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OCCUPATION TIME LARGE DEVIATIONS FOR THE
SYMMETRIC SIMPLE EXCLUSION PROCESS

By C. LanDim
Ecole Polytechnique

We obtain the decay rate of the large deviation probabilities of occupa-
tion time for the symmetric simple exclusion process. Furthermore, in
dimension d # 2, we prove a large deviation principle for the occupation
time. To obtain these results, we prove hydrodynamical limits for the
weakly asymmetric simple exclusion process and we prove a large deviation
principle for the empirical density for the symmetric simple exclusion
process.

1. Introduction. One of the most studied interacting particle systems is
the symmetric simple exclusion process which can be informally described as
follows. Let Z¢ denote the d-dimensional integers. Consider transition proba-
bilities p(k, j) on Z? such that p(%, j) = p(j, k). Each site of Z¢ is occupied
by at most one particle. A particle at site 2 waits a mean 1 exponential time
and then chooses a site j with probability p(k, j). If the site j is empty, the
particle at 2 jumps to j, otherwise it stays at k Throughout this paper, we
will denote this process by (n,) € D([0, «[, {0, 1}Z ) and by n(%) the number of
particles at a site £ € Z¢ for the configuration 7.

In this paper, we investigate the large deviations for the additive functional
[¢n(0) ds for two reasons.

On the one hand, we know from [13] that for some transition probabilities
p(k, j), the product Bernoulli measures v, (v{n; n(k) = 1} = p) are extremal
- invariant for the process. Therefore, (1 /t) jons(O) ds — p, -almost surely.
Moreover, Kipnis [9] proved a central limit theorem for this functlonal So, it is
a natural question to consider the large deviations.

On the other hand, since in dimensions 1 and 2 random walks with finite
second moments are recurrent (see [15]), it is natural to expect that in these
dimensions the asymptotic decay rates of large deviations will be o(¢) as ¢ —»
(see [12] for the recurrent case and [8] and [11] for the transient). This is
indeed the case. In fact, we will show that the decay rates for the large
deviations are

VE, ifd =1,
(1.1) a,={t/logt, ifd=2,
t, if d > 3.

In this way, this paper is a sequel to the study of occupation time large
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OCCUPATION TIME LARGE DEVIATIONS 207

deviation probabilities for particle systems initiated by Cox and Griffeath [5]
and continued by several authors ([2], [3] and [4]).

In dimension d # 2, we will prove a large deviation principle for the
additive functional [{7n,(0)ds. The idea will be the same in dimension 1 and
d > 3. First, we prove a large deviation principle at a “process’’ level and then
apply a contraction principle directly (d > 3) or with some work (d = 1) to
obtain the large deviations for the functional considered. The method to prove
the large deviation principle at the process level heavily depends on the
reversibility of the process in equilibrium.

This paper is divided in three independent parts. In Section 2, we obtain the
large deviations for [{n,(0)ds in dimension d > 3 with the techniques devel-
oped by de Acosta [6] and Deuschel and Stroock [7].

In Section 3, we prove a large deviation principle for [{1,(0) ds in dimension
1. This is done by proving first a large deviation principle for the empirical
density of the symmetric simple exclusion process on Z. A large deviation
principle of this kind was first proved by Kipnis, Olla and Varadhan [10]. The
proof of this large deviation principle relies on a superexponential estimate. We
give a new proof of this estimate which holds for Z. With this result, we obtain
the large deviations for [¢n,(0) ds.

We prove large deviation principles for the occupation time applying con-
traction principles. For this reason the rate functions obtained are given by
variational formulas. Since we are not able to obtain explicit expressions for
these variational formulas, we need to show that the rate functions are not
degenerate. In Section 4, by comparing the symmetric simple exclusion process
with another process where each particle moves independently from the others
with the same dynamic as the ones which move according to simple exclusion,
we prove that the rate functions obtained in Sections 2 and 3 are bounded
below by the rate functions obtained by Cox and Griffeath [5] for the indepen-
dent process. In particular, this proves that they are not degenerate. Moreover,
this result together with results obtained by Arratia [2] show that the decay
rate for the large deviation probabilities for the occupation time in dimension 2
is a, given by (1.1).

The method we use to prove large deviations in dimension d # 2 does not
apply in dimension 2. Therefore, a result in this direction would be welcome.
Another interesting question is to consider the large deviations in the asym-
metric case, where the process in equilibrium is no longer reversible and where
therefore our techniques do not apply.

2. The case d > 3. In this section, we will consider the case d > 3, where
no surprise arises. Throughout this paper, to simplify the notation, we will
denote {0, 12 by X, and for d = 1, we will omit the subscript. Let p(%, j) be
symmetric transition probabilities on Z9:

(2.1) p(k,j) 20, YLp(k,j)=1, p(k,j)=p(j k).
J ~

In this section, we will consider the symmetric simple exclusion process
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associated with the transition probabilities (2.1). This is the Markov process on
X4, whose generator acts on cylindrical functions as

(2.2) Lf(n) = X pk, )] f(n*7) = f(0)],

k,jezd
where
n(i), ifi#k,J,
(2.3) n*I(i) = (n(k), ifi=j,
n(j), ifi==k.

In the nearest-neighbor case, where p(k,j)=1/2d if |j — k| =1 and 0
otherwise, we will denote L by L,,.

For p € [0, 1], we know from [13] that the product measures v, on X, with
marginals given by v {n; n(k) = 1} = p for every k& in Z¢°, are reversible for
this process. We will denote by P, the corresponding probability measure on
the path space D([0, o[, X ).

