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A STRONG INVARIANCE PRINCIPLE CONCERNING THE
J-UPPER ORDER STATISTICS FOR STATIONARY
GAUSSIAN SEQUENCES

By GEORGE HAIMAN AND MaDAN L. Purt?

Université de Lille and Indiana University

It is shown that in the case of stationary Gaussian processes, the Jth
(J = 1) record times {T,,n > 1} and the corresponding J-upper order
statistics {X7 _y.1,7,..., X7, 7} can almost surely be identified via a
translation of the time index n to the corresponding elements defined on a
sequence of independent and identically distributed random variables. A
construction method for approximating sequences of record times and the
corresponding upper order statistics introduced by Haiman (1987a, b) for
the case J = 1 is extended and applied under weaker conditions concerning
the covariance function, and also under different sets of new hypotheses.

1. Introduction. Let {X,, —© <n <} be a stationary Gaussian se-
quence centered at 0 with covariance function
(1.1) T (n)=E(X,X,,,), rooy=1, n=0,+1,+£2,....

Let X;,<X,,< - <X, ,,<X,, denote the order statistics of

Xy,...,X,. Let J >1 be a fixed integer and 0, > 0 a fixed real number.
Denote

T,=inf{n;n>d,X,_;,1,> 0y,

Ql = {XTI—J+1,T1’ ) XTI,TI}

and, for any & > 2, set

Ty=inf{n;n>T, 1, X, gi1,0> Xy -1l

0, = {XT,,—J+1,T,,»~~, XTk,Tk} = {07,0]71,...,0;}.

We shall call ©f the kth Jth-upper record. Note that our definition is a slight
variant of the usual definition of the Jth-upper record [see, e.g., Resnick
(1987), page 243, and Deheuvels (1988)]. Note also that when > 1, ®; is not
the kth-upper record. T),’s are the Jth record times, and {T,, ®,}, . ; describe
the history of the J largest values of the sample X, ..., X,, for n > T,. In the
sequel, we will call {T},,0,} the Jth record sequence based on {X,,n > 1}
and O,

(1.2)

(1.3)

DEFINITION. A sequence {r, = (r7,...,r}) € R7, k > 1} is called J-ordered
if the following conditions hold: For any % > 1, r,;} < +++ <r} and, either
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STRONG INVARIANCE PRINCIPLE 87
ri <rgypandthen rf , =r/ /ol =172 .., r, = ry; or there exists J,
2 <j<d, such that r/ <r/,; <r/”%, and then ri,, =ri”' if i>j and
rigo=rpif i <j.

Note that when {X,,, n > 1} is a sequence of iid (independent and identically
distributed) random variables with a continuous distribution, then for any
increasing sequence of positive integers {¢,, £ > 1} and any J-ordered sequence
{r,=(7,...,rd), k>1}, we have the following Markov behavior [see
Deheuvels (1974)] of the sequence {T},, 0.}, . 1:

P[Tn+1 =ty 1,00 <ri Ty =¢,0,=r,...,T,=¢,,0, = fn]

(1.4) = [P(X, <) Pl < X <l
n>1,j=1,...,dJ.
Consider now Hypotheses H;, H, and H3.

Hyrornesis H;.

(1.5) Y IT(n)| < 1/2.
n=1
(1.6) There exists an & > 0 such that limsup |[['(n)|n*** = 0.
n—oo

Hypotuesis H,. {X,,n > 1} has a spectral density f(A) > 0, —m <A <,
such that

(1.7) JTLF)]  da < o,
(1.8) There exists an £ > 0 such that limsup |T(n)[n®** = 0.

To formulate Hypothesis H, we need the following preliminaries:
Let p(7) be the coefficient of regularity of the sequence {X,, —© < n < o},
defined by

(1.9) p(7) = max| E(nym,)|,

where the maximum is taken over all n, € H(—x,0) and n, € H(r,®), 7 > 1,
with E(n2) = E(n3) = 1, and where H(r,s) denotes the Hilbert space of
random variables generated by {X,;r < n < s}.

