to the measure
expllx|?/2]dx, x € R?, and c exp[— |x|2/2], ¢ # 0, is the principal eigenfunc-
tion associated with the maximal eigenvalue zero. Fredholm S theorem then
implies that there exists g if and only if (k2 expl— |x|%] — & exp[—|x|?/2]) L
expl— |x|% /2] w.r.t. expllx|? /2] dx, this is equivalent to £ = 2. We shall use this
idea of formal expansion to construct u and z with the desired properties
(0.20) and (0.21) and to prove (0.22).

To prove (0.20), let ¢ be a small positive number and define

_ -1 -1 ly — /2%
G(s,y,2) =s 1(2’"') (1-3s) "exp —m ,

and
2

f_(y)E[(i_]f[ G(s, y,z)(exp[—%}—2exp[ 2| ])dzds

In order not to interrupt the argument we postpone the proof of the following
facts to the Appendix.

(Hf_Xy) = [2 — &)?/2)expl—ly|* /2] — 2 exp[~IyI’]D and
(2.2) there exist positive constants K and M such that
K exp{—lyI/[2(1 + &)} = f_(y) = —M expl—Iyl*/2].

Consider u(¢, x) = (2 — &)w(t, x) + t~*(log ¢)~2f_(¢~'/?x). We need only to
show u(¢,x) > 0 and Lu < O for large ¢. It follows from (2.2) and a straight-
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forward computation that
u(t,x) > (tlog t)_lexp[— |x|2/2t] [2 — & — M(log t)_I] >0
for large ¢ and

Lu = (tlogt)” exp[—%]{—s—(-z-z_—g) + (logt) " '2[M + (2 — ¢)K]

+(logt) *(K? + Mz)} <0

for large t. It is readily verified that u satisfies (0.20).
To prove (0.21) we also use a similar construction. Define

fuly) = [2”/2}[ [.6(s:3.2)
X [exp[_ lyl? } _ (2 ¥ -Z—)exp[—lzlz]}dzds.

2+¢€/2

A fact, proved in the Appendix, is needed:

e lyl? 2
(2+e/)2] XP[_ 2 +ye/2] ~ (2+ ¢)" exp| - I2F°]

(2.3) (Hf)(y) =

and there exist positive constants K and M such that

Consider @(¢, x) = (2 + e)w + t~'(log ¢)~2f, (¢ */2x). From (2.3) and a simple
computation it follows that #(¢,x) > 0 and

Jxc[?
P T2 1 e/2)t

—(log t) _1[2K exp| —

(2 +¢)
4+e¢

La > (tlogt)_z{

Jxc|?
2+ ‘8/2)t

|x]?

: +2(2+e)Mexp(——t—)]} >0

for large ¢. It is easy to check that % satisfies (0.21).
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(0.22) will be proved in two steps.

Step 1. Suppose h(x) is nonnegative and not identically zero. Then

lyl?
liminf(¢logt)u(t,t'/2%y;h) = 2exp[— yT .
t—>o0
For small positive ¢ let u be as described in (0.20). Consider the subsolution
Au(A(¢ + 1), A12%x), the initial value is Au(A, A'/%x). Assuming that h(x) is
greater than a multiple of exp{—|x|>/[2(1 + &)} and using (0.20), we can
choose A so large that

|x?

m‘] > Au(A, A2,

h > (logA) 2 exp[—

The comparison lemma and (0.20) then imply that
u(t,t2y; h) = au(A(t + 1), (A1) ?y)

_ tlyl®
> (t+ 1) '(log A(¢ + 1)) "'2(1 - -
(¢ + 1) (log A(t + 1)) ~'2( e)exp[ e
Letting ¢ tend to « followed by letting £ tend to 0, Step 1 is completed for A(x)
satisfying the previously mentioned assumption, which we now remove. If
h(x) is nonnegative and not identically zero, by (1.7) there exists a positive c(¢)
such that

lac|?
u(t,x;h) = c(t)exp[— 5(1—_‘_—8)—} fort>1+e.

Step 1 can be easily extended to cover general A.

Step 2. limsup, (¢ log t)u(t, t'/2y; h) < 2expl—|y|?/2] for all h M.,
For ¢ > 0 let ¢, and %(¢, x) be as described in (0.21). Without loss of general-
ity, assume ¢, > 1 and h(x) < b exp[—|x|?/2m] for some b > 0 and m > t,;
(0.21) guarantees the existence of ¢ > 1 such that h(x) < cu(m,x). The
comparison lemma then implies

u(t,x;h) <u(t,x;cu(m,-)) <cu(t+m,x)
for ¢ > 0 and x € R2.

