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A VARIATIONAL APPROACH TO BRANCHING RANDOM
WALK IN RANDOM ENVIRONMENT

By J.-B. BAILLON, PH. CLEMENT, A. GREVEN! AND F. DEN HOLLANDER?

Université de Lyon I, Technische Universiteit Delft, Universitdt
Géttingen and Rijksuniversiteit Utrecht '

This paper considers an infinite system of particles on the integers Z
that: (1) step to the right with a random delay, and (2) split or die along the
way according to a random law depending on their position. The exponen-
tial growth rate of the particle density is computed in the long time limit in
the form of a variational formula that can be solved explicitly. The result
reveals two phase transitions associated with localization vs. delocalization
and survival vs. extinction. In addition, the system exhibits an intermit-
tency effect. Greven and den Hollander considered the more difficult situa-
tion where the particles may step both to the left and right, but the
analysis of the phase diagram was less complete.

0. Introduction. Interacting particle systems evolving in random media
display new phenomena that are not encountered in their spatially homoge-
neous counterparts. The reason is that the random medium induces its own
selection of paths by favoring certain patterns in the evolution over those that
are typical in the homogeneous medium. An extreme example of this situation
is mean-field branching on a large finite set. Here each site carries a branching
rate that is an unbounded random variable. Particles split into two at the local
rate of their current position and randomly change site at rate 1. It turns out
that as time becomes large most of the population sits in the record points of
the medium and most of the ancestors of the particles in the record points
were created there and have not moved since. Thus the overall picture is that
an event which is rare in the homogeneous medium, namely most particles
standing still, now is the dominating event for the population growth, simply
because it is favored by the random medium. The favorable spots in the
random medium, namely the record points, are rare themselves and so it is not
the average medium that governs the growth [Fleischmann and Molchanov
(1990)]. For an extensive list of references on interacting particle systems in
random media, we refer to Greven and den Hollander (1992).

The interplay between process and medium has a variational character:
Among competing patterns in the evolution, one best adapted to the medium is
selected. We see it as the main task in this area to uncover such underlying
variational structures, to formulate them in a precise analytical form and to
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attempt to analyze their properties. In Greven and den Hollander (1992), such
a program was carried out for one-dimensional branching random walk with
drift. It was shown how to extract the selection mechanism for population
growth in an analytical form using large deviation techniques. Analysis of the
resulting variational formulas led to various interesting phase transitions
coming from nonanalyticities in the variational solution as a function of the
drift. The only paper we are aware of where a similar program has been
carried out to the full extent is Eisele and Lang (1987). They study the survival
probability of a particle moving through a random trap field, which leads
mathematically to asymptotics of exponential functionals of the Wiener sausage
with drift.

In the present paper we study a simplified version of the model in Greven
and den Hollander (1992). The reason is twofold. First, the variational formula
is easier to extract. Second, the analysis of the variational formula can be
carried out in complete detail, leading to a precise description of the phase
diagram. We shall find phenomena like localization vs. delocalization, inter-
mittency and survival vs. extinction, all coming out of the selection mecha-
nism induced by the random medium. We shall see that localization vs.
delocalization is a phase transition corresponding to a parameter value where
the solution of the variational formula changes from being attained at the
boundary of its domain to being attained in the interior. We shall be able to
relate intermittency to the situation where the solution is attained outside the
domain. This means that the system has a degenerate limiting behavior. We
believe that such degeneracy is a guiding principle behind intermittency effects
[for a mathematical approach to intermittency, see Gartner and Molchanov
(1990)]. Finally, we shall see that survival vs. extinction is a phase transition
associated with a change of sign in the value of the solution.

The paper is organized as follows. There are three main theorems in
Sections 1.4, 2.3 and 3.2. Section 1 contains the derivation of the variational
formula, Section 2 its analysis and Section 3 its interpretation, that is, its
implications for the branching random walk.

1. Derivation of variational formula.

1.1. Model. With each x € Z is associated a random probability measure
F, on the nonnegative integers N U {0}, called the offspring distribution at site
x. The sequence

F = {Fx}xez

is i.i.d. with common distribution «. F plays the role of a random environ-
ment. For given F, define a discrete-time Markov process (n,) on (N U {oh?,
with
“ Nn = {nn(x)}xEZ7
1,(x) = number of particles at site x at time n,

the evolution of which is as follows. At time n = 0 place one particle at every
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site, that is, n,(x) = 1. Given the state n,, at time n, each particle is indepen-
dently replaced by a new generation. The size of a new generation descending
from a particle at site x has distribution F,, that is, consists of £ new particles
with probability F, (%), £ = 0,1,2,... . Immediately after creation each new
particle independently decides to either stay at the site where it is or to jump
to the right neighboring site. The jump probability is A and is the same for all
x. The resulting sequence of particle numbers make up the state n,,,; at time
n + 1, and so forth.

Thus at each unit of time all particles independently branch and walk:
M, +(x) depends on n,(x — 1),7n,(x) and on the given F,_,, F,, namely, it is
the sum of the number of particles in the n,(x — 1) new generations at x — 1
that decide to jump to x and the number of particles in the 7,(x) new
generations at x that decide to stay at x.

The parameter A is the drift of the random walk. It will be assumed that

(1.1) Y kRF.(k) <M <> a-as.
k=0
Write
(1.2) b,= Y kF.(k)
k=0

for the mean offspring at site x and let B denote the distribution of b,
induced by a. By (1.1), B has bounded support. Write

(1.3) M = sup b, = Supremum of supp B
x
and assume b, is not constant.