To state the theorem, we will need to introduce some notation. Let M be
the space of probability measures on X, endowed with the weak™ topology
which is metrizable on M, and %, the space of positive real measurable
functions defined on X,. For f,g: X; > R, let (f, g = [f(n)g(nv,(dn).
Define the Dirichlet form D on &, by

@4) D) =1L p(k, ) [[VIET) = VFn) | )

and I;: M - [0, ] by
D do
(2.5) I(0) = dv,

o0 otherwise.

b

), ifo<xv,

It is not hard to see that the function I, is convex and is not lower
semicontinuous. Indeed, to see that I, is not lower semicontinuous, for a
sufficiently large integer N,,, consider the product measures (o), Ny < N <
with marginals given by

p+ ifk;=0for2<j<d,k; evenand Ny <k; <N,

E )
0, otherwise.

on{n(k) =1} =

Then lim y oy = o, limsupy, I;(0y) < ® and o, is not absolutely continuous
with respect to v,. To overcome this difficulty, we introduce the function 1;:
M - [0, «]:
“(2.6) I,(o) = lim inf I,(»),

e—>0 veB(o,s)
where B(o, ¢) is the ball centered at o .with radius . Then I, is convex and
lower semicontinuous.
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Let £, = (1/t)[38, ds € M, where for n € X, 8, is the probability mea-
sure concentrated on the configuration 1. We can now state the following
theorem.

THEOREM 2.1. For every closed subset F and for every open subset G of M,

hmsup—logP[_/ eFl< - 1and(0')

t—

lim inf — logP [£€G]l= - 1nf Id(o)
t—> o
PROOF OF THE UPPER BOUND. The upper bound will be obtained by a

method introduced by de Acosta [6].
Let V: X, — R be a continuous function. By the Feynman-Kac formula and

the spectral theorem,

(2.7) Ep[exp(fotV(ns) ds)] < et

where Ay is the greatest eigenvalue of the self-adjoint operator L + V. From
the variational formula for the greatest eigenvalue, we have

(2.8) Ay = sr;p{ [V F(mym(dm) = D,

where the sup is taken over all the distributions with density f, that is, over
all nonnegative functions f such that

JF(myv(dn) =1

and D is the Dirichlet form given by (2.4).
Since if o(dn) = f(n)v,(dn), I,(0) = D(f), we can write

(2.9) vv= sup | [Vinyo(dn) - I(o)).

o<<y,

Since [;(¢) = « if o is not absolutely continuous relative to v, and since V is
bounded, we can omit the restriction o < v, in the sup. From (2.7), (2.8) and
(2.9), we obtain

llrtn_)s:p —log E [exp(f V(n,) ds)] < fg}};{fV(n)o(dn) - Id(a')}
< sup { [V(nyo(dn) - 1(o)),

because Id(cr) < Id(a')
Now, since M is compact, applylng a continuous version of Theorem 2.1 of

[6], we obtain that for every closed subset F of M,

lim sup 7logP[,/ eFl< - 1an(a')

t— o0
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where

Iy = s | [Vinotam = s | [Vinstan - 1,0)]}
Vel(Xy) veM

Since I, is lower semicontinuous, convex and not identically equal to « and

since the dual of M with the weak™* topology is C(X,), J = I, completing the

proof of the upper bound. O

PROOF OF THE LOWER BOUND. It is easy to show that the hypotheses of
Theorem 5.3.10 of [7] are satisfied. Therefore, for every open set G of M,

lim inf — logP[/ €G> - ingfd(o-)

t—o o0

= —inf ]
oG a(7),
where the equality follows from the definition of I;,. O

From Theorem 2.1, we will prove the large deviations for the occupation
time.

Since ®: M — R defined by ®(o) = [n(0)o(dn) is continuous and I, is a
rate function in the terminology of [7], from the contraction principle we
obtain the following corollary as an immediate consequence of the last theo-
rem.

CoroLLARY. For everjy closed set F and every open set G of [0, 1],

lim sup —logP [ [173(0) ds € F] < - 1nf zpd(a)

t—

1
lim inf —log P, [ ftns(O) ds € G] > — inf ¢y(a),
t 0 ae@

t—>

where

Uy (a) = inf I,(0).
a(a) O a(o)

In the case where p(k, j) = 1/2d if |j — k| = 1 and 0 otherwise, it is not
hard to see that ¢, = 0 in dimensions 1 and 2. To show it, fix 0 <« < 1 and
let A: RY - R, be a twice differentiable function such that Alge_[—1 ¢ =1
and A(0) = a(l — p)/p(1 — a). For each integer N consider the product mea-
sure

n(k)
oi(dn) =Ky T1 A(Yv—) v,(dn),
keAy
where K, is a normalizing constant and Ay = {-N,..., N}¥. Then

(0o (dn) = a for every N and a simple computation shows that in dimen-
sions 1 and 2 there exists a sequence (A,) for which lim, lim y I ,(o{*) = 0
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Since for every 0 < a <1, 0 < ¢y, (a) = inf,, | Go@n=-a Lalo) <
lim,, lim ,, I,(o{*) = 0, this proves that in these dimensions ¢, = 0.

Therefore, in dimensions 1 and 2, the contraction principle yields no
information on the real decay rate. On the other hand, in Section 4, we will
prove that ¢, is not degenerate in dimension d > 3.

3. The case d = 1. In this section, we will consider the case d = 1. First,
we show that to prove the occupation time large deviations, it is enough to
consider the large deviations for the empirical density. This is the content of
Lemma 3.1. Then, in the following two subsections, we prove a large deviation
principle for the empirical density, following the ideas of [10]. Finally, in the
fourth subsection, from the large deviation principle for the empirical density,
we obtain the occupation time large deviations.

In this section, for each integer N, we consider the speeded up symmetric
simple exclusion process on X, which is the Markov process whose generator
acts on cylindrical functions as

2

Y [F(n?*) = f(n)],

lj—kl=1

(3.1) Ly f(n) = o
where n/'* is given by (2.3).

For a metric space ., we will denote, respectively, by C(.”), Cx(.”) and
CJ(”) the space of real continuous functions, real continuous functions with
compact support and real functions with a jth continuous derivative.

Given a function y(x) on R such that 0 < y(x) < 1, we denote by »N the
product measure on X with marginals given by vyN(n; n(j)=1) =v(j/N),
J € Z. We shall identify the constant p [0, 1] with the constant real function
equal to p. We also define, for a € [0, 1] and ¢ € C(X),

d(a) =vX(¢).

