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ON A CLASS OF STOCHASTIC RECURSIVE SEQUENCES
ARISING IN QUEUEING THEORY

By Frango1s BACCELLI AND ZHEN Liu
INRIA

This paper is concerned with a class of stochastic recursive sequences
that arise in various branches of queueing theory. First, we make use of
Kingman’s subadditive ergodic theorem to determine the stability.region of
this type of sequence, or equivalently, the condition under which they
converge weakly to a finite limit. Under this stability condition, we also
show that these sequences admit a unique finite stationary regime and that
regardless of the initial condition, the transient sequence couples in finite
time with this uniquely defined stationary regime. When this stability
condition is not satisfied, we show that the sequence converges a.s. to « and
that certain increments of the process form another type of stochastic
recursive sequence that always admit at least one stationary regime. Fi-
nally, we give sufficient conditions for this increment sequence to couple
with this stationary regime.

1. Introduction. All of the random variables considered here are defined
on a common probability space (Q,F, P, 6), where 6 is an ergodic shift that
leaves P invariant. Let K > 1 € N be the dimension of the equation.

The basic random data of the problem are:

1. The im;,‘ial condition, which is an arbitrary nonnegative random vector
Y e RY.

2. The delay sequence, which is a sequence of random matrices {10%_ .,
where I/ € R, 1 <j,k <K.

3. The predecessor sets sequences, which are K sequences of random sets
{mky k=1,..., K, where 7% € 2K} 1 < B < K, where 25 denotes

n=—o0

the set of all subsets of set S.
The sequence of interest {W,(Y)):_, is given by the recursive equation

Wo(Y) =Y,

v
L

(LD e (y) = (Wi(Y) + 1%, 1<k<K, =
U

ax
ek}

where a*= max(a, 0).
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The aim of this paper is to analyze this type of equation under the following
assumptions:

00

1. Stationarity and ergodicity: The sequences {l,}°, and {m,}? . are jointly
ergodic and stationary. Within our abstract shift formalism, this translates
into the assumption that the shift  defined on (Q, F) is compatible with the
translation of sequences, namely [, =[-6" and m, = 6" for all n € Z.

2. Integrability: The random variables /%, 1 < j, k < K, are integrable.

3. Precedence: For all 1 < k < K, it is assumed that 2 € 7* as.

Under these assumptions we can rewrite the basic recursion as
Wo(Y) =Y,

(L2 e (¥) = max (Wi(Y)+1i*o6")", 1<k<K,nx0.
(jenkoom}

The aim of this paper is to analyze both the transient and the stationary
solutions of (1.1), using ergodic theory arguments, and in particular Kingman’s
subadditive ergodic theory. For this, we introduce a pathwise increasing
recursion, the nth term of which is equivalent in law to W,(0), and which
generalizes the schema initially proposed by Loynes for G/G/1 queues [9]. In
Section 2, this recursion is then used to determine the condition ensuring the
existence of a stationary solution of Equation (1.1), which will be referred to as
the stability condition.

The notion of irreducibility is also introduced, and it is shown that the
stability condition of a reducible equation boils down to the intersection of the
stability conditions for a set of equations of the same type, corresponding to
_ certain communicating classes.

It is shown in Section 3, via some coupling argument, that when this
stability condition holds, W, (Y) converges weakly to this stationary solution
when n goes to «, regardless of the initial condition. Section 4 focuses on the
case where the stability condition is not satisfied. Then W (Y') converges a.s. to
o, at least in the irreducible case. Nevertheless, it is shown that certain
increments satisfy another related recursive equation that always admits at
least one stationary solution. However, it is not always possible to reach this
stationary regime from some adequate initial condition. A simple sufficient
condition ensuring the reachability of this stationary regime is provided in
Section 4.2. Finally, examples stemming from queueing theory are presented
in Section 5.

The schema of Section 2.1 was first proposed in [4] for a specific computer
system model, where the precedence structure is detérministic and the delay
structure has the form /% = ¢/* — 7, where o/ %, € R*. The schema for
the, increments of Section 4.1 was first considered in [1], for handling a class of
Petri net models.

2. A Loynes schema. The basic idea for analyzing (1.1) consists of
associating with this equation another recursive schema that generalizes in a
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sense the schema that was originally proposed by Loynes [9] for analyzing
G/G/1 queues.

2.1. Definition. Consider the variables {M*};_,, 1 < k£ < K, defined by

Mk =0,
(2.1) M, 00 = max (M +174)".
JjE™

LEMMA 2.1. For every k, 1 <1l < K, the sequence M,’f is increasing in n.

Proor. It is clear that for every &, 1 < k < K, M¥ > M} = 0. Assume now
that for some n > 1, M* > M*_, holds for every k, 1 < k < K. Then for any
k,1<k<K,

MF, 00 = max (M; + 17%)"

jemt

> max (Mj_, +17%)" = M}ed. O

JE™

Let M* be the limiting value of the increasing sequence M} when n goes
to ». A simple continuity argument yields

(2.2) ME o6 = max (M] + ZRONS

JjEem
From this we get:

LeMMA 2.2. For each k, 1 <k < K, the event {M} = x} is of probability
either 0 or 1.

Proor. For all 1 <k < K, we have k& € 7*. Hence (2.2) entails
MFog > MF + 1%k,

Therefore, M* = » implies M* o § = . This immediately implies the result in
view of the assumption that 6 is P-ergodic. O

The following expansion of the Loynes schema M will be used later on.

LEmMA 2.3. Foreverynandk,n>1,1<k <K,

(2.3) M} = max(O, max H,’fl),
l<m<n
where
m
(2.4) H} = max Y Ivesm1097S,

{1<v,<K,s=0,..., m,v0=k,vsezrr"8*100_s) s=1
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Proor. The proof proceeds by induction on n. For n = 1, (2.3) is simply a
restatement of (2.1). Suppose it holds for some n > 1. Then, we get from
equation (2.1) that

Mk, | = max(O, max (Mj-0"'+ 1)k 00‘1)).
jemton~1
Using the inductive assumption, we obtain

Mk

n+1=max(0, max max(O, max H,J,'loﬂ‘l)+lj’k°0_1)

jemko01 l<m=<n

= max(O, max max max(Hj 07! +1/kog71 )k 00‘1))
l<m=<n jegko.g-1

=max(0,max( max H,’le,Hlk))

l<m<n
=max(0, max H,ﬁ)
l<m=<n+1

Therefore the equation holds for » + 1, which proves the lemma. O

2.2. Decomposition of the equation. In this subsection, we decompose
equation (2.1) into a set of simpler equations of the same types which satisfy
an irreducibility property.