1.2. Particle density at time n. For given F, let

1 N
D(F, = lim ————
(Fym,) = lim oo xEN'nn(x)

denote the particle density at time n. Our main result in Section 1, Theorem
1, gives a variational representation for the growth rate of this quantity. For
each fixed n the state n, depends on F. However, if 7, is also considered as a
random variable in F, then its distribution is stationary and ergodic under
translations in Z. Hence, from the individual ergodic theorem,

(1.4) D(F,n,) = E(n,(0)) as.,

where E denotes the double expectation over the Markov process (7,,) given F
as well as over F. The a.s. refers here and in the sequel to the joint distribu-
tion of (n,,) and F. The stationarity and ergodicity are an easy consequence of
thé i.i.d. property of F, the initial choice n,(x) = 1 and the evolution mecha-
nism. In fact, because particles can move no more than one lattice spacing per
unit of time, 1,(x) and 7,(y) are independent when |x — y| > n so that 7, is
even mixing. Note that (1.1) ensures that E(n,(x)) < M" < «,
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1.3. Local times of random walk. Let
S, =0, S, =X, + - +X,, n>1,
X, iid.with P(X;,=1)=1-P(X;=0) =
denote a single copy of the random walk with drift - starting at 0. Let
(1.5) l(x)={0<i<n:S;,=x}|, x20,n2>0,

denote its local time at site x up to time n. The following proposition
expresses D(F,n,) as the expectation of some exponential functional of the
random sequence {/,(x)f7_,. Let

(1.6) f(k) =log [b*B(db), k=0,

and let P, and E, denote probability and expectation over the random walk
(S,).

ProprosiTiON 1.

(1.7) D(F,n,) = Eh(exp[ y f(ln(x))]) as.

x=0

Proor. First condition on F and prove by an elementary induction argu-
ment that

n-—1
E(nn(o)lF) = Eh( Z l_[ by+S 1(y+S —0))
y=-oi=0

with b, given by (1.2). Here think of the ancestors at time n = 0 at positions
y < 0 and of how their progeny may reach x = 0 at time n. Next reverse time
in the random walk to obtain

E(n,(0)IF) = E, E Hb sli-s —y))

y= —w i=

= Eh ub_si)

- & I[6.1%).

The last step uses (1.5). Finally, take the expectation over the i.i.d. b,, using
(1.4) and (1.6). O

1.4. Exponential growth rate. Having thus reduced D(F,n,) to a problem
involving local times of a random walk, we are now ready to formulate the
variational formula that is the main subject in this paper and that will be
analyzed and interpreted in detail in Sections 2 and 3. Let #(N) denote the set
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of probability measures on the positive integers N. Let

(18) M,= {Vegv(N): Y iv(i) =o-1}, 6 < (0,1],
i>1
(19) L) =Y p(i)log( v(1) ) v e PN),
i>1 mo(2)

+(1—0)log(1 h) 9 €[0,1], h € (0,1),

0
(1.10) I,(0) = OIOg(z-

(1.11) (i) = 6(1 — 6)* 1, 0 (0,1],i > 1.
Write { f,v) = X,.; f()v(7) for the inner product.

THEOREM 1. In the long time limit the particle density grows exponentially
fast at rate

(1.12) lim %log D(F,n,) =p(h) a.s.
For h €(0,1),
(113) p(h) = sup sup (0[<f,») — L,(»)] — 1,(6)}.

6<(0,1] vEM,
Forh=0and h =1,
p(0) = log M,
p(1) = f(1) = log [bB(db).
The growth rate depends on 8 and h. We write p(h) because we shall be
mainly interested in its dependence on A for fixed choice of B. The two
boundary cases p(0) and p(1) are trivial because ,(x) = nl,(x) if A = 0 and

L(x) = 1 ,(x) if h = 1, so that (1.14) follows by substitution into (1.7). Note
that

(1.14)

klim f(k)/k =log M
by (1.3) and (1.6).
1.5. Proof of Theorem 1: Large deviations. The proof consists of several

steps and follows Greven and den Hollander (1992).
Our first step is to condition on the position of the random walk:

Eh(exp[éof(zn(x»])

(1.15) s - [0n])

6<(0,1)

= d(8n)Py(S, = [0n])Eh(eXp[ iof(ln(x))]

+ h™ exp[nf(1)].
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The last term corresponds to the event {S, = n}. Next observe that the
conditional expectation in the integrand is independent of h. The latter holds
because all walks from 0 to [6n] in n steps have the same probability
R®™(1 — h)" ") (50 that the conditional expectation reduces to a combinato-
rial average). Replace E, by E, and now assume that the following holds.

PROPOSITION 2. There exists a bounded and continuous function J: [0, 1] —
R such that

(1.16) lim —’lzlog Eo(exp[ i f(ln(x))] S, = [Bn]) =J(0)
n—oe x=0

and the same limit is obtained along any sequence 6, — 6.
From Proposition 2 we proceed as follows.

ProrposiTION 3. For every h € (0, 1),

(1.17)  lim %logEh(exp[ f(ln(x))]) = sup (J(0) —I,(9)).
e 0 ]

x= 6<l0,1

Proor. For every h € (0, 1),
Pu(S, = [0n]) = ([ |0 =
is, by inspection, a large deviation family on R with rate function
(1.18) lim — log (S, = [on]) = ~1,(0)

given by (1.10). Since I,(6) is bounded and continuous in 6 and since the same
limit is obtained along any sequence 6, — 6, (1.17) follows by combining
Proposition 2 and (1.18) and by applying Varadhan’s theorem to (1.15) [see
Deuschel and Stroock (1989), Theorem 2.1.10]. Note that (1.17) includes
the boundary case 6 = 1 coming from the last term in (1.15) [J(1) = f(1),
I,(1) = —log h]. O

Propositions 1 and 3 prove Theorem 1, with the growth rate in (1.13) for
h € (0, 1) given by
(1.19) p(h) = sup (J(8) —I,(6)).
0<(0,1]
Thus, to complete the proof of Theorem 1, our task is to prove Proposition 2
and to identify J(6) in (1.16) and (1.19) as

(1.20) J(0) =0 sup [{f,v) —I,(v)], 6¢<(0,1],
veEM,

with M, and I,(v) given by (1.8), (1.9) and (1.11). A small technical point is
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that (1.20) is not defined for 8 = 0. However, we know that
(1.21) J(0) =log M

by the observation made below Theorem 1. The continuity of J(8) at 8 = 0,
claimed in Proposition 2, shows that the supremum in (1.19) may in fact be
taken over 6 € (0, 1], as was claimed in (1.13). Note also that I,(8) is continu-
ousat 0 =0. O

Proor orF ProposiTION 2. First assume 8 € (0, 1]. Observe that

E(xp[ iof(z,xx))] S, = [on])
(1.22) =E0(exp[ iof(ln(x»] S, =[6n], S0 > [on])

[on]

Y l(x)=n]|.
x=0

In the second equality we introduce the fotal local time
(1.23) I(x) = lim [, (x)

[on]
= Ey|exp ;Of(l(x))]

[see (1.5)] and we make essential use of the fact that the walk cannot step to
the left.
Next, let
N-1
=N~ ! Z Sl(x)

x=0
denote the empirical distribution of the total local time process {{(x))fZ_, in
the interval [0, N). Then we can write

[on] [6n]
E,|exp| X f(l(x))] Y U(x) = n)
x=0 x=0

(1.24)
= Ey(exp[ K f, vk )]|(L,vk,) = L,)

with the abbreviations K, =[6n]+ 1, L, =n/K, = n/(6n] + 1) and 1 the
identity function 1(i) = i. Having thus, via (1.22) and (1.24), rewritten the
Lh.s. of (1.16) as a conditional expectation of some exponential functional of
vk, we are now ready to again apply a large deviation argument.