We denote by Py the probability on the space D([0, T'],X) corresponding to
the process with generator given by (3.1) and with initial measure vyN . We will
also have to consider, for real continuous functions H in Ci(R X [0, T']), the
weakly asymmetric simple exclusion process (WASEP) which is the strong
Markov process whose generator acts on cylindrical functions f as

2

Lg,tf("?) = N_ Y w(k)[1 - n(j)]eBV/N.O-HE/N.D
(32) 2 -1

X[ f(n*7) = f(m)],

where n*7 is given by (2.3). -

The probability on D(0, T'],X) corresponding to this process with initial
measure v’ will be denoted by P17, We denote by M, the set of functions p
on R such that 0 < u < 1 and by M (p) the set of functions y in M, for which
there exists x, € R, such that y(x) = p if |x| > x,.
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We shall use the notation
(u; G) = fG(x)p,(x) dx forp € My, G € Cx(R),
R

and consider on M, the topology induced by Cy(R) with the duality (, ). We
shall observe that this topology, if we consider M, as a measure space, is the

vague topology which is metrizable.
Given any path on D([0, T'],X), the empirical density is defined by

I«LN(S’ x;m) = E ns(k)l[k/N,(kH)/N[(x)’
kez

so that uN(-,n) € D(0,T], M,).
Let u € D(0, T], M,). Consider in CZ (R X [0, T']) the scalar product

(1,61 = [t S G210

Consider in CZXR X [0,T]) the equivalence relation G ~ H if [H -G,
H - G]=0. Let H'(w) be the Hilbert space defined as the completion of
C2ZYR x [0, T DI~ with respect to this scalar product.

3.1. Reduction to the empirical density. First, we will state a lemma which
establishes that to prove the occupation time large deviations, it will be
sufficient to consider the large deviations for the empirical density. This
lemma was indicated by S. R. S. Varadhan.

. 5]

Proor. It is enough to prove the lemma without the absolute value. In this
case, the probability in (3.3) is less than or equal to

LemMa 3.1. For every 6 > 0,

1
lim sup lim sup —log P§
e—0 N-ox N

P 1
ns(o) RGN E ns(.]) ds
0 2Ne +1

(3.3) Li=Ne

= —00,

(3.4) e"“sNE,’:,[exp(athVN,e(ns) ds)] for every a > 0,
0
if

Vn,o(m) = 1(0) ~ 57 | IZN n(J).
jl<Ne

As in Section 2, by the Feynman-Kac formula, the spectral theorem and the
classical variational formula for the largest eigenvalue of a self-adjoint opera-
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tor, this term is less than or equal to

eXp{—GSN + tsup[aNfVN,E(n) f(n)v,(dn) — N2D(f)]}
(3.5) !
= eXP{N(—aﬁ + ts?p[afVN,a(n)f(n)Vp(dn) - ND(f)])},

where the sup is taken over all distributions on X with density f and D(f) is
the Dirichlet form given by

D(f) = %lk_‘%:lf[\/f(nk’j — V) | (dn).

In view of (3.4) and (3.5), in order to prove

(3.6) hms(l)lp hrArrlsup —log PN[f Wy o(ns) ds = 6] < —aé,

it is enough to show that for every a > 0,

(3.7) hms;lp 1111:,1 sup sup {afVN Lm) f(m)v,(dn) — ND( f)} <0.

Letting a T« in (3.6), we shall obtain the lemma. To prove (3.7), we develop
the integral which appears in the left-hand side. We have

a[Vy,.(n) F(n)v,(dn) = Y [(n(0) = n(j)) F(m)w,(dn).

2Ne +1 i=Ne

Changing in the integral the variable n to 1%/, we obtain that the last
expression is equal to

Y [[n(0) = (DI F(n) = F(n*7)]w,(dn).

a
2[2Ne + 1] l=Ne

Since

| f(n) — F(n® f(n) = VF@®) [WF(n) + F(n%)

by the Schwarz inequality and remembering that f is a distribution function,
we obtain that this last expression is less than

a 1/2

s R IGORNGCRNIEACD)

Since

n%J = ( ((( (o)) )j1,,-)1—2,j—1) )1,0,
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by the inequality
n 2 n
( Y aj) <n} a?
j=1 j=1

and by the definition of the Dirichlet form, we obtain that this last expressio
is less than

V2ay/(2Ne + 1)D(f) .
Therefore, the left-hand side of (3.7) is bounded above by
lim lim sup { sup{x/fa (2Ne + 1)x — Nx}}

e20 Noo x>0
lim 9 ,2Ne +1
= u _— ,
e SIPSCTTTN

which proves the assertion (3.7). O

3.2. A superexponential estimate. Now, we prove a large deviation princi-
ple for the empirical density. The proof relies on a superexponential estimate
which first appeared in [10]. We give another proof of this estimate which has
the advantage of holding for 7! instead of the torus considered in that paper.

LEmMA 3.2. Let H € Cx(R X R,), p €[0,1] and ¢ be a cylindrical func-
tion. Let

1 i . 1
g1 =— ) H|l— : - | =—— j
VN,E (S, 77) N igz (N’S)i}ld)(n) ¢'( 9Ne + 1 Ij_%:SNEn(J)):I7
where 7; is the space shift on X. Then, for every 6 > 0,

[V (s,m,) ds >a] .

(3.8) lim sup lim sup Nlog pPg

e—0 N-ow

Proor. It is easy to see that it is enough to prove the lemma for functions
H for which there exist n in Nand 0 = ¢, <#¢, < -+ <t, =t such that

H(x,t)y =H(x,t;)=H;j(x) fort;<t<t;,;,,0<j<n,

with each function H; continuous and with compact support. Since the
measure v, is invariant for the process, to prove the lemma for such functions,
it is enough to consider continuous functions with'compact support H which
do not depend on time. Observe that in this case, Vi.%(s, n) is a function of 7
only.

" On the other hand, it is a.lso sufficient to prove the lemma for cylindrical
functions of the type

(3.9) é(n) = ign(i),
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for finite subsets A of Z', because every cylindrical function is a finite linear
combination of such product functions. To keep the notation simple, we will
consider the case where the set A in (3.9) is {0, 1}. The general case is proved

in the same way.
It is sufficient to consider (3.8) without the absolute value. As in the proof of
Lemma 3.1, to prove the lemma, it is enough to show

(3.10) lim sup lim sup sup {afVﬁ’f(n) f(m)v,(dn) — ND( f)} < 0.

e—>0 N-ox

To do so, we develop the integral which appears in the left-hand side. We
have

a (V2 (n) F(m)v,(dm)

- vEa(y)/
Xf(n)v,(dn).