Define the communication graph of the equation as the directed graph
G = (¥, &), where

7={1,2,..., K},
&= {(j,k)IP[j € =*] > 0}.

Obviously, & can have cycles.
Decompose ¢ into its communicating classes, namely the maximal strongly

connected subgraphs of #:
G =", G, = (Y, &),

such that if there is a path from j to & in &, there is also a path from % to j
in . It is obvious that this decomposition satisfies the properties

NU-UZ =% and & U--UECE,
and, foralll <i <j<g,
N%= and &, N&=0.

Furthermore, define the reduced graph, which is denoted by £, to be the
graph that describes the one-way relations that may exist between the commu-
nicating classes: &= (¥, &), where

7=1{1,2,...,8)},
&= {(e, e, fe{1,2,....,8}, e #f,3(j,k) €&, j € ¥, k€ ¥%}.

It follows from the very definition of strong connectedness that £ is acyclic.
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We associate now g equations to (2.1), one per communicating class.
Equation i has for dimension K; = | %], for state variables M*' (k € %) and
for evolution equation

M=o,

(2.5) MFkio60= max (M)'+ lj’k)+.
Jj enktn 1A
By analogy with the theory of Markov chains, we will say that the system
(2.5) is irreducible.

LEMMA 2.4. For every i, 1 <i <g, either M¥* < a.s. for all k € ¥, or
Ml =wa.s. forallk € 7%.

ProOF. Owing to Lemma 2.2, either M* < « a.s. for all k € ¥, or there is
some k € 7, such that M} = » a.s. If we are in second case, then we argue
that for all » € % such that P[k € "] > 0, the relation

MP o0 = max (MZ +107) " > (M} +104)"
JjE™
holds with a positive probability, so that M} -8 = « occurs with a positive
probability, and hence, according to Lemma 2.2, is an almost sure event.
Repeating this argument a finite number of times, we get that M! = o as. for
al he 7. O

2.3. Stability condition. For every i, 1 <i < g, we define

n

Q. = max DI ACERLEY
(2'6) {vg,..., Ups1€ Hlvg €T 007%,s=1,..., n}g=1

n=12,....

LEmMA 2.5. Foralli, 1 <i < g, there exists a constant vy; such that

(2.7) lim 9—; = lim E[—fi] =

n—oo N n—ow

; a.s.

Proor. Observe first that the finiteness of E[Q,‘: ] follows from the integra-

bility assumption on the delays [use the fact that

—|la| — 16| < max(a, b)
s[al + 1b]].

Nowlet U .., =Q.°6 ™, meZ n>1Thenforaln > 1landal p,g>1
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such that p + ¢ = n, we have

n
i _ VUs41o U, —-s -m
Unmsn = max DO ACERZEY Il Y]
Wi,y Uy 1€ Hlvg €m0 °,8=1,...,n} g1
14
< max DI ACERCEY I Y
W1, V1 €EHlg 1 EmY007% s=1,...,p} 51
n
+ max Y [vsrrUogTSlogT™
Wpstrer s Vps1 € Hlvg €% 00 % s=p+1,...,0} g—p+1
= i i
- Um,m+p + Um+p,m+p+q‘

Therefore U,fl,m +n s a subadditive process. Applying Kingman’s theorem on
subadditive ergodic processes ([8]) readily yields

U, E[UG]

lim —— = lim — T a.s.,

n—oo n n—oo

which concludes the proof. O

THEOREM 2.6. For all i, 1<i<g, if v; <0, then M*i < © a.s. for all
ke ¥%. If y;> 0, then M} =wa.sforallk € 7.

Proor. The proof proceeds in two steps. .

(i) It follows from Lemma 2.4 that the event {V k € 7: M?' = «} is of
probability 0 or 1. Assume it is of probability 1. Then max, 5, MFi = as.
Let

(2.8) HbEi= max (z zvsyvs—loo—s).

{(v,€7|s=0,...,n,vp=k,v,€m’ 1007} \ g1
In view of (2.3), max, c, M»’1® as. is equivalent to

lim sup max H* =« a.s.
now ke

By using the identity @} = max, ., H}’ in the last relation, one gets
i
limsup — > 0 a.s.

n—w

Owing to the ergodic assumption and to Lemma 2.5, this entails

(2.9) v; = lim — > 0.

Therefore the fact that V £ € %;: M’ =  a.s. implies that y;, > 0. Taking the
contrapositive of the above inference, we get that y; < 0 implies MEi< was.
for all & € 7. The first part of the theorem is thus proved.
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(ii) Assume now that y;, > 0. Then
Ql

lim — =y,>0 as,
noo N

which implies

lim maxMFi = th‘ = a.s.
n—)eokey

Owing to Lemma 2.4, the last fact implies that M*' = o a.s. forall £ € 7. O

THEOREM 2.7. For all 1 <h <g, if max,_;_, v; < 0, then

k o ko

max,cy 1<i<h Mo <®a.s. If max;_;_,v;> 0, then max,cy 1.;.n M, =
© a.s.

Proor. The second property follows immediately from the relation
Mi> M)
that holds for all j € % and n > 0.

