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LARGE DEVIATIONS THEOREMS FOR EMPIRICAL
MEASURES IN FREIDLIN-WENTZELL EXIT PROBLEMS

By TosHio MikaM1

Brown University

We consider the jump-type Markov processes which are small random
perturbations of dynamical systems and their empirical processes. We prove
large deviations theorems for empirical measures which are marginal mea-
sures of empirical processes at the exit time of Markov processes from a
bounded domain in a d-dimensional Euclidean space %¢.

1. Introduction. The exit problems in Freidlin-Wentzell theory have
been considered by many authors [cf. Day (1983, 1987, 1988), Freidlin and
Wentzell (1984), Galves, Olivieri and Vares (1987) and Martinelli and Scoppola
(1988)]. In this paper we prove large deviations theorems for the empirical
measures

(1.1) pe(dy) = 0”’1(.,”( X*(s)) ds/p, &—0,

where 1, is the indicator function of the set A, D is a bounded domain of %7,
Xe(t) are #%valued Markov processes stated below and

(1.2) 75 = inf{¢ > 0; X°(¢) & D}

is the exit time of X°® from D.

We consider the following conservative Markov processes which are right
continuous and have left-hand limits; for each ¢ > 0, (X°(¢), P,)g<; rc e is @
strong Markov process whose infinitesimal generator &/° is defined, on the
set of C? functions f of #¢ to % with compact supports, by

o °f(x) = ibi(x)eaf(x)/ﬂxi + i at(x)" 9*f (x) /9%, ox;

i=1 ij=1

d
+f | fB+=) = f(x) = L B'9f(x) /35 ri(dB),

where o is the origin in %#¢, vZ(dB) is a nonnegative measure on %\ {0} and
a(x)® = (a(x)*)¢ ;,_, is a symmetric, nonnegative definite matrix [cf. Komatsu
(1973) and Stroock (1975)].

The cumulant is defined by

H(x;2)"=(b(x)",2) + (a(x)°2,2)
+ [ [exp(z, B — 1 - (2, B)lvi(dB),
B+0

(1.3)

(1.4)
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where we put b(x)° = (b'(x)?)?_, and (-, ) denotes the inner product in
».
The following assumption determines Hamiltonian.
(C) There exist a bounded domain  which contains D and a function H(x;z)
such that for any C > 0,

(1.5) eH(x;2/¢)° > H(x;z) ase— 0,
uniformly with respect to x € Q and |z| < C.

REMARK 1.1. Assumption (C) implies that X®(¢) can be decomposed, for
sufficiently small ¢ > 0, on [0, 7§ ] in the manner

(1.6)  X*(t) = X*(0) + jo‘b(xe(s))g ds + M>L(¢) + Me=19)(¢),

where M®[Xt) and M=!?(¢) are square integrable continuous and purely
discontinuous martingales, respectively [cf. Lemma 2.7 and Meyer (1976)].

Under some assumptions on H(x;2z), X°(¢) can be considered as small
random perturbations of dynamical systems, i.e., there exist dynamical sys-
tems {X(¢,2)}., . ¢ such that for all 6 > 0, x € 2%, T > 0,

(1.7) lime( sup |X°(t) — X(¢,x) > 8) =0
-0 0<t<T
[cf. Freidlin and Wentzell (1984)].
Let us give some notation. Let L(x; - ) be the Legendre transformation of
H(x; -),
. (1.8) L(x;u) = sup {{z,u) — H(x;2)},

zeR?

which is nonnegative since H(x;0) = 0 from (1.4) and (1.5), and let Sy, (o)
denote the action functional

TL( o(t);¢(t)) dt, for an absolutely continuous
(1.9) S,7(¢) ={"° function ¢(-):[0,T] —» %°,

+ o0, otherwise,
where we put ¢(¢) = do(¢)/dt. Put

(1.10) br(d) = [Mi(9(2)) de/T.

Let=D denote the closure of D, D° denote the interior of D, Id denotea d X d
identity matrix and V denote the d-dimensional gradient. For a d X d matrix
A= (AN, put Al = (T¢,_ (A2,

i,j=1
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In this paper we consider two cases:

CaAsE 1.
(A.0) D is a bounded domain in 2 which contains o with a C? bound-
ary dD.
b(x) = V,H(x;0) exists and is Lipschitz continuous in Q,
(1.11) b(o) =o,
(b(x),n,) <0 forx e€dD,
where n, is the normalized outward normal at x € dD. The solutions of the

following ordinary differential equations are attracted to the origin o. For
x €D,

dX(t,x)/dt = b(X(¢,x)),
X(0,x) =x.

(A.1) sup{H(x;2); x € Q} is finite for all z <€ %% For each x € Q,
D2H(x; 2) = (0®H(x; 2)/9z; 02;){ ;_, exists and is continuous, and

(1.13) m = inf{{ D?H(x;2)e,e);x € Q,z€ X%, lel =1,e € x4} > 0.
(A.2) There exist 8, > 0, ¢; > 0 such that for all § < §,,
(1.14)  sup{[L(y;u) — L(x;u)]/(lx = yI[1 + L(x; w)])} <ey,

where the supremum is taken over all x,y € Q for which |x —y| <& and
u e %

_ (A.3) L(-;-) and H(:; ) are once and twice continuously differentiable in
Q X 27, respectively.

(1.12)

(A4
lim sup (sup{L(x; u + Au) /(1 + L(x;u));
(1.15) n—soo
xe€D,ueR Al <1/n)) < +.
CasE 2.

(H.0) D is a bounded domain in #¢ with a C? boundary dD. b(x) =
V, H(x; 0) exists and is Lipschitz continuous in Q. X(¢, x) exits ( within finite
time uniformly with respect to x € D.