Denoting the empty set of Z by A, {0} by A, and {0, 1} by A,, we see that this
expression can be rewritten, introducing intermediary terms, as

—ZH( )Z[{(Mz kn(i+j))(—2N51+1 y n(l))k

|l—il<Ne

1 2
n(i)ﬂ(i+1)—(m > n(j))}

|j—il<Ne

1 k+1
—( I'1 n(i+j))(m > n(l)) }f(n)Vp(dn)~

JEAI, |i—i]<Ne

We will consider only the term %2 = 0. For the other one we would proceed in
the same way. This term is equal to

i
_ H ] L+ 1) —n(i +1 dn).
s e (o T CICTER R CE IR
For [ # 0, changing in the integral the variable 7 to n'*»i*! we obtain that
the last expression is bounded above by

T a5 fa@inG 1 -G+ 0]
i |l|;](\)ls

2N[2N5 + 1]

o 1
X[7(n) = a4y + 0[5 ).

where O(1/N) appeared to take care of the case [ = 0.
Now, we can proceed as in the last lemma to obtain (3.10). O
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3.3. Hydrodynamical limits and large deviations. In this subsection, we
will prove hydrodynamical limits for the weakly asymmetric process and a
large deviation principle for the empirical density for the speeded up symmet-
ric simple exclusion process. Almost all proofs will be omitted since they are
similar to those in [10]. We should remark that, as in [10], to prove a large
deviation principle for the empirical density, we need to consider WASEP
processes whose perturbations depend on time. Indeed, we will see below in
(3.12), that to define the rate function I, we have to consider WASEP
processes whose perturbations depend on space and time.

HypropyNamicAL LIMITS. First, we observe that the superexponential esti-
mate (3.8) also holds for P if He CZYR X [0,T]D and y € M(p). The
proof of this result is the same as the one of Theorem 3.2 in [10]. Then, just as
in Section 3 of [10], we can prove the following theorem.

THEOREM 3.1. As N — oo, the empirical density u™(s, x;n) converges in
P -probability to the unique weak solution p(t, x) of the equation

p 1% [ oH

(3.11) %29 9r —p(1 —P)J, p(0,x) = y(x).

The uniqueness of weak solutions of (3.11) in the class of bounded functions
can be established with a similar argument to the one used to prove Proposi-
tions 3.4 and 3.5 of [14].

LARGE DEVIATIONS; UPPER BOUND. Forany u € D([0,T], M) and y € M(p),
define the linear functional on CZ (R X [0, T']:

r a1 92
l(M;G)=<MT;G(',T)>—<uo;G(',0)>—f0<ut;(— 29 2) (: t)>dt

and introduce the following rate functions:
G 2
IO("‘“) = sup l(/"” ) - _f /J's[l /J“s] (9_( ’S) ds s
GeCZ'®Rx[0,TD

h(mo;y) =  sup  {Crosdo) + <1 = po; ¢y
(3.12) b0, $1€Cr(®)

—<1;log[ye4’° +(1- y)e¢1]>},
I(r) =1Io(n) frh(uo;v)-

As in Section 4 of [10], we prove the following theorem.



OCCUPATION TIME LARGE DEVIATIONS 217
THEOREM 3.2. Let v € M,(p). For any closed set C < D(0,T], M,),

1
li —log P}luN eC| < — inf I .
im sup v log P[u" € C] < ~ inf I,(u)

LARGE DEVIATIONS; LOWER BOUND. As in Section 5 of [10], we first observe
that if y and u, are such that A(uy;y) < », we have

W 1-pn
h(po;y) = <uo;10g—°> + <1 — Mo;log 1 2 >
% -y

Furthermore, if I,(1) < », there exists H € H'(u(1 — w)) such that

1 oH 2
(3.13) Iy(p) = E[OT<M(8, 1 = u(s, )]s [5(',8)] >ds,

and u satisfies in the weak sense the equation

314 p 1% 0 [0H 1
(3.14) =392 ol PP

We omit the proof of this result since it is the same as the one of Lemma 5.1 of
[10].

THEOREM 3.3. Let y € M,(p) N C(R) such that 0 <y < 1. For any open
neighborhood A of a given p in D(0,T], M),

1
(3.15) 1115njgfﬁlog Py[uN e A] = —L(n).

Proor. We will just point out the new arguments needed in our case. Let
w € A. Of course, we only have to consider the case where I (u) < ». Fix
w € D(0,T], M)) such that I (u) <. For 0 <a <1,let

pi(t,x) =p +afu(t,x) —p].

It is easy to show that u® —» u in D([0,T], M,) as a 11. On the other hand,
since I, is convex, lower semicontinuous and invariant under spatial transla-
tions and since Iy(p) = 0, lim, _,; I,(u®) = I,(n). With our assumptions on v,
it is easy to see that lim, _,; A(u$,v) = h(u,, ), so that

Lim I,(u%) = L(n).
Since for every 0 < a < 1, there exists 6(a) > 0 such that
(3.16) o <u(t,x) <1-39,

we only have to prove (3.15) for paths u with this property. Fix such
w € D(0,T], M)).

For £ > 0, let o, € Cx(R) be smooth -approximations of the identity in
LYR): 0, >0, [po(x)dx =1, o(x) =0 if |x| > ¢ and for every fe LYR),
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o, * f— f in L'(R) as ¢ - 0, where * denotes the convolution in R. Define u®
as

(3.17) u%ax)+4#0m—wo%w)@n

With the same arguments used before, we can prove that u° = u in
D([0,T], M,) as £ |0 and that

lim 7, () = I, (k).
Therefore, to prove the theorem, it is enough to prove (3.15) for spatial

convolutions u® in D(0,T], M,) with property (3.16). Fix ¢ > 0. Since
I(u®) < o, by (3.13), there exists H, € H'(u(1 — p°)) such that

3.18 1) = = [T uen - e, | 2 Na
(3.18) ok = 5 [ (w1 -l | o) et
It follows from properties (3.16) and (3.17) of u° that H, is regular and that
9H, 9H,
(3.19) ‘ < oo, ‘ < oo,
x 2 9x |l

Hence, 0H,/dx € LP(R X [0, T']) for every p > 2.