We now prove the first property by induction on 4. In view of Theorem 2.6,
it is satisfied for 1 < h < g, since the relation M;] = M;'*, n > 0, holds for all
i,1<i<gyand j € 7. Assumeitistrueuptorank 2 — 1, where g, < h < g.
From (2.1) and the definition of the communicating classes, we have

M,{+1°0=max{ max (Mk+l’”) max (M,’f+l"’j)+},

kemin?, kemIn? -0, _,
n>0,
for all j € 7,. Let N/, j € 7,, n > 0, be defined by Nj = A’ and
N,{+1°0=max{ max (NF +1%7), Al }, n >0,

kE-n'Jﬂ7/h

where

(2.10) AVof  max  (ME+ IR
ke.n-.lnyl... 7};—1

From the induction assumption, A’ is a.s. finite for all j € 7. It is easily
proved by induction that M J <N/ for all j € ¥, and all n > 0. Define the
vector MJ =N/ — A/, j Vh It is immediate that M, satisfies the recursive

equation
~ . ~ -~ . +
(2.11) Mj,,°0= max (M:+I*7), n=x0,
kenrin?, *

with M{ =0 and [*/ =%/ + A* — AJ-9. If we apply Lemma 2.3 to the
recursion (2.11), we get immediately M} = max(0, max, _,, ., H2) with

H = max Avmog™™ — AV + Z [V V=10 975,

m . -
{(v;€7%,,5s=0,...,m,vo=j,v;€mws-1007%} - s=1

so that HJ < max, ey, Akog~m™ — A/ + HJ . If y, < 0, we know from Lem-
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mas 2.4 and 2.5 that H}, tends a.s. to —o like my,. On the other hand,

max, ., A*of™™

(2.12) lim =0 a.s.

m-— o m
This property is immediately seen if A* is integrable for all % 7, and it is
proved under the weaker assumption that these random variables are finite
and not necessarily integrable in the Appendix. Therefore, under the induction
assumption, the hypothesis y, < 0 implies that lim ,, H] = —o a.s., which in
turn implies that M/ < « a.s., and this concludes the proof since the relation
MJ] < A + MJ implies MJ < A’ + M/ < w a.s. O

Now define
n
= max [VsVs-10075,

(213) Q {vg,...,v,€ Vlv;em? 1007%,5=1,...,n) sgl

n=12 ....
Using the same proof as in Lemma 2.5 allows one to establish the convergence

Qn E Qn
(2.14) lim — = lim [@.] =1vy a.s,
n—o N n-—o n

where vy is a constant.
CoroLLARY 2.8. We have y = max, _; _, ;.

Proor. It is easily seen from (2.6) and (2.13) that forall 1 <i < g,y > Yis
so that y > max, _, _, ;.

Assume that y > max,;_;_,v,. Then & = (max,_,_, v, — v)/2 > 0. Con-
sider the variables {M})2_, 1 < & < K, defined by (2.1) with the delays I/'* in
place of I/*, where [/% = 1/% —y —§ 1 <j k<K Let yand 7, 1 <i <g,
be the associated constants as defined by (2.13) and (2.7), respectively. It is
easily checked that

max ;= max y; —y—86 =06 > 0.

1<ix<g l<i<g
It then follows from Theorem 2.7 that max, _, _ x M* tends a.s. to « when n
goes to . On the other hand, we also have ¥ = —§ < 0. Using the same type
of arguments as in Theorem 2.6, one can show that y < 0 implies that
max; _, g M} converges a.s. to a finite random variable when n goes to ,
wherein lies the contradiction. Therefore, it is impossible that v >
max; _; . . ¥;, 80 that necessarily y = max,_;_, . D

3. Existence and uniqueness of stationary solutions. We are now in
a position to study the stationary solutions of equation (1.1). We first examine
the conditions under which the solution of (1.1) converges weakly. Then we
show that (1.1) has a unique finite stationary solution.
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3.1. Stability of the evolution equation. As usual, we shall understand by
stability of (1.1) the weak convergence of the state vector W,(Y) when n tends
to infinity. Using the results of Section 2, it is easy to establish the stability
condition of W,(0). Indeed, it can readily be checked that for all » > 0,

(3.1) Wk(0) = M* o 6",

Consequently, the almost sure convergence of the schema M} to a finite limit
when n goes to « translates into the weak convergence of the state variables
Wk(0).

THEOREM 3.1. If y <O, then, for all k, 1 <k <K, W) converges
weakly to a finite random W*(0) when n tends to . If y > 0, then there exists
some k, 1 < k < K, such that W*(0) converges a.s. to © when n tends to ».

The following lemma will be the basis for extendin% the preceding result to
the case with arbitrary finite initial condition Y € R*".

LEMMA 3.2. Assume that y < 0. Then for any Y € R*", there exists an a.s.
finite positive integer N(Y) such that for all n > N(Y), W,(Y) = W,(0).

ProoF. It can easily be checked by induction on n that for all n > 0,
W(Y) > W,(0) > 0. Assume that the statement of the theorem does not hold.
Then W,(Y) > W,(0) for all n > 0. For any fixed n > 1, let £, €{1,..., K} be
an index such that W*~(Y) > W*~(0) > 0. In view of (1.1), there exists an
index k,_, such that

Wh(Y) = max (W/_(Y) +likeogn)”

(jemtnoom"Y)
= WkEeii(Y) + [*n-vknognt,

It is easy to see that necessarily W*»;1(Y) > Wk»;1(0) > 0. If this were not
true, we would then have

Win(Y) = Wiep(Y) + Lheovbne gt
< WEn71(0) + Lhn-1knogn=1

< max  (WJ_,(0) + 9 knogn )" = Wie(0),

{jE‘n’k" 00""1)

and hence, W*~(Y) < W/*~(0), which would contradict the definition of %,.
Similarly, there exists an index %,_, such that

Whi(Y) = max  (Wi_g(Y) + 1 kn106772)"

(jE‘n'k"—l ° on—z}
= Whng2(Y) + lkn-2kn-10 972

and W’ 5 %(Y) > W}»52(0) > 0. More generally, one can find a series of indices
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k,_;,1=1,2,...,n, which satisfy the relations
Wint(Y) = Whpi(Y) + Unosbaoieso g7,
Therefore
n
Wkn(Y) = Yko + ) [ki-vkiogni,
i=1
Obviously ©7_,l%-vki0c 9"~ < @ o6, where @, is defined by (2.13). Hence
(3.2) Wkn(Y) <Yk + @Q,.