Next, we consider a solution Au(A(¢ + ¢,), A ?x; h). By (2.4) its initial value
is not greater than Aci(At, + m, A'/%c). It then follows from (0.21) that

(2.4)

Au(Atg, /225 B) < Ae(Aty + m) ‘[log(At, + m)] ~*
Alx|?
21+ o) (Mgt m) |

(2.5)

X2(1 + &)exp| —
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We can choose A so large that A/[1 + &)(At, + m)] > 1/[(1 + 2¢)¢,] and
Ac(Aty + m) " Ylog(Aty + m)] M1 + &)
< [£o(1 + 2¢)] *{log[to(1 + 26)]} .

Using such a A, (2.5) together with (0.21) yields

Au(Atg, NV2%; ) < [2o(1 + 26)] H{log[£o(1 + 2¢)]} _12exp[— éa-l_—:’_cléé—)—{;]

<u(ty(1 + 2¢), x).
The comparison lemma then implies
(2.6) Mu(A(tg +8), A2 h) < T(t + to(1 + 2¢), x).

Multiplying (2.6) by (¢, + ) 'log A(¢, + $)]"! and letting x be (¢, + £)'/2%y,
(0.21) implies

lim sup (¢ log t)u(t, t/%y; h) < 2(1 + 5)9@[_ E(‘ll_y‘lfs}

t— o

Since ¢ can be arbitrarily small, this completes Step 2 and ends the proof. O

Proor oF THEOREM 2.2. Using Theorem 2.1 in the place of Lemma 1.1, the
proof requires an obvious modification of the proof of Theorem 1.2. O

ProorF oF THEOREM 2.3. Define

B(y, k) = sup limsup(T log T)u(T — s, T2y, (log T) 'h)

SER T-ow

b(y;h) = inf liminf(T log T)u(T — 5,T"/%y, (log T) "'h).
s€ —

It is easy to prove by the same kind of argument as in Steps 1-3 of the proof of
Theorem 1.3 that

(2.7) B(y;h) =B(y;7t(27r)‘1exp[—l%l])

and the same conclusion for b(y; k). Due to (2.7), the proof can be broken up
into two steps.
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Step 1. B(y;a expl—IxI>/2) < (1 + 2a™1) "2 expl - ly|*/2].

Let ¢ be a small positive number and recall from (0.21) that
(log A) "2 expl — |x|%/2] < 2expl — |x|?/2] < AT(A, A/2%x) for large A. Choosing
A = XT) = T?/ 2, we conclude that

lx|?

- _ lxc|®
ult —s,x;(logT) 1aexp[——z—}) =u(t—s,x;(log/\) 12exp[——2—”

<u(t—s,x;Au(A, A2 1))
=au(A(t =), AM2%x;u(A, "))
< Au(M(E— s + 1), A\/%),

where the last equality is due to the scaling lemma and the last inequality is
due to the comparison lemma. It then follows from (0.21) that

2
x
sup limsup (7 log T)u|T — s, T2y, (log T) 'a exp[— 1“

SER T-ow

2

< sup limsup (T log T)Az(A(T — s + 1), \}/2T1/2y)
S

T >

< sup limsup (T log T)(T —s + 1) "[log A(T — s + 1)] "

s T

Tlyl? ]

21+ S)eXp[_ 2(1 + ) (T +s + 1)

- lyl?
=(1+2a7?) 12(1 + s)exp[— _r .
Since ¢ is arbitrarily small, Step 1 is complete.

SteP 2. b(y;a expl—|x2/2D = (1 + 2a~1) "2 expl - |y|?/2].
We need only show that

b(y;a(l + e)_lexp[—ég_ll_—g)]) > (1+ 2a'1)_12exp[————}

because b(y; k) depends on % only. Recall from (0.20) that

le2
1/2 . -1
Au(Ar, AV2%x) < (log A) 2exp[————2(1 a)]

for large A. Choosing A = A(T') = T~21%#)/2 and using an argument similar to
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Step 1, we see that

u(t —s,%;(log T) 'a(1 + ‘9)_1exP[_§(1|—xL.—,5]

= u(t —s,x;(log A)_12exp[— é(—l——ll-_s_)_}

>u(t—s,x;Au(r, A24))

= Au(A(t =), A\V2%x;u(A, )

> au(A(t —s + 1), AY2%).
(0.20) then implies that

b . (1 + )_1 ___lﬂz____
Vil el R T o 1 e)
> in£ liql‘ninf(TlogT))\g()\(T— s + 1), A/2T1/2y)
seE — 0

> inf liminf (7 log T)A[A(T — s + 1)] *

sER T-
. » Tlyl?
X[og)t(T—s+1)] 2(1 — €)exp —m
=[1+2(1-¢)a"!] (1 - s)2exp[—%].

~ Since ¢ is arbitrarily small, this completes Step 2 and ends the proof. O

Proor orF THEOREM 2.4. The proof is very similar to that of Theorem 1.4.
We use Theorem 2.3 in the place of Theorem 1.3. O

3.