The problem is that we only have proved the hydrodynamical limit for
WASEP processes [defined in (3.2)] whose function H is in CZ([R x [0, T'].
There is no reason for the function H, obtained above to be in
C2 'R % [0, T]). Therefore, we will have to approximate this function H, by
C2YR x [0,TD functions H, in such a way that the weak solutions w, of
(3.14) associated to H, converge in the Skorohod topology to n° and that
I(n,) converge to I (u°).

Let (H,) be a sequence of functions in CZ (R X [0, T']) such that

3.20) (i 6,  oH, in L3(R x [0, T
(3.20) (i) rraindralil (Rx[o,T]),

o0H,
dx

)
©

1
+f, where ["dt [ dufi(x,t) < -
0 R

oH
(8.20) (ii) H ax"

S ‘
o

n

oH
(3.20) (i) ‘ -

€

| ox
Let m, € M(p) N C(R) such that
(321) mnl[—n,n] EMS(()’ ')|[—n,n]- :

Let u, be the unique bounded solution of

ow  10% o [oH,
o 20x?  9x| ox

u(l—p«)],
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With similar methods to those developed in the proof of Proposition 3.5 of
[14], from the propeties (3.19) of H,, we can prove that u, — u° uniformly
over the compact sets of R X [0, T']. In particular, u, — u° in D(0,T], M)).
From the definition (3.21) of u,(0, ) it is easy to see that A(u,(:,0),y) =
h(u%,y). Finally from the representation (3.18) and since, from (3.20),
0H,/3x — 0H, /ox in L*R X [0, T)), it follows that Io(u,) — I,().

Thus, to prove the theorem, we only have to show (3.15) for u €
D(0,T], M,) with I (u) < and such that u(0, )€ C(R) n M(p) and for
which the associated functlon H is in CZ 'R X [0, T'D. This is done just as in
the proof of Theorem 5.2 of [10]. O

3.4. Occupation time large deviations. In this subsection, from the large
deviation principle for the empirical density established in the last section, we
shall obtain a large deviation principle for the occupation time of a site in the
symmetric simple exclusion process.

If we define

U = {p € D([0,T], M,); n is continuous in space, uniformly in time},
let, for a in[0,1]and T € R,

g, 7(a) = inf IL(w),
w; /T fFuls,00ds=a
neU
where I () was defined in the last subsection. Since I, and U are convex, it
follows that 1/;1 r is also convex. Let

,p(a) = im inf G 7(B).

B-al<e

Belo,1]
Then, since tpl r is convex, ¢, 5 is convex. We also have that ¢, ; is lower
semicontinuous and ¢, 7(a) < ¢1 r(a) for any a € [0, 1]. Now, we will prove
that ¢, 1 is the rate function of the large deviation principle for the occupation
time of a site in the symmetric simple exclusion process.

THEOREM 3.4. Let y € M,(p) N C(R) such that 0 <y < 1. For every closed
subset F and every open subset G of [0, 1],

1 1
lim sup —log Py —ans(O) dseF| < —infy; r(a),

Now N T 0 acF
(3.22)

. . 1 1 T 3
llgl_}lgfﬁlog PX,[?.I;) n,(0) ds € G} 2 _‘auelg‘//l,T(a)'

PROOF OF THE UPPER BOUND.” Let F be a closed subset of [0,1] and for
8 > 0 define

F6={ae[0 1]; inf e — gl <5}
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For every 6 > 0, we have

Pyl L (Tn.0yds e F| < Py =| [*[n.c0 Ly oiaslss
— eF| < — - — >
W7 ) m(0)ds € F | < PY| ) [ 1] 7.(0) e 1z, )|
1,7 ]
+ Py = [ ) ds € F? |,
%7, 2Ns+1,j§N€"s(J) °

From Lemma 3.1, we know that for every 6 > 0,

T

1
fOT("s(O) NI I L ns(j)) ds z‘o‘],

1
lim sup lim sup Nlog Py

e—0 N-owx |jl<Ne
= —00,
Therefore, the left-hand side of (3.22) is less than or equal to
o . 1 1 .7 . s
611>1£ ln:lf(l)lp hrbrllfzp Nlog Py ?/;) SNe 1 Y n,(j)ds € F?|.

|jl<Ne

Since the set {u € D(0,T]1, M,); (1/2T.9)[0T/i€,u(s, x)dxds € F?} is closed in
D(0,T], M,), by the large deviation principle proved in the last subsection the
last expression is bounded above by

lim inf inf{ I () lfoE( ) dxds € F?
— sup liminf in ; —— s,x)dxds
3>I(; e—0 YM 2Te 0 _SM

(3.23) 1 op
= - liminf inf{ I 5 *(s,0)ds € F?
§1>113 1?1)151 1n{ L(1); Tfo,u(s, )ds € },

if, for o € D([0, T}, M,) and for ¢ > 0, we denote by x° the function such that

1 x+e
w(s,x) = %f_ wu(s,y)dy forevery(s,x)€[0,T]XR.

Since I, is convex, lower semicontinuous and translation invariant, I,(u°)
< I,(w). On the other hand, since y € M (p) N C(R), it is easy to show that
h(uf, y) < h(u, y) + O(e), where lim,_,O(¢) = 0 uniformly in u €
D([0,T1, M,). Therefore, (3.23) is less than or equal to

1
— sup liminf inf{Iy(/f); —fj;)T,uf(s,O) ds F5}.

5>0 ¢—0

Recalling the definition of U, we see that for every ¢ > 0, u°* € U. Thus this
last expression is less than or equal to

1
_ supinf{[y(ﬂ); _‘/T,U«(S’O) dseFland u € U},
5>0 T /o
which, by the definition of ‘/;1,T, is equal to

—sup inf §, p(a).
5>0 acF®
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Since ¢, r(a) < ¥, r(a) for every a € [0, 1], this last term is less than or equal
to

—sup inf ¢, ().
5>0 acF?