Owing to Lemma 2.3, (@, °60")/n — y when n — «. Therefore, under the
assumption y < 0, (3.2) readily implies that W*» - —o when n — o, whence
comes the contradiction. O

The stability condition of (1.1) with arbitrarily initial condition Y is a direct
consequence of Theorem 3.1 and Lemma 3.2.

THEOREM 3.3. Let Y be an arbitrary nonnegative real vector in R If
y <0, then, for all k, 1 <k <K, W*Y) converges weakly to the finite
random variable W.*(0) when n tends to ». If vy > 0, then there exists some k,
1 < k < K, such that WF(Y) converges a.s. to ®» when n tends to .

3.2. Existence and uniqueness of stationary solutions. A sequence of finite
nonnegative random variables V,,, n € Z, is said to be a stationary solution of
(1.1)if V, = V20" for all n € Z and if V = V, satisfies the relation

(3.3) Vkog = max (V/ +19#%)",
(jenh
Theorem 2.7 and Corollary 2.8 together with (2.2) show that the stochastic
process M, 6" is such a solution when y < 0. This existence result is comple-
mented by the following uniqueness property.

THEOREM 3.4. Assume that y < 0. Then M, is the unique solution of (1.1)
and for any initial condition Y, the sequence W,(Y) couples in finite time with
the stationary sequence M_ - 6",

Proor. Assume there is another solution V. From Lemma 3.2, there exists
a finite integer N(V) > 0 such that for all n > N(V),

Vo™ =W, (V) =W,(0) as.
Using again Lemma 3.2 we obtain another finite integer N(M,) > 0 such that
for all n > N(M,),
" M, 6" = W,(M,) = W,(0) as.
Hence for all n > N = max(N(V), N(M,)),
M_-6"=Vo-0" a.s.,
which immediately implies that V = M_ a.s. O
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4. The unstable case. In the previous sections, it was established that if
the constant y associated with the equation [cf. Theorem 2.7 and Corollary
2.8] is negative, the equation is stable and has a unique stationary solution. It
turns out that several examples of closed queueing network models satisfy an
equation of the type (1.1), where the constant 7y is strictly positive. An example
of this type is provided in Section 5.2.2, where the matrices /,, have nonnega-
tive entries. The aim of the present section is to show that this type of
equation can be stabilized in the sense that certain increments of its solution
can be made stationary. The discussion will be limited to the irreducible case.

4.1. Stationary increment process. The object of this section is the
stochastic recursive sequence W,(Y) defined by

W,(Y) =Y,
(4.1 wr (v) = max (W/(Y) +13%), n=0,1<k<K,
(jerk}

where the predecessor sets are assumed to be such that there is a single
communicating class (see Section 2.2), and where the delays /7% are assumed
to be such that their associated constant y (see Lemma 2.5) is positive.

This equation will now be transformed by adopting new state variables that
satisfy an equation of the same nature, where the random sets 7} are all
replaced by {1, ..., K}. The reason for this transformation will become appar-
ent later on.

Define
(4.2) N=inf{nz 1IV1<j,k<K,3vy,vy,...,0,,0,,1 €{1,..., K},

with vy =j,v,,; =kand v, € 7", 0 <i < n}
LEMMA 4.1. Under the irreducibility assumption, N is a.s. finite.

ProoF. Owing to the irreducibility assumption, for all j, &, there exists a
sequence Ug, Uy, ..., Uy, Uiy €11,..., K} with uy=j, u,,, =k, and such
that for all 0 <i <m, Plu; € w*“+1]> 0. Since P[j € w*1] > 0, the event
{j € m*1} occurs infinitely often, and there is hence a finite n; > 1 such that
{j € m;1}. This, together with the assumption j € m/ a.s., imply the existence
of a finite sequence v, = v, = -+ =v, =j, U, 41 = U, such that v; € 77+,
0 <i < n,. Repeating this argument m times yields the finiteness of N. O

Let {N, )5 be the sequence defined by Ny = 0 and
(4‘1.3) Nn'+1 =Nn +N°0Nn.

Let ® be the shift Y on (Q,F, P). Throughout Section 4, it will be assumed
that @ is P-invariant and ergodic. In the particular case where the sets 7* are
deterministicc N is a constant and this assumption will for instance be
satisfied whenever 6* is P-ergodic for all £ > 1.
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For all n > 0, let L, be the matrix L - ®", where

N
(4.4) L)k = max Yy ISR
{vg,v15-.., UN, UN+1lU0=], Un1=k, ;€7 +1,0<i<N} ;¢

and let V,(Y) be defined by V,(Y) = Wy (Y). It is easily checked from 4.1
that the state variables V, satisfy the relation
W(Y) =
(45)  yrk (Y)= max (Vi(Y)+Li*), n=01<k<K.
{l<j<K}

Owing to Lemma 2.5, W,(Y) diverges a.s. to « like ny when n tends to «, so
that the only variables that can be expected to become stationary in the long
run are increments of the type V, (YY) — V (Y). Consider as new state
variables the increments

(4.6) RI*F(Y) =VE (Y) -VI(Y), n=>01<jk<K.

LEMMA 4.2. The state variables RJ:*(Y) satisfy the recursion

(4.7) Ri*(Y) = Zi¥(Y),
Y) = RLM(Y) + Lk — L%J
(4,8) n+1( ) llgtafK lg]ilBK( ( ) n+1 n ):
n>0,1<j,k<K,
where
4.9 Z)k(Y) = max (Y"+ Lk* YY), 1<j,k<K.
1<h<K 0

PrOOF. The proof of (4.7) follows immediately from the definition. For all
n>1,1<j,k <K, write

Rf;’fl(Y) = max (Vn+1(Y) +Ln+1 Vr{+1(Y))

1<h

max (VA (Y) + Ly — max (VA(Y) + L))

1<h<
= Y) - V(Y) + L%k — LiY). m]
113?31( lrgln ( +1( ) ( ) n+1 n )

THEOREM 4.3. Equation (4.8) has a stationary solution in the sense that
there exist finite random variables X% 1 < j, k < K, satisfying the relation

(4.10) X)*.®= max min (X""+ L"*.@ - L"), 1<j,k<K.
1<h<K1l<i<K .