The key observation is that our total local time process is i.i.d. with common
distribution , given by (1.11) (recall that under P, the drift is §). Hence by
Sanov’s theorem P,(vy € dv) is a large deviation famlly on F(N) with rate
function I,(v) given by (1.9) [see Deuschel and Stroock (1989), Theorem
3.2.17]. Define the set

A= e PN, -L,)

n
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and write the r.h.s. of (1.24) as
(1.25) exp(o(n))fA exp[ K, f,v)] Py(vg, € dv).

The error term is just Py '((1,vg ) = L,) = Py (S, = [0n], S, ., > [6n]) and
is subexponential because of (1.18) and I,(6) = 0. [This is why we replaced E,
by E, in (1.15).] We want to apply Varadhan’s theorem to the integral in (1.25)
and conclude, with A, “converging” to M, [note L, — 6! and recall (1.8)],
that

(1.26) lim L log(1.25) = sup [{f,v) — I,(v)]
K,—o n veM,
and thus achieve our goal (1.20) (note K, ~ 0n). However, there are two
technical complications: (1) { f, ) is not continuous in », and (2) A, is moving
and is not closed (in the weak topology).
The first problem may be remedied by defining

(1.27) g(k) =Fklog M —f(k)
and replacing in (1.25)

exp[ K, (f,v)] = M"exp[-K (g, »)], veEA,.
Indeed, since (1.3) and (1.6) give that g is sublinear, that is,
(1.28) lim g(k)/k = 0,

we have (g, v) continuous in » on A,.
The second problem is harder to solve. Here the way to proceed is to
truncate the local times and to thicken A, to a thin slab. More precisely, one

- defines
MpE = ve@({1,...,R)):(L,v)e[07 -0 + el}, e§>0,R <,

and one shows that there exists ¢ > 0, with ¢*® - 0as ¢ » 0 and R — o,
such that the integral in (1.25) when taken over M;' ¥ instead of A, differs by
at most a factor exp(c® #n). To obtain the latter estimate, we refer the reader
to Lemmas 6 and 7 in Greven and den Hollander (1992). The proof of these
lemmas uses (1.28) and the following properties of g that follow from (1.3) and
(1.6):

(1.29) g(0) = 0, g is strictly increasing and strictly concave.

Since M;' % is a closed set and since I,(v) is continuous on this set, we may
apply Varadhan’s theorem to the integral over M}’ ¥ [see Deuschel and Stroock
(1989), Theorem 2.1.10] and deduce

1
Kl:r_?m z log(1.25) = O(0 %= %) + 9~ 1log M

(1.36)
+ sup [—{g,v) —I(v)].

veMy R
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Now, it is easily checked that the closure of U g ..N,. My F is M,. This
implies
sup inf sup [—<g,v) —I(v)] = sup [—{g,v) — I,(v)]

R<wx £>0 veM R veM,

by appealing to the continuity on M, of (g,») and I,(v) (see Lemma 2).
Finally, substitute

(g,v)=0""log M —(f,»), vEM,,

to obtain (1.26). This completes the proof of (1.16) and (1.20) for ¢ < (0, 1].
The last statement of Proposition 2 is an easy perturbation argument in K,
and L, in (1.24). Namely, for 6 € (0, 1] use the estimate mentioned below
(1.28). For 6 = 0 use (1.21), f(k) < klog M and lim, _,,, f(k)/k = log M.
The remaining claims in Proposition 2, namely the boundedness and conti-
nuity of J(6) on [0, 1], will follow from our analysis in Section 2. O

1.6. Remarks. In Greven and den Hollander (1992), the same model is
considered except that the particles may jump both to left and right neighbor-
ing sites. A result like Theorem 1 is proved there, but the variational formula
and its proof turn out to be considerably more involved. Part of the trouble
comes from the fact that if the random walk can move both ways, then the
total local time process {{(x)}’_, is no longer independent. In fact, it is not
even Markov, but turns out to be a two-block functional of a Markov process.
This causes trouble in establishing the appropriate large deviation principle
and the resulting variational formula has a much more complex structure
involving empirical distributions of pairs rather than singletons. There are
several other complications. For instance, (1.22) no longer holds. How close are
l,(x) and I(x) for large n and x? Some work is needed to show that (1.22)
holds asymptotically.

These problems motivated our study of the simpler model in the present
paper. The proof in Section 1.5 has the benefit of being short and transparent,
but more importantly, in Section 2 we shall be able to solve the variational
formula (1.13) explicitly. This will lead us to a detailed description of various
phase transitions associated with the particle behavior, as will be explained in
Section 3. Similar results were also found for the two-sided model, but there
the analysis of the phase diagram was inhibited by the lack of an explicit
solution and therefore was less complete.

The two models differ in the way the phase diagram depends on the
distribution B for the mean offspring. For example, in the one-sided model
localization can only occur when B decays sufficiently fast close to the maximal
value M, whereas in the two-sided model it always occurs.

‘2. Analysis of variational formula. The analysis of (1.19) and (1.20)
proceeds in two steps: (i) supremum over v; (ii) supremum over . The first is
the essential step toward proving our main result in Section 2, Theorem 2.



A VARIATIONAL APPROACH TO BRWRE 299

2.1. Supremum over v. We start by recalling (1.27)-(1.29), that is, g(k) =
klog M — f(k) and

(2.1) k}im g(k)/k =0,

(2.2) g(0) =0, g is strictly increasing and strictly concave.