(H.1) = (A1).
(H.2) Put
(1.16) L(d) = Sup{[L_(y; u) — L(x;u)]/[1 + L(x;u)]},

“where the supremum is taken over all x,y € Q for which |x —y| <& and
u € %% Then L(§) > 0as 6 — 0.
(H.3) = (A.4).
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We define the action functional L.(-) on the set P (D) of probability
measures on D with Prohorov metric p [cf. Stroock and Varadhan (1979)] by

o0, ifu=29,,
(1.17) L (w) = {inf{Sor(¢); ¢(0) = x, o(T) €D,
Mo =m, T >0}, otherwise,

where 8, is the delta measure concentrated on o and the infimum is +x if the
set over which it is taken is empty.
Then we obtain the following results.

TuEOREM 1.1. Suppose that the conditions (C) and (A.0)—(A.4) hold. Then:

(0) ®x(s) ={u € #(D); L(n) <s, x €K} is compact in P(D) for any
compact subset K of D and s > 0.
() For any Borel subset B of #(D) and x € D,

(1.18) —inf{L,(n); » € B°} < llmlélfe log P.(n° € B°),
(1.19) limsupe log P,(uf € B) < —inf{L,(n); n € B}.
-0

THEOREM 1.2. Suppose that the conditions (C) and (H.0)-(H.3) hold. Then
(O) and (D) in Theorem 1.1 hold with the action functional L .(-) defined by

(1.20) £,(1) = inf{Sor(¢); @(0) =, ¢(T) €D, .z =, T > 0},

where the infimum is + o if the set over which it is taken is empty.

REMARK 1.2. The assumption (A.1) = (H.1) implies [cf. Rockafellar (1970)]
that for each x € Q, L(x; - ) is twice continuously differentiable and

(1.21) 1/m = sup{{D2L(x;u)e,e);x €Q,uc R lel=1,e€ R4}

ReMARK 1.3. The assumptions (A.0)-(A.2) imply that

(1.22) lin%)e log E,[75] = inf{V(x); x € 4D}

and (H.0)-(H.2) imply that

(1.23) lin(l)Px(ITf,—T(X(°,x))I >§) =0 foranyd >0,
where

(1.24) V(x) = inf(Sor(¢); #(0) =0, ¢(T) ="x, T > 0}
is, so called, Freidlin-Wentzell quasipotential and

(1.25) T(¢) = inf{¢ > 0; o(¢) & D}

is the first exit of ¢(-) from D [cf. Freidlin and Wentzell (1984)].



62 T. MIKAMI

REMARK 1.4. (A.4) is equivalent to the condition: There exist n, and C > 0
such that forall n > n,, x € D, z € #¢ and ||All < 1/n,

(1.26) CH(x;(z+ Az)/C) <C + H(x;z2).
For
H(x;z) = (b(x)° 2) + (a(x)%,2)

1.27
(1.27) + [ [exp(z, B) — 1 - (2, B)2(dB),
B#o

(A.4) is satisfied, if

1. b(x)° is bounded in D,

2. a(x)° is bounded and uniformly positive definite in D,

3. v2(dB)/v2(d(AP)) is bounded uniformly with respect to B8 # o, rotation
matrix A and x € D.

This is true, since for C > ||Id + Al

Cj;# [exp({(Id + A)z/C,B)) — 1 — {(Id + A)z/C, B)]v2(dB)

< Cf“ [exp(I{(1d + A)z/Il1d + All, B)| x lId + All/C) — 1
—K(1d + A)z/IlId + Al, B| x IId + All/C]v»(dB)

<|Id + Al?/C sup f [exp[(I{B, a)])] — 1 — KB, a)I]¥2(dB)
(1.28) lal <|z| "B#0

< 2|lId + A|?/C sup j;g;e [exp({B,a)) — 1 — (B, a)]v(dB)
lal=|z| o
< 2|Id + All*/C sup{v2(dB) /v?(d(AB));

x € D, B + o, A is a rotation matrix}
X [ [exp(¢B,2)) — 1= (B, 2)]»2(dB).
B#o

Here we used the facts
(1.29) 0<exp(x) —1—-—x<exp(x]) —1- |x| forxe 2,
(1.30) exp(rlxl) =1 —rlx| < r%(explx| —1—|x|]) forxe 2,0<r<1.

REMARK 1.5. Since we consider the process X°(-) in [0, 7§), we can assume,
from (C), (H.1) and (A.2) [or (H.2)], that the assumptions in Mikami (1988)
hold and that S,;(-)/e is the action functional for (X°(¢), P ;-7 xc o4
uniformly with respect to the initial point [see also Wentzell (1979)].

For the sake of the proof of our results, we state large deviations theorems
whose form is different from that in Wentzell (1979) but is equivalent to it [cf.
Freidlin and Wentzell (1984), Chapter 3].
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THEOREM 1.3 [cf. Mikami (1988)]. Suppose that (C), (A.1) and (A.2) [or
(H.2)] hold. Then:

(O) For any compact subset K of #¢ and s > 0, the set {¢ € C(0, T1; #?),
Sor(@) < s, ¢(0) € K} is a compact subset of C(0, T ]; #?) whose topology is
that induced by the sup norm. In particular, S,;(+) is lower semicontinuous
on C(0, T, #9).

(I) For any x € #°¢ and open set O € C([0, T]; #%),

limiglfelog P (X €0) > —inf{Syr(¢); ¢(0) =x, ¢ € O}.

(II) For any x € #° and closed set A € C([0, T'l; #%),
limsupelog P.(X° € A) < —inf{Syr(¢); ¢(0) = x, ¢ € A}.

-0

In Section 2 we give lemmas necessary for the proof of our results. In
Section 3 we prove the theorems.