For proving this theorem, the following lemmas will be needed.

"LEMmaA 44. For all YER*™ all 1<j k <K, and oll n > 1, RH¥Y)
satisfies the bounds

(4.11) Li* < RI*(Y) <Ll + 2L, _,l,
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n i B<K n

SJ?

ProOF. Assume that for some n > 0, RZ*(Y) > L1 * forall 1 <j,k <K
[this is true for n = 0 in view of (4.9)]. Then

ok = i i,k hok _ TiJ
Rpi(Y) = max min (Ry%(Y) + Ly, LyY)
(4.12) > min (L47 + Lyk — LyY)

1<i<K
= i,k ;
_L}l,,+17 ].Sj,kSK,

which completes the proof of the lower bound. As for the upper bound, we
have

RIM(Y) = VE(Y) - VI(Y)
= max (Vi(Y) + Ly* - Vi(Y))

1<i<K
< Lik + ViY) — V/(Y)).
< max Ly*+ max (VI(Y) = Vi(Y))

Using the lower bound, we get

Vi(Y) = Vi(Y) = max (V/_(Y) - VI(Y) +L3L,)

(4 13) 1<l<K
' < max (L4i, —L%7),
lslsK( n-l " 1)
so that

R>*(Y) < max L%* + max max (LY, — L%7
v (Y) 1<i<k " lsisKlslsK( it = Lily),

which concludes the proof of the upper bound. O

Consider now the Loynes schema defined by
S§k=L"* 1<j,k<K,
4.14 S ko0 = i Lh 4 Lhko@ — Lb/
(#14) #i00 = max min, (5, )
n>0,1<j,k<K.

LEmMMA 4.5. Forall 1 <j, k < K, S}* is nondecreasing in n and

(4.15) Lk <8Si*<||[LIl+21L-0®7Y, n=x>1.

Proor. The fact that S7* > L’* is obtained by induction. For proving
that S7J'* is increasing, assume S, > S,_; coordinatewise (this property is
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true for n = 1 in view of the preceding remark). Then for all 1 <j, k < K,

Sj:¥ o®= max min (Si*+ L"* .0 — L")
1<h<K 1<i<K

> max min (Sif + LM*o@ — LbY)
1<h<K 1<i<K

TN

In order to prove the upper bound in (4.15), we first establish the property
that whatever the value of Y,

(4.16) S/t <RI®(Y)®™, n>0,1<j,k<K.

The proof is again by induction; the property clearly holds for n = 0, in view of
(4.9) and of the relation S§'* = L/'*. Assuming it holds for some n > 0, we get
then:

SJ:ko® = max min (S,‘;’h + LPk.0 — Li’j)
1<h<K 1<i<K

< max min (Rf;h(y)o@—n L LPhe@ — Li,j)
1<h<K 1<i<K
=Ry (YY) 07",
which concludes the proof of (4.16). From (4.16) and (4.11), we get immedi-
ately that

Sj* <RI¥(Y)e® " <|ILI+2IL-0"Y, n=>=1,1<j,k<K,
which concludes the proof of the upper bound. O

PRrOOF OF THEOREM 4.3. From the preceding lemma, we get that the a.s.
lim, . SJ* = SJ* exists and is finite for all 1 < j, k < K. Letting n go to «
in (4.14) yields

(4.17) S/*.0 = max min (Si* + Lh*.@ — L"), 1<j,k<K,
1<h<K 1<i<K

so that S, is a solution of (4.10). O

In general, the solution of (4.10) is not unique. However, S, satisfies the
following extremal property.

COROLLARY 4.6. S, € R™™™ is the smallest solution of (4.10) larger
than L.

Proor. Let S'e R*** be an arbitrary solution of (4.10) such that
S"'* > Li* One gets by induction that S’ > S, for all n > 0. Thus, S’ > S,.
. . |

4.2. Reachability of the stationary regime and uniqueness. We shall say
that a stationary solution S of (4.10) is- reachable if there exists an initial
condition for which the increment process defined in (4.6) coincides with the
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stationary process defined by S, in the sense that
RI¥(Y)=S87*%*.0", n=0,1<j,k<K.
Equivalently, S is reachable if and only if the system of equations
4.18 Sk = Yh+ LhE-YY), 1<j,k<K,
(4.18)  max_( 0 ) J

where the unknown is Y, has a finite solution. Indeed, if such a solution exists,
the increment process (4.8) can then be made stationary by adopting Y as
initial condition [see (4.9)]. It is the aim of this section to investigate the
conditions under which the stationary solution of Theorem 4.3 satisfies these
reachability and coupling properties. The proof for coupling is based on the
notion of renovating events of Borovkov (see [6]).

For n > 0, let @, denote the event

(4.19) A e RX: S)* = lmhaxK(Ah + LM% - AJ,  1<j,k<K,

with a similar definition for ®, with S, replaced by S..

LEMMA 4.7. The events ®, satisfy the following properties:

() Foralln>0,&, cO ', , and &, c O 'd,.
(i) If P[®,] > O for some n, then limsup, ., ®, = Q a.s.
(iii) If P[®,] > O for some n, then P[®,] = 1.

Proor. (i) On ®,, there exists a random vector A such that

Sj* = max (A" +LM*) -A/, 1<j,k<K.
1<h<K

Hence, for all 1 <j, k < K,

Sk o®= max min (8" + L"*-0@ — L"/)
1<h<K 1<i<K

max min ( max ((A°+L%") - A)) + L"*e0 - Li)
1<h<K1l<i<K\‘l<s<K

max max (As + Ls,h + Lh’ko® - ( max Ai + Li,j))
1<h<K 1l<s<K 1<i<K

max (Sh*+ A+ L**-0 — (Sy7 + AY))
l1<h<K

max (S,}’h +LPE.0) - Sy,
1<h<K
so that ® '@, holds, with A/>® =S}/, The same argument shows that
&, c @ 1P, so that the event @, is of probability 0 or 1 due to the ergodic
assumption. .