“HypoTHESIS H;. There exists an € > 0 such that

(1.10) lim supp(n)n®*s = 0.

n—o
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Our main result is the following:

TueEOREM 1.1. Let Hypothesis H,, H, or Hg hold. Then, for any fixed
J > 1, there exists a probability space which carries, in addition to the se-
quence {X,, n € (—»,»)}, an iid sequence {X*, n > 1} of random variables
each having a #10,1) distribution. Moreover, there exists a 0, (> 0) such
that if {T},, 8.}, ., is the Jth record sequence based on {X,, n € (-, »)} and
0y and {S,, R}, » 1 is the Jth record sequence based on {X}*, n > 1} and ©,,
then there exist almost surely an n, and q such that for all n > n,, we have

(1.11) S,=T,, and R,=90,_,.

Moreover, I’f {Mn}an = {(Xn—J+1,n7 ] Xn,n)}an and {M:}an =
(X _gitnree s XE D)5y, then there exists almost surely an n, and q' such
that for any n > n,, we have M* = M, _,.

The proof of this theorem is given in Section 2.
REMARK 1. For J = 1, Haiman (1987a) proved Theorem 1.1 under:

Hyporuesis H). () 5 _,IT(n)| < 1/2 and (ii) there exists an & > 0 such
that lim sup,, _, |[T(n)|n (1 *2/A=%+e — 0 with § = max, .,I[(n)| < 1.

It may be observed that H'(ii) is more restrictive than (1.6) [since ((1 +

8)/(1 —8) > 1]

REMARK 2. Note that under Hypotheses H,, H, or H,, f is continuous and
f() =1+ 2% _T'(n)cos nA > 0. Consequently, (1.5) = inf, f(A) >0 =
(1.7) and (1.8) = (1.6).

REMARK 3. A weakly stationary sequence {Y,, n > 1} is called strong
mixing (or a-mixing) if
(1.12)  a(7) =max|P(ANB) —P(A) -P(B)| >0 ast— o,

where the maximum is over A € ofY; j<tland Beo{Y; >t + 7).
When {Y,,n > 1} is Gaussian, then for any 7> 0 [see Ibragimov and
Rozanov (1974), page 133],

(1.13) a(t) <p(7) < 2ma(r).
Thus in (1.10), p(n) may be replaced by the strong mixing coefficient a(n).

REMARK 4. 1t is easy to show [cf. Ibragimov and Rozanov (1974), page 174],
that for any n > 1, T'(n) < p(n)[™_f(A) dA. Thus (1.10) = (1.8).

Moreover, for Gaussian sequences, complete regularity [i.e., lim, . p(n) =
0] implies regularity [see Ibragimov and Rozanov (1974), pages 130—136] which
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is equivalent to the well-known condition

(1.14) ™ log (M) dr > —w.
Thus (1.10) = (1.14).

It may be shown [see Grenander and Rosenblatt (1957), pages 65-69 and
82-83] that (1.7) = (1.14), which gives a compensation phenomenon similar to
that observed in Remark 2.

To summarize, we have the following relationship between the hypotheses:

(15) = (1.7) = [

w

log f(A) dA > —o

f
(1.6) = (1.8) =Hypothesis H;.

The following theorem gives the full characterization in terms of spectral
density of the weakly stationary sequences (not necessarily Gaussian) satisfy-
ing a condition similar to (1.10).

THEOREM 1.2 [Ibragimov and Rozanov (1974), page 212]. A necessary and
sufficient condition for

p(*r)=0('r_’_‘3), Too,reN0<g<I1,
is that

f(A) =|P(e*)[o(2),

where P(Z) is a polynomial with zeros on |Z| = 1, w(A) > m > 0, and the rth
derivative of w satisfies the Lipschitz condition of order B (for every Ay, Ay,

Theorem 1.1 has direct applications in extreme value theory by enabling one
to reduce limiting theorems for dependent sequences to the iid case by means
of a strong invariance principle. For the general classical results dealing with
the extreme value theory for stationary processes, the reader is referred to
Leadbetter and Rootzén (1988) and the references cited therein.