2. Lemmas. In this section we give lemmas necessary for the proof of our

results.
Before we proceed to lemmas, we mention that the condition (H.2) is weaker

than (A.2).
Lemma 2.1 is given in Freidlin and Wentzell [(1984), page 110, Lemma 2.2].

LemMmA 2.1.  Suppose that (A.0)-(A.2) hold. Then for any a > 0, there exist
a =ala) and T, = T(a) > 0 such that
(2.1) Sor(¢) > a(T - T,)
for all ¢(-) for which ¢(t) € D\UJo) for all 0 <t < T [see (1.9)], where
U (o) denotes an a neighborhood of o.

The following lemma is used to prove the upper estimate of (I) in Theo-
rem 1.1

LEmmaA 2.2. Suppose that (A.0), (A.1) and (A.2) [or (H.2)] hold. Then for
any p € A(D)\{5,} and x € D,

(2.2) \ liminfS, .(4) 2 L.(n)

[see (1.17)], where we put

S.,x(1) = inf{S,r(¢); ¢(0) =x, ¢(T) €4D, ¢(¢t) €D
forall 0 <t <T,p(p, r,pn) <a,T> 0}

[see (1.9) and (1.10)]. Here p denotes Prohorov metric.

(2.3)

ProoF. Suppose that for all n > 1, there exist Tn‘> 0 and ¢, for which
¢,(0) =x, ¢ (T,) €D, ¢,(t) €D for all 0 < ¢ < T, such that

(2.4) lim p(u,, 7, ) =0,
(2.5) lim S 7. (¢,) < +.
n—o
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Then there exists B > 0 such that T, < R for all n > 1, since u # §,. In fact,
for sufficiently small, arbitrary a > 0,
(2.6) I’Inf V(x) >0
[cf. (1.24) and Freidlin and Wentzell (1984), Chapter 4].
If o' > 0 is sufficiently small compared to a > 0, then
(2.7 inf V(x) > sup V(x) > 0,

lxl=a x| =a’
since V(x) is Lipschitz continuous in D and
limV(x) =0,
(2.8) x—o
V(x) >0 forall x € D\ {o}
[cf. Freidlin and Wentzell (1984), Chapter 4].

The ¢,(-) hit an «' neighborhood within bounded time, uniformly for
sufficiently large n from Lemma 2.1 and (2.5). But they cannot cross the sets
{x; |x| = a} and {x; |x| = &'} infinitely often, from (2.5) and (2.7). Therefore if
(2.9) lim T, = o,

n-—ow

then the supports of u, 5 tend to concentrate to an a neighborhood of o.
Since @ > 0 can be arbitrarily small,

(2.10) w=_5,
which is a contradiction.
Put
- en(2), ifo<t<T,,
2.11 t) =
(210 #a2) {X(t—Tn,%(Tn)), ifT,<t<R

[see (1.12)]. Then there exist a convergent subsequence {¢, (¢)};_,, 0 < ¢ < R,
a function ¢(¢), 0 < ¢ < R, and 0 < T' < R such that

I;Tillfsoze(énk) 2 Sop($) = L, (1),
Ke, 1 = M

from lower semicontinuity of Syz(-) [cf. Theorem 1.3(0)]. O

(2.12)

The following lemma is used to prove Lemmas 2.4 and 2.5.

Lemma 2.3. Suppose that (A.1) holds. Then for all ¢(:) for which
Sor(e) < +x[see (1.9)] and ¢(t) € D forall 0 <t < T,

(2.13) foT|vuL(<p(s);¢(s))| ds < +.

L’.JPROOF. Put
(2.14) p(2) =V, L(e(t);¢(2)).
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Then we have

A "lo(s)l ds

= sup fT<z(s),¢(s))ds; esssuplz(¢)l =1
0 0<t<T

(2.15)
< fOTL(qo(s);q'a(s)) ds + T -sup{H(x;2); x € D, |2| = 1}

< 4o
from (1.8) and (A.1). On the other hand,

sup{fOT<z(s),¢(s)>ds; esssuplz(t)| = 1}

0<t<T

= sup{ff(z(s),VZH(<p(s);p(s))> ds; esssuplz(t)| = 1}

0<t<T

(2.16) > —jo IV,H(¢(s);0)lds

<s<T, p(s)=o0

+ (p(8)/Ip(s)I,V,H(¢(s);0)) ds + mfoTlp(S)l ds

0<s<T,p(s)+o

[\

—Tsuplb(x)| + meTIp(s)I ds

x€D

from (A.1), since for 0 < s < T for which p(s) # o,
(p(s)/Ip(s)I, V. H(e(s); p(s)))
(2.17) =<(p(s)/Ip(s)I,V.H(¢(s);0))
+{p(s)/Ip(s)l, D}H(¢(s);6(s)p(s))p(s)),

for some 0 < 6(s) < 1, by the mean value theorem. O

The following two lemmas are used to prove the lower estimate of (I) in
Theorem 1.1.

LemMma 2.4.  Suppose that (A.0), (A.1), (A.2) [or (H.2)] and (A.4) hold. Then
for any function ¢(-) for which ¢(0) € D, o(T) € dD, ¢(t) € D for all 0 <
t < T and Syp(p) < +[see (1.9)], there exist functions ¢,(-) such that

(2.18) sup le,(t) —¢(¢)l >0 asn > +x,
0<t<T .
(2.19) Sor(e,) = Sor(¢) asn - +o,

(2.20) T(¢,) > T asn — +o.
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Moreover, for x = ¢(0),
(2'21) lim Sup‘s—a,x(l""(p,T) < Lx(l“l’<p,T)

a—0

[see (1.10) and (1.17)], where we put
S, (1) = inf{Sor4)(¢); $(0) =x,T($) < +o,

(2.22)
P(1g 1y 1) < a}.