Next use (1.8), (1.9) and (1.11) to rewrite (1.20) as

(2.3) J(0) =log M + 0log 6 + (1 — 6)log(l —6) —6K(6),

where we introduce

(2.4) K(9) = inﬂg Y g(i)v(i) + Y v(i)logr(i)|, 6 € (0,1].
vEMs [ix1 i>1

The following proposition is the main part of our variational analysis and will
be proved in Section 2.4. The proof uses only (2.1). Let

(2.5) G(r)= Y e ri-e®, r=0

i>1
(see Lemma 10 in Section 3.3).
ProrosiTiON 4. K(0) is well defined, continuous and nondecreasing on

(0,1]. Furthermore, 6K(0) is convex on (0,1], with lim, ,0K(0) =0 and
lim,,, 6K(0) = K(1) = g(1). Define

G(0)
G'(0)
K(0) is strictly increasing and analytic on (6,,1) and is constant on (0, 6,).

@) If 6 €6,,1] N (0, 1], then the minimum in (2.4) is achieved in M,. The
minimizer v = v(0) is unique and is given by

(2.6) 9, = e [0, 1).

1
—_—y . — —ri—g(i) .
(2.7) v(i) G e , i=x=1,
with r = r(0) the unique solution of
G(r)

. 9= — — 2
(28) Ol
and the minimum is

r

. K@#)=—-—-+1 .

(29) () =~ * g 5173

(i) If 0 €(0,06,), then the minimum in (2.4) is not achieved in M,. The
minimizer is given by ’

1—/(l) = me_g(i?, i>1,
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which is in M, , and the minimum is

1
K(6) = K(6,) = log 0%

The function r - —G(r)/G'(r) is analytic, strictly positive and strictly
increasing on (0, ©) and has range (6,, 1) (see Lemma 7 below). By 6, in (2.6)

we mean its limit as r | 0. A similar convention is used in (2.13) and (2.19).
Note that 6, = 0 if and only if G'(0) = —o.

2.2. Supremum over 9. Fix h € (0,1) and define

(2.10) Ju(0) = J(0) — I,(0),

so that, from (1.19),

(2.11) p(h) = sup J,(9).
0<(0,1]

Put (1.10) and (2.3) together to obtain

(2.12) Iu(0) = log[ M(1 - )] ~ ‘”Og(T) - 0K(0), 6<(0,1],

J,(0) = log[ M(1 ~ R)].

The following proposition will be proved in Section 2.5.

ProposiTION 5. For h € (0, 1), J,(6) is continuous and concave in 6 on
[0, 1], with J,(0) = logl M(1 — h)] and J,(1) = f(1) + log h. Furthermore, J,(6)
is strictly concave and analytic on (6,,1) and is linear on (0,80,), where 0, is
" defined in (2.6). Define

(2.13) h e [0,1).

T 1+G(0)

@ If h < h,, then J,(0) is strictly decreasing on [0,1] and p(h) = J,(0)
with unique maximizer 6 = 0.
(i) If h = h,, then J,(0) is constant on (0, 6,) and is strictly decreasing on
(6,,1). The maximizer is not unique, but again p(h) = J,(0).
(iii) If h > h,, then J,(0) has strictly positive slope at § = 0 and achieves a
unique maximum in (0,,1). The maximizer is

2.14 6 G(r)
( . ) - G/(r)
with r = r(h) the unique solution of

1

(2.15) h=ITE0)
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and the maximum is

(2.16) p(h) =dJ,(0) +r.
Note that 4, = 0 if and only if G(0) = .

2.3. Implications for p(h). From Propositions 4 and 5 we now get a clear
picture of how our growth rate p(4) in Theorem 1 depends on the drift A.

THEOREM 2. (i) The growth rate is given by
p(h) =log[M(1 = h)] if0<h<h,,
=log[M(1-h)] +r ifh,<h <1,

with r = r(h) the unique solution of (2.15). Moreover, p(h) is continuous and
strictly decreasing on [0, 1], with p(1) = f(1), and is analytic on (0, h,) and on

(2.17)

(h,,1). L
(ii) The maximizer 8 = 6(h) satisfies
6=0 if 0<h<h,,
(2.18)

0.<0<h ifh,<h<1.
Moreover, 8(h) is strictly increasing and analytic on (h, 1).
(Gii) If h, > 0, then

- , 1+ G(0)” 2
(2.19)  plhet) = (he) =~y T ha=hy

@Gv) If log M > 0 > f(1), then p(h) changes sign at h = h*%, the unique
solution of p(h) = 0 computable from (2.17).

Theorem 2 is the key result about our particle system (see Figures 1 and 2).
The proof will be given in Section 2.6. For further discussion and interpreta-
tion we refer to Section 3.

2.4. Proof of Proposition 4. This is the most involved part of Section 2.
The argument will be broken up into several propositions and lemmas. It will
be convenient to reformulate (2.4) as a problem of minimization on some
appropriate compact convex set in X(N) (I! is the set of absolutely summable
sequences). Since we have information about g(i)/i by (2.1), we define

w(i) =iv(i), i=1.
For 6 € (0, 1] define the following subsets of I'(N):
(2.20)  ®(9) = {M(i) >0, Ti (i) =1, ¥ u(i) < 0—1},

i>1 i1

(221)  aB(8) = {/.L(i) >0, i u(i) = 1, ¥ u(i) =e—1}.

i>1 i>1
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p(h)

Fic. 1. Qualitative picture of p(h) as a function of h. The dashed curve is log[M(1 — h)). The
endpoints are p(0) = log M and p(1) = log [bB(db).

8(h) 4

)
)
7/ ]
)
)

he h—

Fic. 2. Qualitative picture of 0(h) as a function of k. The dashed curve is the diagonal.

Let

(222)  e(w) = L i'u(i)g(i) + Zli'u(i)log[i'lu(i)]~
i1 i>

‘Then (2.4) reads

(2.23) K(0) = inf o(u).
u€0D(9)
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ProrosiTiON 6. For 6 < (0, 1],

(2.24) K(0) = min ¢(u).
ued(d)

Proor. The proof is done in several steps. Let B be the closed unit ball of
I'. We recall that a sequence (u,) in B converges weakly* to some u € B,
written u, ® p and meaning

(pp, 7> = p,7) forall 7 €cy(N)

(c, is the set of sequences tending to 0; {! is the dual of c,), if and only if it
converges componentwise, that is,

o (2) = u(i) foralli eN.
Moreover, we recall that B is weak* compact and that the weak* topology in
B is metrizable [see Rudin (1973), 3.14-3.16].

