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A DIFFERENCE PROPHET INEQUALITY FOR BOUNDED
LID. VARIABLES, WITH COST FOR OBSERVATIONS

By ESTER SAMUEL-CAHN

Hebrew University of Jerusalem

Let X; be ii.d. random variables, 0 < X; <1 and ¢ > 0, and let Y; =
X; — ic. It is shown that for all n, all ¢ and all such X;, E(max;,,Y;) —
sup, EY, < e~!, where ¢ is a stopping rule and e~! is shown to be the best
bound for which the inequality holds. Specific bounds are also obtained for
fixed n or fixed c. These results are very similar to those obtained by Jones
for a similar problem, where 0 < X; < 1 are independent but not necessar-
ily identically distributed. All results are valid and unchanged also when Y;
is replaced by Y;* = max, _;.; X; — ic.

1. Introduction. In a recent paper, Jones (1990) considers the following
“prophet problem.” Let X; be independent, i = 1,2,..., 0 < X, <1 and let
¢ >0 be a fixed constant. Consider the optimal stopping problem for the
sequence Y, = X, — ic, i = 1,2,..., which corresponds to a reward X; minus
a fixed cost ¢ of sampling, for each observation. Let V(Y,,...,Y,) = sup{EY}:
t <n, t a stopping rule}. Let [x] denote the largest integer smaller than x.
Jones (1990) proves the following very interesting ‘“difference prophet inequal-
ity’’ (see Theorem A):

(@ ForO0<c<1lfixedandall n and 0 < X, <1,

(1.1) E( fi‘?im —V(Y,,...,Y,) < [1/c]e(1 — ¢)V/ ).
(b) For n > 1fixedandall c >0and 0 < X, <1,

(1.2) E(lr;liasani)—V(Yl,...,Yn) <(1-1/n)".
(c) Foralle>0,n>1and0< X, <1,

(1.3) E(IT?EHY,.) - V(Y,,...,Y,) <e L.

All the preceding bounds are sharp; that is, the constants in the right-hand
sides cannot be replaced by any smaller constants. The term ‘difference
prophet inequality’ is justified since E(max, _;_, Y;) can be interpreted as the
expected optimal return to the prophet who can foresee the future and choose
the largest Y;. Jones also shows that the corresponding ‘‘ratio prophet inequal-
ity”’ is unbounded.

In the present note we consider the preceding problem when X, are taken
to beiid., 0 < X; < 1. The case where there is no cost of sampling (i.e., ¢ = 0)
was one of the first “prophet problems” considered. See Krengel and
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Sucheston (1978), Hill and Kertz (1981a) and Samuel-Cahn (1984), for the
ratio prophet inequality, and Hill and Kertz (1981b) for the difference prophet
inequality. The case of i.i.d. X, is considered in Hill and Kertz (1982) and
Kertz (1986). For ¢ = 0, the i.i.d. case turns out to be a much more difficult
problem than the problem where the assumption identically distributed is
dropped. Unlike the case for ¢ = 0, when ¢ > 0 the i.i.d. problem turns out to
be a considerably simpler problem. This is due to the very simple form of the
optimal rule and its value in this case, which was obtained by MacQueen and
Miller (1960), and Chow and Robbins (1961).

We clearly need consider only ¢ < 1, otherwise both the maximum and the
optimal stopping value are obtained for n = 1 and the difference is 0. The
purpose of the present note is to prove the following:

THEOREM 1. Let X; bei.id.,0 <X, <1.
(@) For 0 <c <1 fixed, and all n and X,

(1.4) E(lrggny,.) — V(Yy,..., Y,) < [1/e]e(l — o)™/ h
(b) Forn > 1 fixed, and all ¢ > 0 and X|,
(1.5) E(lrgiasani) -WV(Y,,...,Y,) <(1—-1/n)""".
(¢) Forall ¢ > 0, all X, and all finite or infinite sequences,
(1.6) E(Tgy,.) - V(Y,,Y,,...) <e L.

All bounds are the best possible.

Comparing Theorem 1 with Jones’ results (1.1), (1.2) and (1.3), we see that
for the problem considered here there is very little difference whether one
considers just the independent case or the ii.d. case. This is quite different
from the findings when ¢ = 0. The ‘“‘ratio prophet inequality” in the i.i.d. case
is again unbounded.

Letting ¢ — 0 in the right-hand side of (1.4) yields e~ '. If we could argue
continuity, we would get that, for 0 < X; < 1 and iid. X;, E(max,_; X;) —
V(X,, X,,...) < e, where this is the best bound. This is, however, false, as
follows from the result of Hill and Kertz (1981b). They show that even for
nonidentically distributed, independent X;, 0 < X; < 1, the preceding differ-
ence is bounded by 1/4 < e~ !, and 1/4 is the best bound and is attainable
both in the finite n > 2 and the infinite case.