Proor. Since 4D is of class C2, there exist 6 > 0 such that for all x € D
for which dist(x, D) = inf{|x — y|; y € 4D} < 35, the mapping

(2.23) x = —n,, =v, isofclassC’,

where y(x) € dD is determined by

(2.24) lx — y(x)| = dist(x,0D).

Put

o,=0,

T, = inf{t > 0,_,; ¢(¢) €D},

7, = sup(T, > t; dist(¢(¢),0D) > 6},

o, = inf{¢ > T,; dist(¢(t),dD) > 28}, for n > 1.

Then there exists n, > 0 such that T, = T, since

Sor(e) < +,

(2.26) inf{Syr(); dist(¢(0),dD) = 28,

¢(0) € D, ¢(T) €D, T>0} >0

from (A.0) [cf. Freidlin and Wentzell (1984), Chapter 4].
Forl1 <k <n, put

(2.25)

o(t), ifo, ,<t<m,
o(2) + (t—Tk)V,P(t)/(nR), ifr,<t<o,—1/n,
(2.27)  @,(t) = { pu(0p — 1/n)
+n(e(0r) — ¢n(oy, — 1/n))
X(t -0, +1/n), ifo,—1/n <t <0y,

where we put g, = T for convenience. Here we take R > 1 sufficiently large
so that

n

(228) T ["L(0(t);0(8) + (¢ = 1) vy $(t) /R) dt < 420

i=1"T7

[cf. (A.4)], where we put dv, = (9v}/dx )¢ ;_;.
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First we prove (2.18). Put

(2.29) 8" = sup l,(t) — (2)l.
0<t<T
Then
5" < 2sup{le(t) —@(s);0<¢,s<T,|t —s|l <1/n}
(2.30) + 2sup{T - lv,|/(nR); X € D, dist(x,dD) < 28} >0
as n—o,

since for 7, <t <o, —1/n(k=1,...,n,),
(2.31) lo(t) — @u(8)] < T+ Iyl /(nR)

< T sup{lv,|/(nR); x € D, dist(x,0D) < 28}
and foro, — 1/n<t<o, (k=1,...,n,),

loa(2) — ()l

X(t = 0, + 1/n) = o(2)|
< lpn (o, = 1/n) = o(t) + l@ (0, — 1/n) — ¢(a)

232 (0, — 1/n) = oo, — 1/n)| + lo(ay = 1/n) = p(2)
+lp (0 = 1/n) — ¢(a;, = 1/n)| + lp(oy, — 1/n) — @(a3)
< 2T sup{lv,|/(nR); x € D, dist(x,dD) < 25}
+ 2sup{le(t) —o(s)l;0<t,s<T,lt —s|l <1/n}
from (2.31).

By the lower semicontinuity of Syz(-) [cf. Theorem 1.3(0)], to prove (2.19),
. we only have to show

(2.33) limsupSor(¢,) < Sor(e).

n—oo

In fact, for k. =1,...,n,,

J7 7 L(u(5)3 6u(5)) ds

Tk

(2.34) <(1- 1/n)[

Tk

+fak_1/nL(¢n(s);¢(S) + (8 = 4) 0y (8) /R + vy /R) ds/n

Tk

from the convexity of L(x; - ) [cf. (1.8)];

"L (gu(5):6(s)) ds < (0, — 1/n = 7,) L(8")

o,—1/n

L(pa(s);¢(s))ds

Tk

(2.35) i
+(1+L(s™) [ L(e(5); 6(s)) ds
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from (A.2) [or (H.2)] [see (1.16)];
L7 L(0ul():0(5) + (5 = 74) vy 9(5) /R + vy /R)
(2.36) < (o, — 1/n —7,)L(8") + (1 + L(8™))
Xf:rl/nL((P(S);(P(S) + (s = 1) 0, 6(s) /R + V¢(s)/R) ds
from (A.2) [or (H.2)] [see (1.16)];

fak_l/nL(qﬁ(s);sb(s) + (8 = 74) Wy $(8) /R + vy /R) ds

Tk

< [*7"L((5)i9(8) + (5 = 1) Iy (s) /R) d

[T Lp(8)59(8) + (5 = 74) 00y 6(8) /R), Vyy/R) dls

Tk

(2.37) "‘fak_l/nl%(s)/mz/(zm) ds [from (1.21)]

< fakL(go(s);qb(s) + (8 — ) W, #(s)/R) ds
+ sup{lv,|/R; x € D, dist(x,dD) < 28}
X [V, L(9(5); () + (5 = 74) dvyqsy $(5) /R )l ds

+(0y, — Tk)sup{(IVxI/R)z/(Zm); x € D, dist(x,0D) < 28}< + o0
from the mean value theorem, (2.28), Lemma 2.3 and (A.1);

[ o) gu(s))ds

o,—1

<L sup lp.(s) = ou(t)l)/m

lt—sl<1/n

(2.38) +(1+L(I sup lo(s) —qon(t)|))
t—sl<l/n

<[ Eletoin" | [60) - @ -1/ =)

X Vyigr—1/ny/R] dt | ds
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from (A.2) [or (H.2)] [see (1.16)];

o 43 .
/;k_l/nL(¢n(0k); n/;k—l/n[¢(t) = (0% = 1/n = 7))V 1/ n/R] dt | ds
<7 E(e(a9(0) = (00 = 1/n = 1)1y /R) d
o,—1/n

(2.39) <

1+ L( sup lo(s) — @(t)l))

lt—sl<1/n

[ @560 = (0= 1/n = 7)ry, 1 0 /R) d

+L{ sup le(s) = (0} /n

lt—sl<1l/n

from Jensen’s inequality [cf. Rockafellar (1970)] and (A.2) [or (H.2)] [see
(1.16)];

[ He@:6(0) = (04 = 1/n = 1)v, 100 /R)

og,—1

< [™ L(e();4(t)) dt
o,—1/n

+fa-:/ <VuL(¢(t),<P(t)), _((Tk - l/n — Tk)V(p(ok—l/n)/R> dt

(240) | _ (0% = 1/n = 7)o, 1/n/RI*/(2mn)  [from (1.21)]

<" L(e();6(2)) dt
o,—1/n

+ T sup{lv,|/R; x € D, dist(x,D) < 25}]"" IV, L((t); ¢(2))l dt
/n

o=
+ T2 sup{(IVxI/R)z/(2mn); x € D, dist(x,dD) < 28}—>O as n— o

from the mean value theorem, (A.1) and Lemma 2.3.