LEMMA 1. For every 6 € (0,1], ®(6) in (2.20) is convex, weak* compact in
1' and is the weak* closure of d®(0) in (2.21):

D(9) = ad(0) .

Proor. Clearly ®(0) is convex. To show that ®(0) is weak* closed in {1, let
K, € ®(0) and p €1' be such that w,(i) > u(i) for all i. Then u(i)> 0,
Y;pu(@) < liminf, ,, X,u,(i) < 67! by Fatou, and

Yilu(i) = lim Yi lu,(i) =1 since (i ') € c,.
i noe
Hence u € ®(0). To show that ®(9) is weak* dense in ®(0), we want to find

for any u € ®(0) a sequence u, € d®(6) such that u, * u. Choose u, =
t,u + S,8,, with £,(i) = §,,; the usual basis in [,

n—0" n(0~'—065")
b= ———, sy ———
where 6,1 = Y,u(i)and n > 671 > 6, '. We have
t,—1, s,->01-0;' £,5(0),

and hence u, ® p. O

LEMMA 2. For every 6 € (0,1], ¢: ®(8) > R in (2.22) is well defined,
strictly convex and weak* continuous in 1.

Proor. Write ¢ as a sum of three functions ¢ = ¢, + ¢, + ¢34, where

er(m) = Ti~u()g (i),
ea(m) = Li~'u(i)log u(i),

ea(p) = — Li~'u(i)logi.
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The functions ¢, and ¢, are linear in u and weak* continuous since (i “'g(i))
and (i ™! log i) belong to c,. The function ¢, is well defined since
1/

1/2 2
T () log (i) < (Z) (§u(i)) sup */%(i) log (i)

T 1
o
by Cauchy—Schwarz and the fact that sup; u'/%(i)|log u(i)| <
max, g, 1, ¢'/?/log ¢| = 2/e. Moreover, ¢, is strictly convex since the function
t - tlogt is strictly convex on [0, 1]. To prove that ¢, is weak* continuous,
observe that (i ™) € I2(N). Hence it is enough to show that wu, % u € ®(9)
implies

o | M

=< < ®©

w,logu, = ulogu weaklyin 2.
For this to be true it is sufficient to have componentwise convergence and
boundedness in /2. But

4
¥ 1) 10g? (i) <  Dienli) | 5up (i) 0g? (i) < 55 <= O

Now we can prove Proposition 6. Since ®(8) is weak™ compact and ¢ is
weak™ continuous, ¢ achieves its minimum on ®(6). Moreover,

o(®(8)) = ¢(30(0) ") < o(9%(6))
(2.25) o(P(9)) = o(2(9))
| 2(59(8)) < #(D(0)).
Hence ¢(®(0)) = ¢(dP(0)), which implies

inf ¢@(u) = min ¢(u). O
1 €ad(6) e ®(6)

From (2.24) we get the following properties of K(6).

ProrosiTION 7. K: (0,1] — R is continuous and nondecreasing. Further-
more, 0K(0) is convex in 0. Moreover, there exists exactly one minimizer
() € ©(9) in (2.24).

Proor. The uniqueness of the minimizer comes from the strict convexity
of ¢. Next let 0 < 8, < 8, < 1. Then ®(6;) 2 P(6,), hence K(6,) < K(0,). Let
w, €9(,),1=1,2,and 0 <t < 1. Then

(1 = t)py + tug E‘q’([(l - t)01—1 + t02—1] _1)’

e((1 — t)py + tug) < (1= £)e(m1) + ().
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Hence with the choice u; = u(6,):
K([(1-t)65t + 2651 ") < (1 - 1) K(8,) + tK(6y),

which says that K(6) is a convex function of #~1. This implies that 6 K(8) is a
convex function of 6 and hence continuous on (0, 1). Continuity at 6 = 1 is
checked trivially from (2.21)-(2.23) O .

Next we study the minimizer z. We identify & from the following varia-
tional argument. Denote by #d the admissible variations of & with ¢ > 0
[admissible means & + td € ®(8)]. For such variations

(2.26) o(E) < o(E + t0).
Choose 9 € I! of the form
(2.27) 9(1) =0 except possibly for ! = i, j, k fixed and distinct.

We want to have & + td € ®(9) for ¢ small enough, even if @ € d®(6). This
will be achieved by assuming [recall (2.20) and (2.21)]

(2.28) (i) +a(j) + (k) <0,
ai) a(j) (k)
(2.29) ; + F + P

(2.30) if u(i) = 0, then (i) > 0, and similarly for j and k.
By using the convexity of ¢ and (2.26), we have
o(u +19) — o(m)

(2.31) lim > 0.
tlo ¢
- Define
Al
(2.32) ey —g(1) +1og P when 7(1) > 0.

First we prove two technical lemmas.
Lemma 3. If u(i) and u(j) > 0, then u(k) > 0.

Proor. Suppose that u(k) = 0. Consider the admissible variation with
@) +a(j) = —1,93G)/i +3(j)/j = —1/k, (k) = 1. Then from (2.31) we get
the contradiction

o(E + 19) — ()

0 < lim
tL0 t
k
= Q(g( i) +1)+ ﬂ(g( ) +1) + (—Z g(k) + hm log a(k )

= —, . m]
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LEmMA 4. Ifi <jand u(j) > 0, then u(i) > 0.

ProoF. Suppose that (i) = 0. Consider the admissible variation (i) = 1,
a(j) = —j/i, (k) = 0. Then from (2.31) and u(j) > 0 we get the contradiction
(i) (i) | 9(J)

—g(i) + limlog — | + —=(&(j) + 1) = —.
0<——g() lim log — F (£(J) + 1) w. 0

We are now in a position to compute &. Observe that Lemmas 3 and 4 imply
that @(l) > 0 for all / > 1 when 6 < 1. At 6 = 1 trivially u(l) = d,;; below we
exclude this case.