“(ii) If P[®,] > O for some n > 0, the ergodic assumption implies that

1 *
131_1)130 z m{:ll(@md,n) =P[®,]>0 as.,
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so that necessarily

limsup®™®, = Q) a.s.

m — o

From (i), for all m > 0, ®,,, 2 ®™®,. Thus, the last relation implies that

limsup®,, = Q a.s.

m—

(iii) If 8 € R¥*X is such that the equation (4.18) has a solution A, then
necessarily A* — A/ = §/1 — §m1 for all 1 <j < K, so that

Sik= max (S)'-8k1+LME),  1<j,k<K.
1<h<K

Conversely, if S satisfies the last relation, then A/ = —S/'1 satisfies (4.18).
Hence the set

2= { S € RFKIA RN S/ = max (A" +LM*) - A% 1<)k < K}

can be rewritten as

Sirk — mhaXK(Sf’l—Sh’l+L"’k),1sj,ksK}.
1<h<

9- {5 cRrrxx

From this, it is immediate that 2 is a closed subset of RX*X From (ii), if
P[®,] > 0 for some n, then for a.s. all w € Q, there is a sequence of integers
{n}; 1 such that w € ®, , or equivalently, such that S,, € 9, for all £ > 1.

Since 9 is closed, the a.s. limit S, of Snk when k& goes to « is also in 9, so
that w € ®,. O
Let ¥ be the event
¥={31<h*<K|L"*c@=LP*c@ + L)* — LI"",

(4.20)
V1<h,jk<K}

THEOREM 4.8. Under the condition P[¥] > 0, the stationary regime defined
by S, is reachable.

Proor. On V¥, we have

L¥*e@ > L"*c@® + max (L)" — L/'*")
<K

=L"*.® + max (L' - L/>* + L/" - L))

1<j<K
>L"*.®+ max (L/' - L»") + min (L)" - L)%,
1<j<K 1<j<K

namely

(4.21) L"*o® — max (L)' — L") > LP*o -

max (L7¢ — L")
1<j<K l<j<K
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forall 1 < h,i, j,k < K. Therefore, on the event ¥, the relation
S{**o@ = max (L**-@ - max (L“J - L")
1<h<K 1<i<K

=L"*o@® — max (L“/ - L"")
1<i<K

holds. Let B’ = max, _; _ x(L"/ — L""*"). We have
S{*ko@®=L"*.0 — B/

= max (B"*+L"*-0) - B/,
1<h<K

where we have used the definition of ¥ in order to get the last identity.
Therefore, ¥ C ®'®,. If the event ¥ has a positive probability, we then get

P[®,] = P[¥] > 0,
which implies that P[®,] = 1, in view of Lemma 4.7. In other words, the
condition P[W¥] > 0 entails that the system of equations

(4.22) S)*= max Y*+LM*-Y/, 1<j,k<K,
l<h<K :

has at least one solution. O

THEOREM 4.9. Under the condition P[W¥] > 0, the stationary sequence
S, ®" is the unique stationary solution of (4.8). For any initial condition Y,
the sequence R ,(Y) couples in finite time with this stationary sequence.

Proor. We prove that under the condition P[¥] > 0, the sequence R,(Y)
admits stationary renovating events of length 2. Let A,, n > 1, be the event

A, = {3 1<h*<KN1<h,j k<K, L":*— max (L - R"(Y))

1<i<K

h,k _ i,j _ Rik
(423) ZLn,+1 lglia;{K(LnJ Rn (Y))}

={31<h*<KV1<h,j k<K, L

> Lk + (VoY) - V(YD)

On the event A,, the relation
REA(Y) = Lt = max (Ly/ - REM(Y))
holds for all 1 < j, k < K, so that
RyE(Y) = RPE(Y) = L3LE - LiLY.

Therefore, on A, ‘

R} 5(Y)

Vi, (Y) + Lbk, — Vi (Y
llsnzaéxK( n+2( ) n+2 n+2( ))
Rl,i Y) — Rl,j Y) + Lik
lsia;‘K( nr1(Y) Z11(Y) n+2)
Lh*,i _ Lh*,j + Lisk ,
12352(1(( n+1 n+1 n+2)
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which shows that the events A, are renovating events of length 2. The
inequality [cf. (4.13)]

VAAY) = VEL(Y) < max (L - I5¥)

entails @7 "% c A, , which proves that these renovating events are included in
a stationary sequence ® ¥ with P(¥) > 0. This proves that for any initial
condition, R,(Y) couples in finite time with a uniquely defined stationary
sequence, in view of [6] (Theorem 1, page 260). Since the process S, > ®" can
be reached by an appropriate choice of the initial condition (Theorem 4.8), it
must coincide with this uniquely defined process. O

5. Queueing theory examples. In this section, we illustrate some sim-
ple queueing models where the state variables are described by the evolution
equation (1.1).

5.1. First come first serve queueing networks. Consider a network of K
single-server queues. Several variables are defined on the probability space
(Q,F, P): 7, € R" is the nth interarrival variable; m, > 1 is an integer-valued
random variable representing the number of queues visited by customer n;
{ri,...,r™}, where r; €{1,...,K},1 <i < m,, is the random route followed
by customer n and o is the service time (or request) of customer n in the ith
queue of its route, 1 < i < m,. The queueing discipline is first come first serve
(FCFS) in the sense that in each queue, the requests brought by customers
0,1,2,...,n must all be completed before any attention is given to those
brought by customer n + 1. This discipline has to be understood locally in the
sense that it is possible for a specific server to start attending a request
brought by customer n + 1 even though some other servers have not yet
completed all the requests brought by customers 0,1,2,...,n.

Tandem queueing networks are particular cases of such FCFS networks,
where the route is the sequence (1,2, ..., K) for all customers. However, more
complex systems can be contemplated where the length and the structure of
the route may be random, with possible loops and so on. Such a model arises
naturally when modeling computer systems that use two phase locking algo-
rithms for keeping the consistency of their data (see [3] and [5]) and certain
parallel processing systems ([4]).