From the construction of ¢,, it is easy to see that (2.20) is satisfied.

(2.21) is true from the definition of L_(-) [see (1.17)], since (2.18)-(2.20)
mean that any function ¢(-) for which ¢(0) € D, o(T) € D, ¢(¢) € D for all
0 <t <T and Syp(¢) < +o can be approximated by the functions ¢,(-) such
that ¢,(0) = ¢(0) € D, ¢,(T) €D, ¢, (t) €D for all 0 <t <T - 1/n and
that satisfy (2.19). O

Lemma 2.5 can be proved in the same way as in Freidlin and Wentzell
[(1984), pages 88-89].



70 T. MIKAMI

LEMMA 2.5. Suppose that (A.1) and (A.2) [or (H.2)] hold. Then for any
R >0 and any {¢(1)}g<, g for which ¢(0) € D, T(¢) <R [see (1.25)] and
Sor(®) < =, there exist functions {¢,()}y ., < p. 1<, Which exit D such that

(2.41) ¢.(0) = ¢(0),
(2.42) sup lg,(¢) —e(t)l >0 asn - +o,
0<¢t<R
(2.43) Sor(@n) = Sor(@) asn — +o.
Proor. Put
(2.44) er(t) = o(t) + nyqeyt/k forall0 <t <R

[ef. (1.11) and (1.25)]. Then clearly (2.41) and (2.42) are satisfied. For suffi-
ciently large 2 > 1, ¢,(T(¢)) ¢ D since dD is of class C2. From the lower
semicontinuity of Syz(+) [cf. Theorem 1.3(0)], we only have to show

(2.45) limsup Sor(@,) < Sor(e).

n—o

This is true, since
R .
J L(@u(s); é4(s)) ds

(2.46) sRL( sup e, () —<p(t)l)
0<t<R

#(1+ L sup lea(t) = (o)) [*Lo8)59(5) + mycrio/k) ds

from (A.2) [or (H.2)] [see (1.16)] and

[ "L(0(5); 6(5) + nyereey/k) ds

2. R . R .
(2.47) < ["L(o(5):6(9)) ds + ["(T,L(p(8); ¢(5)), nyer/k) ds
+ RIn 1,/ /(2m)  [from (1.21)]
by the mean value theorem and (A.1). From Lemma 2.3, the proof is over. O
Lemmas 2.6-2.8 are used to prove Key Step of the proof of Theorem 1.1.

., LEMMA 2.6. Suppose that (A.0)-(A.3) hold. Then there exists a family
{Ve(-) 5o of C* functions such that for any r, > 0,

(2.48) lim sup (sup{<b(x), VV¥(x)); lx| = 2r¢, x € D}) < 0.
a—0
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Proor. Take ¢ € C2(|x| < 1; [0, ®)) and put

(2.49) 6.(2) = o(a/a) [ | oo/ .

(2.50) Ve(x) = [ do(x = 5)V(y) dy

[see (1.24)]. Let D, denote an a-neighborhood of D. Take a sufficiently small
open neighborhood Q,, Q; for which Q > Q_, > Q, O D and change L outside
Q, so that

sup V(x) < x(lsr;g V(x),

(2.51) x€dD _
lim X(¢t,x) =0, forxeQ,
t— +
[see (1.12)]. We only have to show
(2.52) lin})essinf{IVV(x)Iz; x € D,, x| > ry} > 0,

since V is Lipschitz continuous [cf. Freidlin and Wentzell (1984), page 112,
Lemma 2.3] and for x € D for which |x| > 2r, and a (<r,) for which
SUp, e p, V(x) <inf, 50 V(x),

(b(x),VVe(2)) = [ (b(x) = b(5), $u(x =) VV(3)) dy

+ [ <b(y), dulx ~y) VV(3)) dy
gd

< supflb(x) — b(y)l; Ix —yl <a,x,y € D,}
X esssup{VV(y)l; y € D,}
+esssup{(b(x),VV(x)); x € D, lx| > ro}
[cf. Fleming and Vermes (1988), Lemma 3.2] and for almost every x € D,,
(2.54) H(x;VV(x)) =0
[cf. Fleming (1969), Theorem 1],
(b(x),VV(x)) = —(H(x;VV(x)) — (b(x),VV(x)))
< —-m|VV(x)I?/2

(2.53)

(2.55)

from (A.1) and the mean value theorem.
Suppose that V is differentiable at x, € D, (Ix,| > r,) and VV(x,) = o as
n — +o, Take the minimizing functions ¢,(-) such that

lim ¢,(¢) = o,
t— —o
(2.56) "9,(0) =x,,
S—°°,0(¢n) = V(xn)
[cf. Wentzell and Freidlin (1970), Lemma 3.3].
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Then p,(t) = V,L(¢,(t); ¢,(¢)) is equicontinuous [cf. Day and Darden (1985),
(3.2) and (3.5); (3.5) in their paper implies the boundedness of p,(-) and (3.2)

in their paper implies the boundedness of p,(:) under our assumptions
(A.0)-(A.3), since ¢,(-) are bounded] and