2. The proof. We may assume n > 2; otherwise the theorem is trivial.

Chow and Robbins (1961) consider, among other problems, the optimal
stopping problem (for infinite horizon) for the payoff sequence Y* =
max, _;; X; —ic, i =1,2,..., where X, X, X,,..., are iid. with finite
expectation and ¢ > 0. They show [see also Chow, Robbins and Siegmund

(1971), page 56(a)] that for this payoff one is in the monotone case, an optimal
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rule s exists and is given by the simple structure
(2.1) s = inf{i: X; > B},

where B is the unique value for which E(X — B)*= c¢. (Note that possibly
B <0.) Also EY* = B. This beautiful and rather surprising result implies,
since Y; < Y;*, that also for Y; = X; — ic the rule s is optimal and EY, = 8,
even though the sequence {Y;} does not correspond to the monotone case. By
Exercise 3 on page 60 of Chow, Robbins and Siegmund (1971) it follows that
s, = min{s, n} is optimal for Y;* among all stopping rules satisfying ¢ < n.

One might tend to believe, by an argument similar to that above, that
s, = min(s,n) is also optimal for Y, among all ¢ <n. This is, however,
generally false (for 8 > 0), as is easily seen by direct backward induction. This
was pointed out by a referee, to whom the author is very grateful. (The reason
this conclusion fails is that when forced to stop at stage n, the return under Y,
is generally smaller than the return under Y,*. Note, however, that when X;
are Bernoulli 0,1 random variables, the return under Y, is exactly equal to
the return under Y*.) .

We shall still be content using s, with payoff sequence Y}, and our first goal
will be to maximize the difference E(max1 <i<n Y1) —EY, .

We show that this difference is always less than or equal to the right-hand
sides in (1.4) and (1.5), respectively, but the maximum difference achieves
equality to the right-hand sides of (1.4) and (1.5). Actually we show that this
equality is achieved for (some special) Bernoulli random variables, taking only
the values 0 and 1 with positive probability. For Bernoulli random variables it
is, however, immediate that EY* = EY, , and hence for these variables
V(,,...,Y,) = EY, . This shows that equajlty of the right-hand sides and the
left-hand sides of (1 4) and (1.5) holds for those variables. Theorem 1 then
follows, since generally

E( max Y,) - V(Y,,...,Y,) < E( max Y;) - EY,

s -
l<i<n 1<i<n r

ProprosiTiON 2.1.
(2.2) EY, =B - (1-u)"{B - E(XIX <B)},

where u = P{X > B} and where the value in (2.2) is B when u = 1.

Proor. The result follows quite straightforwardly, using E(X|X > B) =
c/u+pB. 0O

For fixed X and ¢, 8 and u are uniquely determined. We consider first the
case B > 0.

Let X be the “dilated” random variable obtained from X; by letting
X, = X! when X; <, but for X; > B, X assumes the values 1 and B only,



PROPHET INEQUALITY WITH COST 1225

with probabilities p and u — p, respectively, where

(2.3) p=c/(1-8).
Let Y/, i=1,...,n, be the Y values defined for the X].

ProposiTion 2.2. (i) EY, = EY, .
() E(max,_;.,Y/) > E(max, _,_,Y;). Hence dilation can only increase
the difference E(max,_,_,Y,) — EY, .

Proor. Clearly X; and X have the same 8 and u values. Thus (i) follows
from (2.2). Since max, _,_, Y; is a convex function of X, ..., X, and since
the expected value of any convex function can only increase (or remain
unchanged) by any dilation, (ii) follows. O

The preceding argument shows that from the point of view of maximizing
E(max, _;_, Y;) one need consider Bernoulli random variables only, since any
X; satisfying 0 < X; < 1 can be dilated to take the values 0 and 1 only. We
shall show that for given B, in order to minimize (2.2) one again need consider
only Bernoulli random variables.

ProposiTION 2.3. Fix B8 > 0. Then EY, is minimized for X; =1 and 0
with probabilities p and 1 — p, where p is given in (2.3).

ProoF. For B = 0 the statement is clear. For 8 > 0 and fixed u = P(X >
B); clearly (2.2) is minimized by taking E(X|X < B) = 0; that is, P(0 < X < B)
= 0. But now (2.2) is minimized if and only if u is minimized; that is, we must
take u = p. But then P{X] = B} = u — p = 0, and the proposition follows. O

Henceforward we shall take X; to be Bernoulli Fix ¢ and let r =
sup{i: 1 — ic > —c}; that is,
(2.4) r=1+1[1/c],
where [x] is as before. Note that Y, <0 for all i >r. Let D, =
E(maxlsisn Yl) - Est'

PROPOSITION 2.4. Forall n > r, and c and p fixed,
(2.5) D,<D,=(1-p) (r-1)ec.