LemMmA 5. Forall i, j, k > 1 distinct,

259 £() ~ £(7) _ £) —&(R) _

0.
i1—J j—k

Proor. We use the following elementary fact. If a,b,¢,d € R with a # 0
and b # 0 satisfy the implication

ax +by<0=cx+dy>0 (forall x,y €R),
then

c d 0
— S — < .
a b~

For our admissible variations we have from (2.31), (2.32) and (i), u(j),
w(k) > 0,

; . B
i({—)—(f(i) +1) + ijjl(f(j) +1) + %(f(k) +1) > 0.

If we use (2.29) to substitute for (%),

(k) = —ki(—ii—)— - kijj-)—,

then we obtain via (2.28) the implication

(i—k)?—(;l;)-+(j—k)ij;zso

a(i ' a(j
= (¢~ ¢0) "2+ 6y — e "L 20

[for all 4(i),d(j) € R].

Hence the claim follows from the remark.at the beginning. O
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From Lemma 5 it now follows that there exists r > 0 such that

£G) - £0J) _

t=J

—r<0 foralli,j>1,i+#j.

Thus
£()=¢1)-r(i-1)

or, via (2.32),
(i)

= (1)e G- Dr-lg®-g),

From the normalization in (2.20),
A() 1
i G(r)

-ri—gQ
e 8( ),

(2.34)

where G(r) is given by (2.5).
Now we distinguish two cases.

(i) w € dP(6). From (2.21) we have
Hence '
G(r)
G
So & is given by (2.34) with r the solution of the above equation, which is

(2.8). (Lemma 7 below shows that the solution is unique.)
(i) w & aP(9). First we prove the following lemma.

0:

LEMMA 6. If w & 0®(0), then £(j) = £€(1) forall j > 1.

Proor. Take the variations 9(1) = +1, d(j) = —ja(1), a(1) = 0 for all
I # 1, j. This variation violates (2.28). However, & & d®(0) guarantees that
u + td € ®(0) for ¢ sufficiently small, so that the restriction (2.28) drops out.
Then, from (2.31),

aJj), ., .
A(L)(&(1) +1) + T(g(;) +1) > 0.

Hence .
A1)(£(1) - £())) = 0. 0
«From Lemma 6 it follows that if & ¢ d®(9), then r = 0 and & is given by
w(i 1 ‘
(2.35) B L

i G(0)
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Finally, we study the function
G(r)
G'(r)’

v
=)

H(r) = -

LEMMA 7. The function H(r) is analytic, strictly positive and strictly
increasing on (0,®), with lim, o H(r) = H(0) = 6, and lim,,, H(r) =1.
Moreover, H(r) is invertible and its inverse H™': [6,,1) = [0,) is analytic
and strictly increasing on (6,, 1).

ProoF. The proof is elementary and is left to the reader. Use the implicit
function theorem plus the fact that H'(r) > 0 on (0,®). O

We can now collect the above results and prove Proposition 4. From Lemma
7 combined with the above statements for cases (i) and (ii), we see that
& € d®(0) if and only if 6 € [6,, 1] N (0, 1]. Combine w(i) = iv(i) with (2.34) to
get (2.7). Substitution of (2.7) into (2.4) immediately gives (2.9). Use (2.8), (2.9)
and Lemma 7 to see that K(6) is analytic on (6,, 1) because r(6) = H~'(6). For
9 €(0,6,), on the other hand, ¥ is given by (2.35) and K(6) = K(9,) is
constant. One easily checks from (2.1), (2.2), (2.8) and (2.9) that 0K(6) — 0 as
6 — 0, irrespective of whether 6, = 0 or 6, > 0.

2.5. Proof of Proposition 5. The statements of Proposition 5 prior to (2.13)
are immediate from (2.12) and Proposition 4, except for the strict concavity on
(8,,1). To see the latter, compute from (2.12) for 6 > 6,, using (2.8) and (2.9),

(2.36) 2 1.0 = 1og| 2ED
a9 " 1-h )
92 1 dr
(2.37) WJh(e) = —6% < 0.

The inequality follows from Lemma 7 with r(6) = H~'(6). Note cancellation of
terms.

The slope of J,(6) at § = 0 is log(hG(0)/(1 — h)), irrespective of whether
6, = 0 or 6, > 0, and changes from plus to minus at & = h defined in (2.13).
Now parts (i) and (i) of Proposition 5 are obvious. To see part (iii), note that
J,(0) by (2.36) reaches its maximum when

1
h=1ver)
with r = r(6) the unique solution of (2.8):

G(r)
S G(n)
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This proves (2.14) and (2.15). One finds (2.16) by substitution of K(8) in (2.9)
into (2.12) using (2.14) and (2.15).

Note the important qualitative change of J,(6) as h crosses the critical
value % . Also note that the maximizer changes from 6 = 0to § = 6, > 0, and
therefore jumps when 6, > 0.

2.6. Proof of Theorem 2. From Proposition 5 we get (2.17), continuity of
p(h) on [0, 1], as well as analyticity on (0, 2_) and on (h, 1). It is clear that
p(h) is strictly decreasing on (0, k). To see that it is also strictly decreasing on
(h,, 1), compute the following via (2.15) and (2.17):

o 1 dr 1 (1+G(r))?
e R N 100
1 G(r)(1+G(r))
TR T e

Thus it suffices to prove the following lemma.
LEmMA 8. —G'(r) > G(r)1 + G(r)) forallr = 0.

Proor. Since g(0) = 0 and g(i +j) < g(i) + g(j) for all i, j > 1 by (2.2),
we argue

Z e TG+ -8 —&()
i,j=0

(1+ G(r))*

A

E e TE+H—gG+))
i,j=0

= Y (k+1)e mke®
k>0

-G'(r) + (1 + G(r)). O

To get (2.19), note that

. dr (1 + G(0))*
lim — = - —————~—~—

Rik, dh G'(0)
and substitute (2.6) and (2.13). The remaining claims of Theorem 2 are

obvious. _
The upper bound 6(h) < h follows from (2.14) and (2.15) with Lemma 8.

Another way to see the latter inequality is by returning to (2.10).
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LEMMA 9. J(0) is strictly decreasing on [0, 1].