(2.57) Pn(0) = V,L(¢,(0);6,(0)) = VV(x,)
[cf. Fleming (1969), Theorem 1].
Since
(2.58) S_;0(e,) <supV(x) < +o foralln > 1,
xeQ

there exist, from Theorem 1.3(0), convergent subsequences p,(-),¢,(")
(k > 1), functions ¢(¢), p(t), —1 <t < 0, and x,y € D such that

sup lo, (t) —@(t)l >0, ask - +o,
-1<t<0

sup |p,(t) —p(¢)l =0, ask > +w,

-1<t<0
(2.59) e(0) =x, o(-1) =y,
S_1,0(e) +V(y) = V(x),
L(¢(0);¢(0)) = <¢(0), p(0)) =0,
which is a contradiction [cf. Day and Darden (1985), page 267, Corollary 3]. O

Put
(260)  F(e) = sup{na(xfu v [ IBrvi(dp) 2 e < 13}

[see below (1.10) for notation]. Then we get the following fact that implies -
Remark 1.1.

LeEmMA 2.7. Suppose that (C) holds. Then

(2.61) lim F(e) = 0,
(2.62) lim sup sup|b(x)° < +oo.

e—>0 xe€D

Moreover, X*(t) can be decomposed, for sufficiently small ¢ > 0, on [0, 75] in
the following way:

(2.63) X°(t) = X*(0) + ftb(X‘(s))e ds + Mol (¢) + M=1d)(¢),
0

where M>'°X¢) and M®'9Nt) are square integrable continuous and purely
discontinuous martingales, respectively [cf. Meyer (1976)].
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Proor. For basis vector e; = (5,,)¢_, (5,, =0if i #k, =11if i = k) and
ij=1,...,d,
la(x)1 = Ka(x)(e; + €;),(e; +e;))/2
(2.64) —(Ca(x) e;, ) + (alx)’e; e,)) /2l

< 2sup{a(x)°z, z).
lzl=1

For x € D and |z| = 1,

(a(x)2,2) + [ 1BIPvi(dB)/2
B+0
< ez(sup{(a(x)az/e, 2/€)
(265) +de*o[eXP(<z/8a B>) -1- <Z/8, ﬂ>]V:(dB)

v lexp((—2/e,80) = 1= (=2/e, (e bl - 1)

< 2d(sup{eH(x, z2/e)" —(b(x),2);lz2l =1,x € 5})8

< 4d(sup{eH(x,z/e)e; lzl =1,x € B})e -0 ase—0
from (C), since
(2.66) eH(x; —z/¢)" = (b(x)%, —2).
If b(x)° + o, then for x € D,

b(x) = <b(x)", b(x)"/1b(x))
(2.67) < eH(x;6(x)"/(b(x)7e))”
< sup{eH(y;2/¢)";y €D, |2| = 1}

from (2.66), which proves (2.62) by (C). (2.63) can be proved from (2.61) and
(2.62) [cf. Meyer (1976)]. O

LEmMA 2.8. Suppose that (C) holds. Change V(-) outside Q so that V is
uniformly Lipschitz continuous in #°. Put

(2.68) V, = esssup{ldV(x) /ox;|; x € #%,i = 1,...,d},

G(e) = sup{sf [exp(r[Ve(x + B) — V*(x)]/e) — 1
(2.69) ro .
—r[Ve(x + ) = Vo)) /eluidB) /1),
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where the supremum is taken over all x € D, 0 <r < 1and a > 0. Then

(2.70) limsupG(e) < 2¢*'sup{H(x;2); x € D, |z| < d'/?V}.

-0

Proor. ForxeD,0<r<1land a> 0,
e fB L [exp(r[Ve(x +B) = V()] /e) — 1
—r[Ve(x + B) — V*(x)] /e]vi(dB)

d d
< eque l:exp(rvo'oz 'ﬁ,'/s) -1- rVwZ 'B,'/S]V;(dﬂ)

(2.71) i=1 i=1
d d
<ref [exp(VwE lB,-l/s) T w,-l/s]v:(dﬁ)
) i=1 i=1
<r? ¥ sf [exp<z/e,B) — 1 — z/¢, B)lvi(dB)
ze(-V, V)¢ "B*o
from (1.29) and (1.30).
For ze {-V,,V.}¢ and x € D,
ef [exp{z/e, B) — 1 — (z/e, B> ]vi(dB)
B+#o

(2.72) <eH(x;2/6)° — (b(x)", 2)

<eH(x;2/¢)° + eH(x; —2/¢)°,
which completes the proof from (C). O

Lemma 2.9 can be proved in the same way as in Freidlin and Wentzell
[(1984), page 110, Lemma 2.2].

Lemma 2.9.  Suppose that (H.0)-(H.2) hold. Then there exist a, and T, > 0
such that

(2.73) Sor(e) > ay(T - T),
for all ¢(-) for which ¢(t) €D forall 0 <t <T.
3. Proofs of theorems. In this section we prove our resuits.
ProoF oF THEOREM 1.1. (O) Since P(D) [see below (H.3) for notation] is

compact [cf. Stroock and Varadhan (1979)], we only have to prove that ®x(s)
is closed for any s > 0 and compact subset K of D. Suppose that for some
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u € P(D)
im p, 7 =u,
(3'1) n— +oo ¢n:Th
SOTn( ¢n) =S
[see (1.9) and (1.10)]. If limsup,, _, ,,, T, = +x, then u = 8, from the proof of
Lemma 2.2.

If lim SUp, , 4o I, < +, then p = p ; for some for ¢ which ¢(0) € K,
e(T)€dD, ¢(t) €D for all 0 <t < T and Sy;(¢) <s (cf. proof of Lemma
2.2).

(I) We prove the following inequalities: For any u € (D),

(3.2) ~L.(u) < lim lim infe log P.(p(u, ) <m),
n- £—
(3.3) lim limsupe log P,(p(p°, ) <m) < =L, ()
n—0 -0

[see (1.1) and (1.17)].
We divide the proof into four steps.