For 1 <k <K, let b* (resp., e*) be the index of the first visit (resp., last
visit) of customer n to queue k:

b=  min i,
l<i<m,,ri=k

k . .

ey = max i,

; i
l<i<m,,r,=k

with 8% = 0 and e = 0 if 2 & {r},...,r,""}, by convention. For % such that
ek + 0, let

mk={ri,1<ix<et)
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and for j € 7k, let
en
- Y o
i=b]
If e* = 0, take 7* = {k} and 1** = 0, by convention.

Let t,,n=0, be the nth arrlval time to the network The sequence {¢,} is
defined by the relations ¢, = 0 and 7, = ¢,,, — ¢,. Assume that the network
has some initial workload to be cleared before any attention is given to the
arriving customers and denote by Y* > 0 the value of the initial workload in
queue k. More generally, let T, n >0, be the time when queue %k has
completed its initial workload and all the requests brought to it by customers
0,1,...,n— 1.

LEMMA 5.1. The state variables WH(Y) = (TF —¢,)*, 1<k <K, n>0,
satisfy the recursion
Wy (Y) =Y

Gn- WEA(Y) = max (Wi(Y) + 1% = 7,)

ey

+

Proor. There are two different cases.
() If e* = 0, then Tk, , = T, from the very definition. Using this property
together with the relation (a — )= a V b — b, one gets

+
Wnk+1(Y) = (Tnk - tn+1) = T: Vi1~ thyt
= Trf v tn v tn+1 - tn+1 = (Wnk(Y) + tn) v tn+1 - tn+1

= (WHY) = 7,)

which establishes (5.1) in this case.

(i) If e* # 0, then, for all j € wk Tk, > TJ V¢, + 1}k This relation
follows from the queueing discipline which implies that the first request of
customer n to queue j is attended at the earliest at time T/ v ¢, Smce the
additional delay due to the migration of customer n along the route LI r,f n
cannot take place in less than /7'*, queue k cannot have completed servicing
the last request of customer n before that time. We get hence

Tk

n

112 max (T] v, +17%).

{jemk)

On the other hand, a request of customer n arriving in a queue can in no
case find another request of customer n waiting in the queue. In other words,
for all 1 < i < m, either the ith request brought by customer n is attended
immediately upon its arrival in queue r! or its service is delayed by the
completion of requests brought to this queue by customers 0,1,...,n — 1
(including its initial workload). Let p* be the largest j, 1 <j < e*, such that
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the service of customer n 1s delayed on queue rJ, with p* = 0, if no such delay
takes place on the route {r},... "}

If p* + 0, then, obv10usly T”" >t, and

Th,=TP+ 120k =TPiv ¢, +1B0% < max (TJ Vi, + lka)
{jenh
If p¥ =0, then none of the e* first requests brought by customer n has to
wait, so that
TE,=t,+ 1% < max (T} Vt, +15%).
Uemi)

Therefore, whatever the value of p*, we get from the preceding inequalities

that

Tk

n+1

= max (TJ Vi, +lf’k)
{(jerh

so that the relation
+
Wnk+1(Y) = (Tnk+1 - tn+1)

max (T V¢, +10F—¢, —1,)
Uend)

max (WJ(Y) + 5% —1,)

(jerh)

+

+

follows immediately. O
5.2. Manufacturing blocking.

5.2.1. The open case. Consider a network of K servers in tandem. The first
server has an infinite buffer and is fed by an external arrival stream. There are
no intermediate buffers between server 2 and 2+ 1, 1<k <K -1, and a
customer having completed its service in server % is blocked there as long as
server k£ + 1 is not empty (this is the so-called manufacturing blocking mecha-
nism).

Several variables are defined on the probability space (Q,F, P): For n > 0,
7, € R* is the nth interarrival variable and o, is the service time of the nth
customer to enter server 2, 1 < k < K. Let Y* € R be the time when server %
gets free of all its initial workload. For n > 0 and 1 <j, k2 < K, let

Aok = Z o
=Jj
-and

J 1,j _L,j-1
l A An+1’

with the convention that AJ:* = 0 for all j > k. Denote by ¢,,n > 1, the time
of the nth external arrival to queue 1 (¢, =0 and ¢,,, = ¢, + 7,), by T the
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time when customer n leaves server k, and by W(Y) the quantity W*(Y) =
Tk —t, — Ak

LEMMA 5.2. The state variables W*(Y), k = 1,..., K, satisfy the recursion.
(5.2) Wh(Y)= max (W/(Y)+1—-1 ) ., n=>0,

{1<j<k+1}

where
WH(Y) = Y* = Ng* + 7,

and where WE*! = YE*1 = —w by convention.

Proor. Let T, =Y. Since server 1 gets free of customer n, n > 1 (resp.,
its initial workload), at 7! > 0 (resp., Ty), customer n + 1, n > 0 starts its
service in server 1 at time ¢,,, V T, and completes it at ¢,,, vV T} + o},
Since server 2 gets free of customer n, n > 1 (resp., its initial workload) at T2
(resp., T@), customer n + 1, n > 0 will hence leave server 1 and start its
service in 2 at

Tii1 = (tn+1 + ";+1) v (Tnl + O'nl+1) v Tz

More generally, if customer n + 1 leaves server k& — 1 1<k <K,at Tt}
then it will complete its service in server k& at (%! + o*, ) and leave server %
at

k
Tn+1

(Tl + o) VT,
while for server K,
Tn+1 (TK 1+0’n+1)
Simple substitutions based on the last three relations then yield

(5.3)  Try=(tye1+A3%) VvV max (T;+A%), n=0,
{l<j<k+1}

with the convention TX*! = —», O

5.2.2. The closed case. Consider a closed network of K servers in tandem.
There are no intermediate buffers between servers. The migration of cus-
tomers is controlled by manufacturing blocking. When a customer finishes in
server k, 0 < k < K — 1, it enters server s(k) = £ + 1 mod K if s(k) is empty.
Otherwise it is blocked in % until s(k) is empty. In the sequel, all server
indices are understood modulo K.