We shall prove Theorem 1.1 by first constructing on the probability space
(eventually enlarged by products) on which {X,,n > 1} is defined, a sequence
{S,, R}, such that: (a) {S,, R,},. has the same distribution as the Jth
record sequence based on an iid sequence of .#70, 1) random variables and 0,
[i.e., satisfying (1.4) with T}, and ©, replaced by S, and R,, respectively]; (b)
there exists almost surely an n, and a ¢ such that for any n > n,, we have
S,=T,_, and R, = 0,_,. The construction of the iid sequence {X}¥,n > 1}
such that {S,, R,}, ., is the jth record sequence based on {X}*,n > 1} and 0,
is then straightforward.
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2. Proof of Theorem 1.1 for J = 1.

2.1. Some preliminaries. In this section, we shall first prove some basic
lemmas which are needed to prove Theorem 1.1. To make the results self-con-
tained and to provide proper motivation, we shall first prove Theorem 1.1 for
J=1.

The following lemma is a specialization of the classical comparison theorem
of Berman (1964).

Lemma 2.1. Suppose ¢,,...,¢&, are standard normal random variables
with positive definite covariance matrix A' = (Al ;) and my,...,m, are stan-
dard normal random variables with positive definite covariance matrix A° =
(AS)). Further, let a; <b,,...,a, <b, be real numbers. Then

|Pla, <€ <by,...,a,<&,<b,} —Pla;<m <by,...,a,<m, <b,}
(21) 2 -1/2 Ciz + 02
<— ) AL - A%(1 - 82 exp| - ————|,
”'1si<j5n| ! J|( ) 2(1 +3;5)
where c¢; = min(la,|, [b;]), i = 1,...,n, and §,; = max(|A};1, |A%,).
Proor. Let f; be the joint density of (¢4,...,¢,) and f, the joint density

of (ny,...,m,) (which exist because A’ and A° are positive definite). Writing
a=(ay...,a,)and b =(by,...,b,), we have

b
P(a1<§1<b1)~“’an<§n<bn) =[_“'ff1(y17”-,yn)d~2/

and

(S

P(a,<my <by,...,a,<m,<b,) =f

[fO(yl)yyn)d-y
a

For any 0 < & < 1, put

(22) AN =(Aylsi,j<n)=hAl+(1—h)A,

which is positive definite.
Let f, be the density of .#(0, A*) random variable and put

F(h) =LQ"'[fh(y1,--~,yn)dz-

The difference in the first term in (2.1) equals F(1) — F(0) and

(2.3) F(1) - F(0) =f01F’(h)dh=j:[LL’...fﬁfh(y1—(’9}l’”’y_")dy dh.
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From (2.2), it follows that

A" .
W _ Al _ A0
o AL — A

and hence that

: 3fy NG, b of;
(2.4) F(h)—Zf[ faA,j’ L dy = EJ(AI,.J. A%) "'fWZdX'

a

But since f, is Gaussian, we have

afy B 9%,
aA’;j dy; dy;’

which combined with (2.4) implies

(2.5) F'(h) = ¥ (A - A% f jaf"

1,<_] g i ay Jj '
By integrating first with respect to y; and y; in (2.4), we obtain
F'(h) = ¥ (A} — AY)

i<j
(26) Xff o f[fh(yi =b,5;=b;) = fuly; = b;,5; = a;)

—fu(yi = a9 =b;) + fu(y;i = a;,y; = aj)] ay’,
where f,(y; = u;,y; = u,) is the function of n — 2 variables obtained by fixing

y;=u;and y; = u;, and where dy' =TI, .; ;. ; dy,.
If u,=a; or b; and u;=a;orb;i<j,then

jj"'/fh(yi =Uupny; = uj) d.}”

(2.7 S/_Jr:”'fj:”'ffh(yi=ui,yj=uj) dy'