Key STEP. Super large deviations. For any u € #(D)\ {5 ), there exists
n = n(w) > 0 such that for any x € D,

(3.4) lim sup lim supe log P,(p(uf,n) <m, R <75) = —oo

R— +» e—0

[see (1.1) and (1.2)].

Step 1. For any x € D, u € #(D),

(3.5) lim lim supe log P,(p(u, u) <m) < —L,(n).
n- e—0
Step 2. For any x € D, u € Z(D)\{5,),
“(3.6) lin}) lim iglfe log P.(p(uf,p) <m) = —L,(p).
n- £

Step 3. For any x € D, n > 0,
(3.7) lim P, (p(",8,) <n) = 1.
First we prove Steps 1-3.

Proor or Step 1. For n > 0, put
(3.8) A=A (1, %) = {0;0(0) = x, p(1y 1(py> 1) < M}
[see (1.10) and (1.25)]. Then
lim supe log P,(p(u, 1) <)

e—0

(3.9) < maX( ~inf{Sox(¢); ¢ € A,, T(¢) < R},

limsupe log P,(p(u°, ) <m, R < TB))

-0
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[see below (1.10) for notation] from Theorem 1.3(II) since
P.(p(p 1) <m)
< P.(p(p, 1) <m,75 <R) + P(p(p*, ) <m, R <75).
Let R — +c. Then we get, from Key Step,
lim supe log P, (p(n°, 1) <n)

(3.10)

e—0
(3.11) < —liminf{Sr(¢); ¢ € 4,, T(¢) < R}
— + 0
< =S, (n).

Let » — 0in (3.11). Then from Lemma 2.2, the proof is complete. O

Proor oF STep 2. Take p € P(D)\{5,} for which L (u) < +. Then
from (L.17), p = u,, r for some T, > 0 and {¢,()} ., 7, for which ¢,(0) = x
and ¢(T,) € dD.

For n > 0, from Theorem 1.3(I)

lim infe log P.(p(u*, u) <)
> limiglfs log P,(p(pf, ) <m,7H <R)

> —inf{Soz(¢); ¢ € A% N {¢; T(¢) < R)°}
(312) > _inf{Syn(0); ¢(0) = %, T(¢) < R, o(t) exit D, P(Ry, ey 1) < M}
= _inf{SoT(¢)(‘P); ¢(0) =x,T(¢) <R, p(,'L(p,T((p), w) < ”7}
(from Lemma 2.5)
- _gn,x(“) as R - +o
[see below (1.10) for notation]. From Lemma 2.4, the proof is complete. O

Proor oF SteEP 3. For 7 >0, there exist n,> 0, and u, € Z(D),
# 6,(i =1,...,n,) such that

(3.13) P(p(w,8,) > ) < E P(p(w, i) <m(ny)),

which tends to 0 as ¢ = 0 from Key Step and (3.11), since S, () > 0 for
w # 8, [cf. Freidlin and Wentzell (1984)] and (D) is compact [cf Stroock and
Varadhan (1979)]. O

Proor orF Ky STEP.
P.(p(p5pn) <m, R <1h)
< P(7p = E,[rp]exp(R /¢))
+ P(p(w 1) <m, R <75 < E,[15]exp(R/¢))
<exp(—R/e) + P(p(p', 1) <m, R < 1) < E,[r5]exp(R/s)).

(3.14)
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Change V(-) outside Q so that V(-) is bounded and uniformly Lipschitz
continuous on %9, Put for ¢ € [0, 75] and sufficiently small & > 0,

Ye(t) = Yor(t) = j:(rV“(Xe(s)),b(Xe(s)Y}ds

(3.15) +f0<"VV“(Xe(S)),dME’lcl(s»

+r[7f V(X (s=) +8)

B+o
~V(X(s-))|N*(dsdB),

where M®[(t) is a continuous martingale part and [{*[;,,BN*(dsdp) =
M=14)(¢) is a purely discontinuous martingale part of X¢(¢) [cf. Lemma 2.7 and
Meyer (1976)]. Put for ¢ € [0, 5] and sufficiently small £ > 0,

e(t) = Y*(1) = [<rVVo(X*(5)), b(X(s))") ds
~ [TXa(X*(5)) VV(X*(5)), VV(X*(5))) ds/e
(3.16) %o

— e[ lem(r[V(X“(s) + B) = VA(X“())]/6) ~ 1

—r[Ve(Xe(s) + B) — V*(X*(8))]/e]vies(dB) ds,
(3.17) C(e) = min(7}, E,[75]exp( R/¢)).

Then exp(I1¢(#)/¢) is an exponential martingale, for sufficiently small ¢ > 0,
_on [0,75] from Lemma 2.7 and (3.15) [cf. Meyer (1976)].
By the It6 formula,

- Ye(rp) = —rVH(X*(rp)) + rV=(X*(0))

+ r[TE i a’(X*(s))" 9®V(X“(s))/0x;9x; ds

0 =1
(3.18) + ,.fo’f’/ [Ve(X5(s) + B) — V¥(X*(s))
B+o0

—(B,VV“(XE(S))>]V§e(s)(dﬂ) ds
< 2r sup V4(x) + rF(e)7s sup [|D2Ve(x)ll

xeR? xreR?

from Lemma 2.7 [cf. below (1.10) for notation].
Take a > 0 so that

(3.19) fﬁ(VV“(x), b(x)du(dx) < 0.
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This is possible. In fact, take r; > 0 sufficiently small so that
(3.20) ,LL(E\ {x; x| < rl}) > 0.
Take r, > 0 sufficiently small so that r; > r, and that