Let ank, n > 1, be the service time of the nth customer to be attended by
server k after time 0. Let M(%) denote the initial number of customers in
server k at time 0 [M(k) =0 or 1 and 0 < L£_ M(k) < K]. The initial
condition is given under the form of the vector Y € [RJr where Y* represents
the epoch when server k gets free for attending customers. If M(k +1) =
the epoch Y* is also assumed to coincide with the time when the initial
customer of server & + 1 becomes available for service.
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Let T*(Y), n > 1, be the time of the nth customer departure from server %
and Z‘é‘ = Y* by convention. For sake of simplicity, T*(Y') will be referred to
as T;.

Consider the first service in server k2, 0 <k <K — 1. If M(k) =1, then
this service starts at time T 'V T¥ and finishes at time (T}~ + of) v
(T + o). This customer may be blocked until time Tt*! if M(k + 1) =0
and TF*! if M(k + 1) = 1. Thus we obtain

T = (T +of) v (T§ +of) v ThtY ., if M(E) = 1.
Similarly, one can see that

Tf = (T +of) v (T§ +of) v Tl if M(E) =0.
Therefore, we get

T} = (T + of) v (Té + of) vV ThGL,,  0<k<K- 1.
More generally, it can be checked that
Ty = (Tk Mk + Oy ) ( -1t ‘Trf) v Tnk—+11+M(k+1)7
n=>1, 0<k<K-1

Let 0 < d(k) < K — 1 denote the number of initially nonempty servers down-
stream of server k, excluding k:

d(k) = min{ili > 0, M(k +i + 1) = 0},

that is, M(k + 1) =1,..., M(k + d(k)) =1, M(k + d(k) + 1) = 0.
Suppose that d(k) > 0 [i.e.,, M(k + 1) = 1]; we get from (5.4) that

T]=(T;-l +a]) Vv (Ti_1+0]) VT, k<j<k+d(k),

Tnk+d(k) _ (Tnk_+1d(k)—1 + Unk+d(k)) v (Tnk_-e—{i(k) + o_r{e+d(k)) v Tnkj—ld(k)+1‘

(5.4)

Hence we have the formula

k+d(k)—1
k= (Tr oy + ) v V (T/.,+0c]Vvo/*!
os T (@S vV )

(Tk+d(k) + 0_k+d(k)) v Thtdtt,
It is readily checked that the above equation also holds when d(k) = 0

Now let 0 < u(k) < K — 1 be the number of initially empty servers up-
stream of server k, including %:

u(k) = min{ili > 0, M(k — i) =1},

that is, M(k) = ,M(E — u(k) + 1) =0, M(k — u(k)) = 1.
If u(k)>0 [1 e M(k) = 0], then we get from (5.4) that
T =(T'+ o) V(T + o) VTIH,  k—u(k)<j<k,

Tr{e—u(k) = (Tnk_lu(k) 1 + o.nk u(k)) Vv (T:_lu(k) + O,:—u(k)) Vi T::llt(k)+1‘
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After some simple substitutions in the preceding relations, we get

k
(5.6) T}r ' +ok = (Trp®-t 4 hedrbyy | (T, + A{;k)),
j=k—u(k)
where .
Jj+[(k—j)mod K]
DU Y ol 1<j,k<K.

i=j

Therefore, if M(k) = 0, then the relation (5.5) can be rewritten as

k-1
N U W ( V (T],+ M,';k))
j=k—u(k)
(5.7) k+d(k)-1 ' ' )
v V (T{_,+dlVal*h)
j=k

V(TEHI® 4 gh+d®) v Trrdd+1,
This last relation trivially holds when M(%) = 1. Let
mh={k—u(k) — 1,k —u(k),....k,....,k +d(k), k +d(k) + 1}

and
Mo, j=k=u(k) -1,
AR, E—u(k) <j<k,
Lk — o ygin=1 V o, J =k,
e vedt E<j<k+d(k),
g ta®, j=k+d(k),
0, j=k+d(k)+ 1.

Owing to equation (5.7), we get immediately the final relation:

LEMMA 5.3. The state variables THY), k = 1,..., K, satisfy the recursion

TE(Y) = Y,
(5.8) T* (Y) = max (THY) +19%), ~ n>0.
{jer?)
APPENDIX

For any finite random variable B, we define its positive part B*= max(B, 0)
and its negative part B~ by the relation B = B*— B™.



STOCHASTIC RECURSIVE SEQUENCES 373

LEMMA A.1l. Let C be a finite and nonnegative random variable. Define

B=C-0"'—C. If either E[B'] <o or E[B"]< », then E[B]=0,
lim,C-60"/n=0a.s.and lim,C-607"/n =0 a.s.

Proor. We first consider the case E[B*] < ». For all n > 0, we have

Al Ceo" lnz_‘,lB 07! ¢
. = — 0"+ —.
( ) n n ;= n

Since E[B™*] < «, we get from Birkhoff’s theorem for quasi-integrable random
variables that

n-1

lim — Y, Boo ' =E[B] as,

noellj—g
where E[Blis —x if E[B~] = . We cannot have E[B~] = «. If this were the
case, by letting n go to « in (A.1), we would get a left-hand side that is
nonnegative by assumption, and a right-hand side that tends to —« a.s.
Therefore, necessarily E[B~] < », and B is hence in L. It then follows from
[2], page 36, that E[ B] = 0. Using this in (A.1), we get in turn from Birkhoff’s
theorem that

. Cegm  1not . cC
lim =lim— ) Bo6 '+ lim —=0 as.
n—o n n—-o N i=0 n—oo N

If we have E[B~] < «, we can write

Cof" 1 . C
= =Y (-B)eoi+ —
nigl( ) n’

n

and the proof follows from the same arguments as above. O

Proor oF (2.12). From (2.10), we get the bound

max A*¥ o 9 < Y MJ + A,
ke?, je ¥ 1<i<h

where A = maxk’jllk’jl. Since A is integrable, Ac07"/n — 0 a.s., and it is
enough to prove that M7 -0~ "/n tends to zero a.s. for all j € 7;,i < h, to get
the result. For this, we use the relation

Mio0>MJ+ 177,
which follows from the assumption that j € 7/ a.s. Therefore
Mioo= ' — M < —1770071
Since 7'/ is assumed to be integrable the proof is concluded from Lemma A.1.

]
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