Proor. Recall that J(6) is continuous on [0, 1] [(2.3) and Proposition 4].
Differentiate (2.3) and use (2.8) and (2.9) to get

0G(r)
J'(0) = log 1_ g ) if 9 >80,
1 960 if § <6
= log| T— ) if 6 <89,.

Both are strictly negative by Lemma 8 and by (2.8) and (2.6), respectively. O

Since (1.10) gives that I,(6) is decreasing in 6 for § < & and increasing in ¢
for 6 > h, we see from (2.10) and Lemma 9 that the maximizer 9 falls in [0, A).

3. Interpretation of variational formula.

3.1. Path of descent of a typical particle. In this section we explore what
Theorems 1 and 2 imply about the history of the particles in the population at
a given time n. Our main result, Theorem 3 below, shows that in the limit as
n — o almost all of the population has a very specific history, one that is
singled out by the variational formula. This is the selection mechanism alluded
to in the Introduction: For large n the population predominantly consists of
those particles whose history happened to be best adapted to the given environ-
ment. In our situation ‘“best adapted” means spending a lot of time on sites
where b, is large, little time on sites where b, is small, and doing so in a way

that is not too unlikely.
’ We start by introducing the notion of the path of descent of a typical
particle. Let (nZ) be the process starting from one particle at site z and no
particle elsewhere: a so-called single ancestor process. Then a version of our
process is given by the independent sum

(3.1) Na(2) = 2 mi(x).
zeZ

This allows us to construct the historical process for (7,,) in the standard way,
as follows. For each single ancestor process we record the position of the
ancestor at time 0, the positions of the particles in its offspring at time 1, and
so on. That is, we have the whole family tree available on our probability
space. For a formal construction, see, for instance, Harris (1963), Chapter 6.
By (3.1), the historical process for (7,) is simply the collection of family trees
of all the single ancestor processes independently put together.

Now give each particle in the population at time n a label »”. Let Z(w™)
denote the position of the ancestor at time i of particle w" and let

(3.2) ZM(w") = (ZP (™) = Z§(0™)) iy,
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which we call the path of descent of particle w™. Next let
Q% = {w": Z(w") € [-N, N])
and define

1
(3.3) e Y Sz

‘eru w"eQf

Q% is the population at time n in the box [-N, N1. In Section 1.2 we saw that
lim Q%1 /(2N + 1) = E|{ow": Z*(0™) = 0}| as.,

[see (1.4)], which is the expected population at the origin at time n. [We recall
that the a.s. refers to the joint distribution of (7, ) and F.] By the same token
we note that for each fixed n the vector-valued process Z" is stationary and
ergodic under translations in Z [by the same argument as in Section 1.2, this is
a consequence of the i.i.d. property of F, the initial choice ny(x) = 1 and the
evolution mechanism]. Hence from the individual ergodic theorem we have the
existence of the limit

3.4 lim I'=T" a.s.
(3.4) Jim TZ=T" as

Now let
Zr = (ZAin)zlo

be distributed according to I'*. This is what we define as the path of descent of
a typical particle in the population at time rn, in short zypical path. The word
“typical” is used here because (3.3) randomly selects a particle from the
population in a large box [-N, N1].

We shall need the following functionals of Z":

(8.5) 6,=n"12",

1 4
(3.6) b, = Zr el anfn(x)
with

(%) =,{0 <i<n:2! =x}|

That is, én is the empirical drift of the typical path and ¥, is the empirical
distribution of local times of the typical path over its range. Note that (3.6) is
the.a priori relevant definition only because paths cannot step to the left.

3.2. Survival of the fittest. Now we are ready to formulate our main
result. As in Section 2, let 8 = (k) and v = () denote the maximizers of our
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variational formula (1.13) (see Theorems 1 and 2 and Propositions 4 and 5).
We have seen that both are unique, except for §, > 0 and & = h,, when 6 is
the whole interval [0, 6,]. Recall that if 6, > 0 and 6 € (0, §,), then ¥(6) falls
outside the domain M, of the variational formula. The following theorem will
be proved in Section 3.4.

THEOREM 3. (i) Asn — o,
(3.7 6,60 a.s. forallh € (0,1) \ {h,},

(3.8) F”(ﬁnlé = 0n) — 854, weakly along any sequence 6, — 6 > 0.

n

(ii) (Localization vs. delocalization.) If h € (0, h,), then 8 = 0, so that the
typical path has zero limiting drift. If h € (h,, 1), then 6, < 6 < h, so that the
typical path has positive limiting drift but still slows down compared to the
underlying random walk.

(iii) (Intermittency.) If 6, > 0, then for every 6 € (0,6,) and every 6, — 0
there exist random sets A, C [0, Z] on the events {6, = 6,} such that

(3.9) r(14,1/1[0, 27116, = 6,) - 85 weakly,

but

(3.10) rn(n-l Y [.(x)=(6,-6)/6,6, = on) - 1.
x€A,

No such sets exist if either 6, > 0 and 6 € (6,,1], or 6, = 0.
(iv) (Survival vs. extinction.) For h € [0, h*) the particle density tends to
o, while for h € (h*,1] it tends to 0 [recall Theorem 2(iv)].

REMARK. Note that if » > &, then 8 > 0 and hence (3.7) and (3.8) imply
I*(9,) > 8,5 weakly.

However, if & < h_, then 8 = 0 and so we get no information about the full
limit law. The study of this object would require an analysis on a finer than
exponential scale, which is beyond the scope of this paper. A similar refine-
ment would be needed to settle the limit law of 6, at & = h .

3.3. Description of phase transitions. Before expanding on Theorem 3 we
rewrite the function G(r) in (2.5) in terms of the distribution 8 for the mean
offspring (see Section 1.1).

LEMMA 10.

G(r) = [%e-r(1 - %e") IB(db).
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Proor. Use (1.6) and (1.27) to write exp(—g(i)) = exp(f(i) — i log M) =
[(b/M)'B(db). Substitute into (2.5). O

(D) Localization vs. delocalization, and intermittency. There are three
cases to distinguish [see (2.6) and (2.13)]:

a.6,=h,=0< [(M-b)'B(db) = =
b.0=0,<h,e [(M—b)"%8(db) = =, [(M — b)"'B(db) < x;
c. 0<6,<h,e [(M-0b)"%B(db) < .