Finally, since ¢,  is lower semicontinuous and [0, 1] is compact, this is equal
to

— inf ¢ p(@),
ale " Lr(a)
which proves the upper bound. O

PROOF OF THE LOWER BOUND. Let a € G and § > 0 such that

inf |a — Bl > 49.
o6 1 7P

Therefore,

< 46

1 .7
?-/;)ns(O)dS—a

1
P,?,[TfoTns(O) ds € G|> Pg[

Since by Lemma 3.1, for every x > 0,

1 1
/;)T(ns(o) T oON- 4 1 Z ns(J)) ds

1
. . - v —
lim sup lim sup —log Py T 2Ne + 1,
jl<Ne

e—0 N-ow N

= —oo,

1
Tans(O) ds —a| <46
0

1
lll{Jn _}gf ]—V—log Pg,[

< 46

g—=0 N-ox

T 1 r
= lim lim inf -log¢ Py ?fo n,(0) ds — «

1
- fT(’ns(O)——l— > ns(j))ds

+Py,
T 2Ne + 1 ji<ne

. 25]}.
<aa]

< 25}

This last expression is greater than or equal to

1

1 1 .7
T-[o 2Ne + 1

lim lim inf —log Py

lim liminf - Y n(j)ds —a

|jl<Ne

Since

11 e
{p, e D([0,T], M,); Efo f_ w(s,x)dxds — a

is open in D([0,T], M,), by the large deviation principle proved in the last
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subsection this last term is greater than or equal to

%[T[j w(s,x)dxds — a

Fix i € U such that [(1/T)/fa(s,0)ds — a| < 8. Since 4 € U, there exists
€o > 0 such that for ¢ < g,

2Tef f u(s x)dxds — a

<28}.

(3.24) - lim inf{Iy(p,);

< 26.

Therefore,
o 1 7
I(R) = lnf{Iy(,u); ’E[O ]_8M(s, x)dxds —

Then it follows that

< 28} for every £ < g,.

1 €
F/Tf u(s,x)dxds — a <26}.
€70 “—¢

Thus (3.24) is greater than or equal to
< 3},

I(#) = lim inf{Iy( )

1 .7
Tfo w(s,0)ds — a
which, by the definition of ¢, 1, is equal to

— inf */f1 (B )

la—Bl<d

—inf{Iy(p,); u € U and

which is equal to
— inf l// 1,7(B),

la—Bl<

which proves the theorem. O

Returning to the symmetric simple exclusion process with generator L,
given by (2.2), let ¢, = ¢ ;. We have the following immediate corollary.

COROLLARY. For any closed subset F and open subset G of [0, 1],

1
lim sup —= 1/— log P, [ ans(O) ds € F] < - ail;g'l[fl(a),

T >

lim inf — ‘/_ —log P [Tans(O) ds € G] > - airelf(';l/q(a).

T >

We do not have an explicit formula for the rate function ¢,. Nevertheless, in
the next section we will show that ¢, is not degenerate.

4. The case d = 2. In this section, we do not establish a large deviation
principle for the occupation time for the symmetric simple exclusion process in
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dimension 2, but we determine the order of magnitude of the decay rate of the
large deviation probabilities. Furthermore, Theorem 4.1 together with Theo-
rem 1 of [2] prove that the rate functions ¢,, d # 2, obtained in Sections 2 and
3 are not degenerate.

In this section, we consider the symmetric simple exclusion process on 7¢
with transition probabilities given by

1
(4.1) p(x,y) = 54 if |x —y| = 1.

This is the Markov process on X, with generator L, given by (2.2).

For x in Z¢, we will denote by (X*) independent random walks on Z¢
starting from x with mean 1 holding time and transition probabilities given by
(4.1). Let

ps(x,y) =P[X;=y] and G(x,y)= fowps(x,y) ds.

To state the main result of this section, we will have to introduce some
notation. Let

, ifd=1,
(4.2) A ={m, if d =2,
1/G(0,0), ifd >3,
and
eX/2 — 1 2 eV/2le /2 ds — )
2p———+‘/— , d=1,1#0,
A T A
0, d=1,A=0,
4.3) ¢(A) ={ mpr
(4.8) ¥(}) P , fora <Ayif d =2,
T —A
P for A <A ifd> 3
< = o.
1 - AG(0,0)’ ot stal

For «a in [0, 1], let
(4.4) I(a) = sup {Aa—y¢(A)}.

0<A<Ag

It is easy to see that in every dimension I(a) > 0 for @ > p and that

m(Ya - o), if d = 2,

He) = (Va = vp)', ifd=3.

G(0,0)

Now, we can state the main theorem of this section.
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THEOREM 4.1. For any o > p,

1 1 .
lim sup — log Pp[7fns(0) ds > a’] < —I(a),
0

t—o o t

with a, defined in (1.1).

Theorem 4.1 together with Theorem 1 of [2] prove that the a, are the
asymptotic decay rates of occupation time large deviation probabilities for the
symmetric simple exclusion process (2.2) with generator L.

The main argument in the proof of Theorem 4.1 is an inequality comparing
the simple exclusion process and independent random walks which holds in a
larger context. To state this result, we consider a countable space S and
transition probabilities p(x,y) on S such that

(4.5) p(x,5) =p(y,x) 20 and ) p(x,y) = 1.
y

Since no confusion can arise, until the proof of Theorem 4.1 we will also
denote by (n,) the symmetric simple exclusion process on S and by (£,) the
process of independent random walks associated with these transition proba-
bilities. Formally, (n,) is the Markov process on {0, 1}° whose generator acts
on cylindrical functions as (2.2), with S instead of 72 and (¢,) is the Markov
process on N whose generator acts on cylindrical functions as

Lf(¢§) = X p(x,9)é(x)[ () = f(§)],
x,yE€S
where
£(2), ifz+x,y,
E9Y(z) =(&(x) -1, ifz=x,
Ey)+1, ifz=y,
and where N denotes the nonnegative integers.

For A c S, the expectation of the process starting from the configuration 7,
(¢,) such that

no(x)[éo(x)] = {(1): i)f;;lfere'w?s;,

will be denoted by E4. Choose a point in S and denote it by 0. Now, we can
state the following lemma.