Proor or THEOREM 3.2. This result is a simple consequence of Lemma 3.1
and a computation as in the proof of Theorem 1.4. O

APPENDIX
Define

ly - sl/2z|2]
b

G(s,y,2) =s Y (2m) (1 - s)_lexp[—mt:)—
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and
_ 1
(Ga)(9) = [ [ G(s,5,2)a(2) dzds,

which is, in general, a divergent improper integral and will be proved to
converge when lg| € M, with § = [q(x)dx = 0.

LEMMA.
(3.1) Iflgl € M, and 3 =0, then H(Gq) =q.

For & > 0, there exist positive K and M (depending on ¢) such that
lyl?
K -
exp[ 2+e¢
|2I?

> j:fmG(s,y,z) (exp[—%} - 2exp[—|z|2]) dzds

(3.2)

2
|2l

> folfRzG(s,y,z)(exp[— 2z+ 8] -(2+ s)exp[_|z|2]) dzds

lyl?

> Mexp[— ?J

Proor. We shall first prove (3.2) because it handles the g’s which we
actually use to prove Theorem 2.1 and also because its proof indicates why
H(Gq) = q holds for more general function g, such as lg| € M,,, and ¢q = 0.

A simple heat-semigroup computation shows

J; .6G. z)(exp[— %l ~ 2exp| - |z|2]) dzds

Lol -] (- 5) ool

Convergence of this improper integral is easily obtained by L’Hépital’s rule or
by integration by parts (integrate s~! and differentiate the rest).

(3.3)
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One side of the desired inequality follows immediately from (3.3):
2 2
1] o[ = 20 - _i)‘l _ b
j;)s [exp( 2 ) 1 ) exp 2(1—35/2) ds
N P A T _ﬁ
zfos [1 (1 2) ]dsexp( 2
a7 )
The other side of the desired inequality is derived by integration by parts:
2 2
ST B - _i)‘l __ b
fos [exp( 2 ) 1 2 exp 21 —5/2) ds
1 lyl? s\ 1 s\ 72 lyl?
—j;(—logs)[T(l—E) —5(1—5) exp| ————=<|ds
(3.4)
lyl?

< T[/Ol(—log@(l B %)]e"p(_%)

2

< Kexp(— 2y+ 8) for some K = K(¢) > 0.

Next we turn to the case q(z) = exp[—[zI?/(2 + )] — (2 + &)exp(— 12]?).
Similarly to (3.3), we have

f01j‘R2G(s,y,z)(exp[_ 2|z4|_ 8} _(2+ a)exp[—|2|2]) deds
1y es\ 1 |y|2
=(1+e)j;)s [(1+?) exp(—m)
s\ 1 [y|2
-(1-3) e@(‘m”d&

The greater than —M expl — |y|?/2] part is as easy to obtain as in the preceding

case. We then prove the other side of the inequality: Choosing any number a,
0 < a < 1, and breaking

1 _ g5\ 1 /-
Jy 1{(“?) eXp(_2(1+gs/2 )

st lyl®
(o) el e
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into two parts, [§ and [}, it is easy to see that the part [! is no more than
(J&s™1 + es/2) 1 ds)expl— ly|?/(2 + )] and, by the same integration-by-
parts argument as in the precedlng case, that the part [§ is no more than
cexpl—ly|?/(2 + ¢)], where c¢ is a positive constant.

The proof of (3.2) is now complete.

To prove H(Gq) = q, note for v(t, x) = ¢t~ 1f(xt~1/2) that (Hf)(y) = q(y) if
and only if (3, — A/2)v = t~2q(x¢t~/%). Now, if we consider

lx — w|?

v(t,x) = /;tfRz(27r)_1(t - s)_lexp[—m]s_ q(s~Y%w) dwds,

which is a convergent integral and (9, — A/2)v = ¢t~ 2q(x¢t~'/?) when, for

example,
lz — all2 lz — b1|2
_ -1 _ _p-1 _
g(2) =a exp[ %8 b lexp b

for some a,b > 0 and a,, b, € R2.

Also, u(¢, x), when exists, is automatically self-similar, i.e., v(¢, x) =
~1u(1, t~Y2%¢). Thus, Huv(1,y) = q(y). Finally, note that

ly — w|?

v(l,y) = /;1&2(277)_1(1 - s)_lexp[—m]s‘zq(s‘l/zw) dwds,

by the change of variable w = s1/2z, is exactly (GgXy).
We have just proved (3.1) for

lz — a1|2 lz — b1|2
=q ! _ | —p? _——
q(z) =a exp[ Py b~ exp b .

Since H is a linear operator, (3.1) holds for all linear combinations of these
special g’s and conceivably for those ¢ with |g| € M, with g = 0. The details
are omitted. The proof is complete. O
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