Case a: For all h > 0 the typical path has a drift that tends to a strictly
positive limit (i.e., its range is of order n): There is delocalization.

Case b: For h < h, the typical path localizes [i.e., its range is o(n)], while
for h > h_ it delocalizes. At A = h_ the limiting drift is continuous.

Case c: The same as in case b, except that now the limiting drift makes a
jump at h = h, of size 6,.

If B has an atom at M, then we are in case a. The density of sites where
the growth is maximal is strictly positive and therefore it does not pay for the
particles to stand still: There are good growth spots in abundance. On the
other hand, if B has a density w.r.t. Lebesgue measure tending to 0 sufficiently
fast in the neighborhood of M, then we are in case b or c. The sites where the
growth is maximal or close to maximal are too rare and the particles tend to
stay close to them as much as possible, thereby losing their drift. In case c this
effect is even so strong that for all paths with a limiting drift 6 € (0,6,) a
fraction at most 6/6, of the time is spent outside the thin sets A, carrying
these rare sites. This phenomenon is an example of intermittency. The jump in
the limiting drift in case ¢ can be explained as follows: Once the typical path
.moves it runs fast in order to find the rare good growth spots.

Note that for all A € (0, 1) the limiting drift is strictly smaller than A. That
is, the typical path always has a tendency to slow down compared to its
behavior in the spatially homogeneous medium. This is a somewhat subtle
effect, because the typical path slows down on good growth sites but speeds up
on bad growth sites. Apparently the net effect is to still slow down.

(D) Survival vs. extinction. At h = h% the growth rate of the particle
density changes sign. This means that for A > A% the population dies out
globally, so in particular at every given site there will be no particles from
some random time onwards. For & < k%, on the other hand, the population
grows globally. This does not necessarily mean that at every given site we find
a growing population: The assertion is about the global density only. In fact,
in Greven and den Hollander (1991), it is shown that there is a range of
h-values where the process grows globally but dies out locally. In this case the
population experiences an extreme form of clustering: Huge peaks form on a
thinning set. (This is in fact an intermittency-type phenomenon.) But the
global picture is perhaps more relevant: The fact that elephants are extinct in
northern Europe says little about elephants.
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3.4. Proof of Theorem 3.

Proor orF (3.7). Let
0 (0") =n"HZ} (") — Z§ (™).
Pick € > 0 and define
QX (¢) = {w” € 0%:|6,(0") - o] > e}.

This is the collection of particles in the box [~N, N] at time n having a path
of descent with empirical drift away from 6. We have [recall the observations
made below (3.3)]

1
3.11 li
(8.11) Now 2N + 1

0% = E|{o": ZM (") = 0}| aus.,

1
(312) AW gN 1l )

= E|{w”: ZMNo™) =0, |6,(o0") — 6] > e}| a.s.
and
Al’i_lflle”N(e)I/IQ”Nl =T"(6, - 8l > &) as.

by the definition of I'”, the law of the typical path at time n as defined in (3.4).
The growth rate of the r.h.s. of (3.11) being p by Theorem 1, it suffices now to
show that there exists 6 = 8(¢) > 0 such that

1
—~ log[r.h.s. (8.12)] <p — & for n sufficiently large,

that is, the density of such particles grows at a rate strictly smaller than that
of the whole population.
As in Proposition 1 we can write

r.hs. (3.12) = Eh(exp[ Yy f(ln(x))]l(ln—lsn_5|2£)).
x=0
Then, retracing the steps of the proof in Section 1.5, we have

1

(3.13) lim —log[r.h.s. (3.12)] = sup (J(8) — I,(8)).
nowo 1 6<0,1]
[6—6]>¢

But this finishes the proof because we saw in Proposition 5 that J(8) — I,(6)
achieves a unique maximum at 6 (for 2 # k). O
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Proor oF (3.8). Here the same remarks as in the previous proof apply. The
quantity to consider this time is

where || - || is any metric that induces the weak* topology. This again is a ratio
of two terms and it suffices to show that there exists § = 6(¢) > 0 such that

1 0
n log Eh(eXP[ ) f(ln(x))] Lipno,+1-s1>e)/Sn = 0pn ) <p — 8

x=0

for n sufficiently large,

where we recall the definition of v, below (1.23). But the Lh.s. grows at rate

(3.14) sup {6[<f,v) — I(v)] - 1,(8)},
|Iv—17||£e

and so again this finishes the proof because we saw in Proposition 4 that, for
every 6 € (0, 1], there is a unique maximizer ¥ = »(8) (irrespective of whether
it is attained in M, or not). O

PrOOF OF (3.9) AND (3.10). Every event in this proof is to be intersected
with the events {6, = 6,}. From (3.7) and (3.8) it follows that

n
Zr+1 né,+1

- 0_1,

(3.15) Yis,(i) =
p.(i) - #(i) foralli

(3.16) with Zi(i) = 1 and Ziz?(i) =071<09?

[recall Proposition 4(ii)]. Pick N and define the random set
BYN = {x € [O,Z;‘]: [(x) = N}.

Split #, into the sum of two parts
1

AN '
Vn,l =53 Z B[n(x),
Zy + 1, o, 20\BY

AN _
Vn,2_ Zn 1 Z afn(x)‘
nt xeBY -
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As a consequence of (3.15) and (3.16), we have
lim sup an (i) <671 for all N,

n—o

lim inf Zw '2(i) =671 — 6, forall N,

n—o

hm lim sup Zvn 2(2) = 0.

n—o

This in turn implies that there exists some random sequence N(n) — « such
that

(3.17) T oMp(i) - 0,
i
0—1
(3.18) lim sup {Ziﬁ,{‘f‘l”)(i) Eiﬁ,f”(z")(i)} < ﬁ
n—o i i 0 6;
Now put
A, =BNm,

Then (3.17) is (8.9). Combine (3.18) with (3.16), substituting »N{(i) =
2,(0) — 2NGI(D), to get via (3.15):

Zr+ -6t
liminf —— ZiﬁN(”)(z) >

n—o

This is (3.10).
In the complementary case, 6, = 0, or 6, > 0 and 6 > 6, no such A, can be
found because, by Proposition 4(i) and (3.8),
Al,im limsup ) idN,(i) = 0. ]

n—oo
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