LEMMA 4.1. For every subset A of S, rin R, nin N and 0 <s; <s, <
- <s, <o '

EA <E4

exp(r ilfsj(O))].

p(z ns,.(O))
j=1
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Proor. Assume that A is finite; the case of infinite A will follow by taking
limits. Fix a finite subset A of S, reR,n eNand0<s; < -+ <s, <,
Let m = |A| and .# be the set of matrices m X n with entries equal to 0 or 1.
The elements of .# will be denoted by a.

Fix ¢ > 0, which will converge to . The idea of the proof is to consider two
auxiliary processes (2,(¢); a(¢)) and (z4(¢); a(¢)). In these processes, we will
have two types of particles called first- and second-class particles. The first-class
particles will evolve on S, while the second-class particles will not move and lie
on {1,...,m} X {1,...,n}. In the first process, in each point of A, we put a
particle, label them from 1 to m and call them first-class particles. We start
without second-class particles [a(0) = 0 € .#]. The first-class particles evolve
on S according to a symmetric simple exclusion process with mean 1 holding
times and transition probabilities given by (4.5). These particles create
second-class particles in the following way. When the kth particle is at 0
between times s; and s; + 1/c, it creates a second-class particle in a at the
position (%, j) at rate c2. Each position (%, j) is occupied by at most one
second-class particle. Therefore, if a first-class particle tries to create a
second-class particle at a position already occupied, nothing happens.
The second process is the same, but with the first-class particles evolving as
independent symmetric random walks on S.

When c is large, if there is a particle at site 0 between times s; and
s; + 1/c, with high probability a second-class particle is created. In this way,
knowing the state of the process at time ¢ > s,, we will be able to guess the
number of particles on 0 at times s;, 1 <j < n. Comparing these two pro-
cesses by a method introduced by Liggett (see Proposition 8.1.7 of [13]), we will
prove the lemma. See [2] for a similar construction.

Let T™ = {a € 8™; a; # a; for every i # j} and fix ¢ > 0. As usual, we will
identify z € T™ with a subset A of S by

A={z;1<j=<m}.

The entries of an element a of .# will be denoted by aj for 1 <k < m and
1 <j < n. Until the end of the proof, we will omit ¢ when no confusion can
arise for the sake of simplicity. Consider the Markov processes on S™ X .#
whose generators are given by

L"{f(z,a) = Z Z p(zk,y)[f(z17'”7zk—1’y,zk+1,'",zm;a) _f(z,a)]

k=1yeS

X1

[y#2z,l<i<m]

L}fl;f(z;a) = kzl Zsp(zk’y)[f(zl"~~,zk—1’y’zk+1,"-,zm;a) _f(Z;a)]’
=lye

n m
L?;f(z’a) = Z Z c‘tll[zk=0][ f(z;all,":,a‘lle_ly1,ai+1,""a';n) _f(z;a')],
Jj=1k=1
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where
2 1
¢f = c“, 1fte[sj,sj+;,
0, otherwise.
Let
L;=L%+L3, Jj=12,
f(z; a)—exp( f f: ), (z;0) eS™ X A.

Although the rates are not homogeneous in time, to keep the notation simple,
we denote by

(U/),s o the semigroup associated with the generator L;, j = 1,2.

Since in the process with generator L,, the first-class particles evolve and
create second-class particles independently,

2f(2' O) = (z 0) exp( i f ):|
(4.6) m = =n
- [1zge® exp(rz af;m)],

j=1

where we denoted by EJ(Z'“) the expectation relative to the process with
generator L; for j = 1,2, starting from the configuration (z;a). With this
observation, it is easy to see that the function U2f(z) = U?2f(z;0) is bounded,
symmetric and positive definite in the terminology of [13]. Then, with an
integration by parts formula and an induction to take care of the inhomoge-
neous particles’ creation rate, just as in the proof of Proposition 8.1.7 of [13],

(4.7) U2f(z;0) — Uf(2;0) >0 forevery(z;a) € T™ X 4.

On the other hand, we have by the bounded convergence theorem that

lim E{4-% exp(rZ z ai(t)) - E4 exp(rZ ns(O))],

e j=1k=1 j=1 7
(4.8)

lim E¢4© exp(rZ r ai(t)) = E4 exp(rZ §s(0)) :

e j=1k=1 S

Therefore, since

(4,0
E;

uP’JS.

wlrf £

(4.7) and (4.8) prove the lemma. O

)] U/f(A;0) forj=1,2,
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ReEMARK 4.1. E. Andjel gave us another proof of Lemma 4.1 based on
correlation inequalities for the symmetric simple exclusion process (see [1].
His proof is obtained by induction on n. For n =0 it is clear. Fix n > 1,
A cS such that |A| =%k <» and for s; < -+ <s, let §=0C(sy,...,8,),
f(A,3) = EA[eXp(rZ;?:msj(O))], g(A,3) = EA[exP(rZ§=1§sj(0))] and F(r) =
sup, ., sup 4 -xl f(4, §) — g(A, $)]. Following the proof of Theorem 2.1 in [1],
for fixed A and § we bound above the expression f(A, ) — g(A, $). In order
to do it, we use the induction hypothesis and we observe from (4.6) that for A
such that A N {x,y} = &, 2g(A*?,§) < g(A** 5) + g(A»?,§) if A®?Y is the
configuration of SN with one particle on each site of A U {x, y} (two particles
on x if x =y). Proceeding as in [1], we obtain that for every r < o, F(r) <
J¢ke ** du F(r) and this shows that F(r) < 0.

The proof of the following proposition relies on a simple trick. This result
will enable us to prove Theorem 4.1.

PropPoOSITION 4.1. For every subset A of S, A in R and t > 0,

EA[exp()tj:ns(O) ds)] < EA[exp(Ajotgs(O) ds)].

Proor. dJust as in the proof of the lemma, we assume first that A is finite
and prove the general case by taking limits. Since 7(0) € {0, 1}, we have

EA[exp()\fOtns(O) ds)]

er""s(o) — 1
= EA[exp()\/t—————

" ds)] for every r > 0
o e —1

Ao\ ~
= g M/("-1) Z ( ) —’Ff(:dsl ---/(:dsn EA[eXp(rZ nsj(O)”
! j=1

ro_
n>0 e 1

A"l -
< e M/(e"-D) Z ( ) ——f(:dsl cet /:dsn EA[GXP(’"Z gsJ(O))]
j=1

nsole =1/ n!
rés(0)
te > -1
=E4 A ——
exp(/o pra— ds)l,

where the inequality follows from Lemma 4.1. Letting r |0, we obtain the
result by the bounded convergence theorem. O

We now return to the proof of Theorem 4.1 and consider the symmetric
simple exclusion process (n,) on'Z¢ with transition probabilities given by (4.1).