[ (V) b(x))u(dx)

x| <rg
< sup |VV(x)| - sup |b(x)I
(3.21) xeR? || <rg
< — lim supsup{{VV*(x), b(x)); lx| = r,, x € D}

a-0
X ,U,(D-\ {x; x| < rl})/2,

which is possible from Lemma 2.6 and (1.11). Then from Lemma 2.6,

Dnix; x| <rg)

JAVVe(2), b(x)du(dz) = | (VV*(), b(x))u(dx)

+ (VV*(x),b(x))u(dx)

Dnfx; ro<lxl <ry

(3.22)
+ (VVe(x),b(x)>u(dx)

Dnfx; ry<lxl}

< lim supsup{{VV?(x), b(x)); x| = r;, x € D}

a—0

X u(D\{x; lxl <r})/2<0,

for sufficiently small a> 0.
Take n = n(u) > 0 sufficiently small so that if p(u®, u) < 7, then

WV X(5)), b(X*(5))) ds /75
(3.23) 0
< [ (VVe(x), b(x)du(dx) /2.
D
Take r > 0 sufficiently small so that
rM sup{VVe(x)|*; x € 2%} /2

+r2%*2sup(H(x;2); x € D, |z| <d'/?V,
(3.24)

< = [ (VV*(x), b(x))u(dx) /8.
D
[cf. (2.68)], where we put
(3:25) M =M(a,r) = sup{l D2H(x; 2)[; |2l < rlVV*(x)l, x € Q}

[see below (1.10) for notation].
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Put
(3.26) H*(C) =sup{eH(x;2/¢)" — H(x;2)l;x €D, |2| < C}.
Then for sufficiently small £ > 0, on the set {p(u°, u) < 7},

(3.27) Ye(rp) — I5(75) < rTf,[l_)WV“(x), b(x))u(dx) /4,
since from (3.16),
Y(rp) - 1°(r5)
- fo’f’eH( Xe(s); r VV(X%(s)) /e)° ds
—e [P L (r(VVA(X*(5)) o, B)) - 1
~KVV(X*(5)) /e, B)]¥ie(dB) ds
refPf | lew(r[VI(X:(s) + B) = V(X*(s))]/e) = 1
—r[Ve(Xe(s) + B) = V(X*(5))]/e]vi(s(dB) ds
= [PleH(X(8); rTVH(XA()) /6)" = H(X“(5)i 7 VV*(X*(&)))] ds

+ff’[H( X*(s); r VV(X*(5))) — (r VV*(X*(5)), b(X*(5)))] ds

* (3.28) .
+rf0m(VV“(X€(s)),b(Xe(s))> ds

—e [ [exp(R(VVH(X*(5)) /e, 8)) ~ 1
0 “B+#o
—r{(VVe(X?(3)) /¢, B)|viesy(dB) ds
+ef] lem(r[V(X“(s) + B) ~ VA(X(e))]/e) ~ 1
_r[Va( Xe(s) +B) - Ve( Xs(s))]/“:]”sﬁ(s)(dﬂ) ds

< rq-f,{I-fe(r sup IVV"‘(x)I)/r +rM sup |[VV*(x)%/2

xeR? xeR?

+ [TV, b2 de) /2 + 16 o),
D
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from (8.26),
H(x;z) — {z,b(x))
(3.29) =H(x;z) — H(x;0) — {z,V,H(x;0))
= (z,D?H(x;602)z)/2 forsome0 <6 <1

[from (1.4), (1.5), (1.11) and (A.1)] and (3.25), (3.23), (1.29) and (2.69).
Therefore on the set {p(u, w) < n, R < 75}, for sufficiently small ¢ > 0,

—MI°(rp) = —Y*(7p) + {Y*(7p) — I*(75)}

< 2r sup Ve(x) + rTf,{F(s) sup |D*Ve(x)ll

reR? xR

3.30
(3.30) : +f_<VV"(x),b(x)>u(dx)/4}
D

< 2r sup V¥(x) + rR[l_)<VV"‘(x), b(x)du(dx) /8

xeR?

from (3.18), (3.27), Lemma 2.7 and (3.19).
Hence we have

elog P(p(pf, ) <m, R < 1) < E,[75]exp(R/e))
= ¢ log E [exp(11°(75) /¢ )exp(—11°(75) /¢);
p(pf,p) <m, R <7p < E[7h]exp(R/¢)]

<r

2 sup V¥(x) + Rfﬁ(VV"‘(x),b(x))u(dx)/S)

xeR®

+ £ log E, [exp(T1°(C(¢)) /2)]

(3.31)

= r(2 sup V*(x) + Rfl_)(VV"‘(x),b(x))u(dx)/S) - —

xeR?

as R —» +o,

uniformly with respect to sufficiently small ¢ > 0, since exp(I1°(¢)/¢) is an
exponential martingale, for sufficiently small ¢ > 0, on [0,75] [see below
3.17]. O

REMARK 3.1. Step 3 can be proved in the same way as in the proof of the
upper bound of Donsker and Varadhan (1975) [see also Galves, Olivieri and
Vares (1987), Lemma 6].

ProOF OF THEOREM 1.2. From Lemma 2.9, we can prove, as in the proof of
Theorem 1.1, that (2.2) holds for all u € #(D) under (H.0)-(H.2), that (2.21)
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holds for all functions ¢ for which ¢(0) € D, o(T) € dD, ¢(¢t) € D for all
0<t<T and S;;(¢) < + under (H.0)-(H.3) and that (O) holds under
(H.0)-(H.2). Moreover

(3.32) lim sup lim supe log P,(75 > R) = —

R— + e—0

[cf. Freidlin and Wentzell (1984), page 168, Lemma 1.9].
From this, (I) can be proved in the same way as in Steps 1 and 2 in the proof
of Theorem 1.1. O
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