Proor. For n >r,

E( max Y,.)=E{squi} ={1-(1-p))

l<i<n i>1
r .
(2.6) —cXip(l-p) ' —c(1-p)
i=1

=B+ (1-p){c(r-1) -8},
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where the right-hand side is obtained using

r

Z ip(1 - ={1--p)")p-(r+ 1A -p)
and B =1—c/p [by (2.3). Using (2.6) and (2.2) and the fact that Y, is
nondecreasing in n yields (2.5). O

ProPOSITION 2.5. For c fixed, and all p and n,

(2.7 D, <D, =[1/c]e(1 — ¢)/*,

Proor. For c fixed, r is fixed. For n > r it follows that (2.5) is maximized
when p is minimized, which, by (2.3) means that one must take g = 0 and
p = c. But then the value of the right-hand side of (2.5) equals the right-hand
side in (2.7).

For n < r, one has, similarly to (2.6),

(2.8) E( max ¥;) = B + (1-p)"{e(n - 1) - B}
and hence D, = (1 — p)*c(n — 1). This is 0 when n = 1, and for n > 1 one
has D, ,,/D, > 1iff p <1/n;thatis,iff 1/p >n.But 1/p=1/c > [1/c] =
r—1>n,s0 D, <D, for all n < r; that is, (2.7) holds. O

Note that (2.7) yields (1.4) once we show that the case 8 < 0 is of no
concern. Also note that equality holds in (1.4) when n =[1/¢] + 1and X, =1
and 0 with probabilities ¢ and 1 — c.

The same argument can be used to show equality in (1.5). For p = ¢ we can
rewrite (2.5) and the previous argument as

(2.9) D,<D,=(1-p) p(r—1) foralln.

For r fixed, we can now choose p. By (24), r — 1< 1/p <r; that is,
1/r<p<1/(r—1). But (1 —p)p is increasing for 0 <p < 1(r + 1) and
decreasing for 1/(r + 1) < p < 1. In the permissible interval of p values, (2.9)
is therefore maximal for p = 1/r, for which the right-hand side of (2.9)
becomes D, = (1 — 1/r)"*!, which is the right-hand side of (1.5) for n = r.
Since (1 — 1/n)"*! increases to e~ ! and since E{sup; ., Y;} = E{max,_;_, Y;}
for n sufficiently large, while by (2.2), V(Y,,...,Y,) <8 = V(Y,,Y,,...), (1.6)
follows.

To complete the proof of the theorem it remains to consider the case g < 0.
Again we need consider only Bernoulli variables, but now, by (2.1), we have
p—c=pBand s =1 Thus EY, = forall n. Thus for all » <r,

E{ max Y} =B/p+ (1-p){c(n-1)-B/p}

l<i<
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and for n > r we have

E{sup) - £ e ) - 5{ s ).

i>1 l<isn l<ix<r

Thus for n < r,

(210) D,=B(1-p)/p+(1-p){(p—-B)(n—1)-B/p)

and D, =D, for r <n; D, = 0 for n = 1. It thus suffices to consider n < r.
For fixed p one can write D, = BA, + B,, where A, > 0 and B, do not
involve B. Hence D, is increasing in B; that is, for 8 < 0, D, is maximal when
B = 0. But the case B = 0 was covered by our previous arguments. [Note,
however, that for fixed p, changing B will change r through the relationships
p =B + ¢ and (2.4). Since ¢ decreases with increasing 8, r = r(¢) can only
increase. Thus if n satisfied n <r for the original ¢, (2.10) will remain
unchanged by decreasing c.] The proof of Theorem 1 is thus complete. O

Our proof shows that for X = 1 and 0 with probability 1/n and 1 — 1/n,
respectively, and ¢ = 1/n, one has equality in (1.5). It is of interest to note
that Jones’ (1990) example, which achieves equality in (1.2) (see Example 4.1),
is X;=0and X,= --- =X, = the previous X and ¢ = 1/n. Hence the
difference between the i.i.d. case and the more general case is really very
small!

To see that the ratio E{max,_;_, Y;}/V(Y,...,Y,) is unbounded for all
n > 1, one can look at (2.8) over B8 for B8 > 0 and fixed ¢, and let 8 — 0
(p — c¢). The ratio then tends to infinity.

REMARKs. (a) It follows from Hill and Kertz (1983) [see (5) of Kertz (1986)]
that the value in the right-hand side of (1.2) [i.e., (1 — 1/n)"] is also the best
bound of the difference E(max,_;_, X;) — V(X,,...,X,), where 0 < X; < 1
and X; can have any kind of dependence. It is curious that this bound should
be the same as for independent random variables, with an added cost ¢ > 0 per
observation.

(b) For iid. X;,, 0<X; <1 and ¢ =0, Hill and Kertz (1983), and also
Kertz (1986), show that E(max,_;_, X;) — V(X,,..., X,) <b, where the
constants b, are best bounds and can be computed recursively. By the remark
at the end of the introduction, clearly b, < 1/4 for all n.

(c¢) Since {max,_;_, Y;} = {max,_;_, Y;*} and since generally
V(Yf,...,Y.*) > V(Y,,...,Y,) it follows that all parts of Theorem 1 hold also
with Y; replaced by Y;*. That the bounds are still the best possible follows by
our proof. A similar statement is correct also for Jones’ theorem as can be seen
by his Example 4.1.
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