Proor OF THEOREM 4.1. Fix a > p. For x in Z¢, remember that (X7¥)
denote independent random walks starting from x with mean 1 holding time
and transition probability given by (4.1).
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By the Chebyshev inequality, for any A > 0,
a; rt
A— .
eXP( - fOnS(O) dS)]

Now, we shall develop the expectation to compare it with independent. random
walks.

Ep[exp(ﬂtf/o‘nsm) ds)]

1. .
(49) B fo n,(0) ds > a| < e **“E,

- /EA[eXp(A%f—jotns(O) ds)]vp(dA)
< fEA[exp()t%jzfs(O) ds)]vp(dA)
= /E[exp(A— jxx(()) ds)]vp(dA)

- [T ( P l{Aax)E[exp()t%t-f(:Xso(x)ds)])vp(dA),

xez?

where the inequality follows from Proposition 4.1 and the last equality from
the independence of the random walks. Since v, is a product measure, we can
compute this last expression and get that it is equal to

xgd{l + p(E[exp()t%/:Xf(x) ds)] - 1)}
which is bounded above by
exp{perZd(E[exp(/\%fotho(x) ds)] - 1)}

We can develop the expectation term to obtain that it is equal to

Aa ¢ ‘
pZ Z( t) ‘f...fdsln [ H XO(x)]
xez¢n=1 £ 70 0 1<j<n
_pZ( ) cte dsl-..dsn
(4.10) n>1 '[ '[05sls s <s, <t
< X Z psl(o"x)psz—sl(O’O) T ps,,—s,.—l(O’O)
xez4

X (5 )n%(t)

n>1
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if we define ¢,(¢) by

f f o ds" p32—31(0’ O) e psn—sn_l(o’o)'

0<s;<--' <s, <t

Cox and Griffeath [5] showed (proof of Theorem 1, page 548) that

(4.11) lim 2 Y (ﬁ)n%(t) — (A fork <Ay,

too @y t

where ¢ and A, are given by (4.3). Therefore, by (4.9), (4.10) and (4.11),

hmsup—log p [ ftns(O) ds > a] < —Aa+ (L) forevery 0 <A <Ay,
0

t—o

Minimizing in A, we prove the theorem. O

We list in the next proposition the properties of the rate function i,
obtained in Sections 2 and 3.

PROPOSITION 4.2. For d # 2, ¢, is a continuous, bounded, convex func-
tion. Moreover, I < y;, where I is given by (4.4). In particular, y,(a) = 0 if
and only if a = p

Proor. Boundedness. For d > 3, from the definition of ¢, we obtain
that ¢, < I,(o) for every o € M such that [1(0)o(dn) = a, where I, is given

by (2.5). Let
a\10/( 1 — a 1-7(0)
%UM)=(~) ,(dn).
p 1-p

A simple computation shows that I,(0,) <p V (1 — p). Thus
sup ¢y(a) <p Vv (1-p).

0<axl
In the same way, in dimension 1, we have that ¢,(a) <I(u) for every
u € U such that [lu(s,0)ds = a, where I, is given by (3. 12) Consider a
smooth function f € M,(p) N C%R) for which f(0) = a. Let u € D([0, 1], M,)
such that w(¢,-) = f for every ¢ € [0, 1]. (3.14) enables us to compute I,(u).
We obtain

f) (1= f(®))
+ (1= f()log ~

IS rACO)
8 f(x)[1 ~ ()]

I() = [ { f(x)log

=K(f)-
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Therefore, we have

Yy(a) < inf  K(f)<K(f,),
feM(p)NCAR)
fO)=a

where

a+ (p—a)x? iflx] <1,
fo(x) = { otherwise.

A simple computation shows that K(f,) is bounded above by
1 1 1

e a T T Ay

Convexity. We know (see [7]) that [, given by (2.5) is convex. It is easy to
show that this property is inherited by I, given by (2.6) and by ¢;. On the
other hand, we saw in Section 3.4 that i, is a convex function.

Continuity. Since ¢, is a convex and bounded function, ¢, is continuous
in (0, 1). To see that ¢, is continuous in [0, 1], we just have to prove that ¢ is
lower semicontinuous. By construction, i; is lower semicontinuous. On the
other hand, since M, is compact and I, given by (2.6) is a lower semicontinu-
ous function, y; is also lower semicontinuous.

I <y, For A c|0,1], denote by A° the interior of A and by A its closure.
From the large deviation principle proved in Sections 2 and 3, we have that if
inf, . g0 ¥y(a) = 1nfaeg(//d(a), then

f‘ns(()) ds EA] - — inf Yy (a).
0 a€A

lim — log P,

t—o A,

Fix a > p. The proof for a < p is similar. Since ¢, is nonnegative, convex and
¥4(p) = 0, Y, is nonincreasing on [0, p] and nondecreasing on [p, 1]. Since ¢,
is continuous, with the notation of Proposition 4.1,

—Yi(a) = — inf:[/d(B)

t—oo A

lim —log P [ /ns(O) ds > a]

IA

1
—Aa + liminf —log E, [exp()\—f 1,(0) ds)]
a,

t— o

IA

—Aa + hmlnf—logE [exp()t—ff (0) ds)}
t—o Q,;

—Aa + l/l()t),

where we applied the Chebyshev inequality to obtain the first inequality,
Proposition 4.1 to obtain the second inequality and (4.11) to obtain the last
equality. Minimizing in A, we conclude the proof of Proposition 4.2. O

Il
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REMARK 4.2. Notice that we only used the special form of p(x,y) to
compute the limit in (4.11). But, from Section 5 of [5], we know that this limit
can be evaluated for a larger class of transition probabilities. In this way,
Theorem 4.1 extends immediately to this larger class.
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