_ 1 u; —2A,Ju,uj+u

_ NG >},
2n(1- (") xp{ 2(1 - (4

“On the other hand,

(2.8) u? — 2N+ u? > (uf + uf)(l —IA’l?jl)
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and
(2.9) | A% | < max(| A% |, [A%]) = 5.
By combining (2.3), (2.6), (2.7), (2.8) and (2.9), we deduce (2.1). O
Let 0 < K < 1 be a constant and for any r > 0, define ux(r) by P{X, >
pe(r) =P{X, > r}*E =[1 — ®(r)'*%, where ®(-) is the standard normal

distribution function. Denote by g(x;,..., x,) the joint density of Xj,..., X,.
For any integer ¢t > 1 and any 0 < r < s, put

Q(t, r, S) = ng(xl""’xt)d'xt’

D={—p,K(r) <xi<s,i=1,...,t},

and denote by Q;(¢, r, s) the value of Q(¢, r, s) when the X, are iid. [Though
Q(t,r,s) and Q,(¢,r,s) depend on K, we have suppressed this fact for
notational convenience.]

(2.10)

Lemma 2.2. If L, .,/T(n)| < o, then there exist an r; > 0, two positive
constants ¢, and ¢, and a 14> 0 such that for all r >r;, 0 <7 <7y and
0<K<1,

Q(t,r,s)

Ql(t’r7s) -1

(2.11) sup <ey[G(r)]7,

1<t<(r/G(r)log(1/G(r))
0<r<s<ug(r)

where G(r) =1 — ®(r).

Proor. We first apply Lemma 2.1 with A}; = 0 and AY; = TG - j), i #,
for which clearly A° and A' are positive definite and a;, = —ug(r), b, = s,
1<i<n.Then, forany ¢t >1and 0 <r <s < ug(r), we have

|Q(t,r’s) - Ql(t’r’s)l
2 2
<= Y ITG-HI(1-(rGE-1))?)

l<i<j<t
52
Xexp{ - ——m—————
P\ 14106 —))

< Gonstr £ 114 eso| 17|

k=1

-1/2

(2.12)

—g2
< (const.)texp{ T 6}
2

-r
< (const.)¢ exp{ T 8}"
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where § = max; ,|I'(i)| < 1 and (const.) is a generic constant (independent of
K and 7) which may change from step to step. Note that |Q(¢,r,s) —
Q.(t, 1, s)| < (const.)t exp(—r2/(1 + 8)) when we have 0 < r < s only.

Now, if 0 <r <s < ug(r)and 1 <t < (r/G(r))log(1/G(r)), we have, for
G(r)<1/2,

Q(t,r,5) = (P{-nx(r) <X; <s))' = (1= [6(N]"™ -~ G(s))
> (1 — 2G(r)) ™/ GrMogl/GrD
27G(r
> [G(r)]zf exp{%log G(r)},

by using —log(1 — u) <u + u?2/(20 —u)) for 0 <u < 1.
Thus, since |G(r)log G(r)| < 1/e, there exists r; > 0 and 7, > 0 such that
forany r>r,0<7<7,and 0 <r <s < ug(r), we have

[G(n)]T
2

1
T G(r) T G(r)’

Combining (2.12) and (2.13) and using the fact that G(r) ~ @m)~ Y21 /r)
e™" /% as r —> o, we obtain for r>r;, 0<7<7, 0<r<s<pug(r) and
1<t <(r/G(r)]log(1/G(r)),

(2.13)  Q(t,r,s) > forl <t <— log

Q(t,r,s) T 1 o —r?
Q) 1 s(const.)(G(r) log G(r))[G(r)] exp{1+6}
-1 1+ 27
< (const.)r3+2 exp{rz( T " -; )}

Now, noting that —1/(1 +68) + (1 + 27)/2 < 0 is equivalent to 27 <
(1 — 8)/(1 + &) and using the fact that for any 0 < ¢” < ¢/,

r3+2 exp(—(¢'/2)r2}/[G(r)]” > 0 asr — =,
we readily obtain (2.11) by choosing 7 and ¢, in such a way that
1-6 1 1 1+ 27
2(1 + 8) 5( 1+8 2 )

O<T<min(71, ) and 0<e¢c, <

For any integer ¢ and any 0 < r < s, put

t—1
(2.14) P(t,r,s) = f g(xy,. %, 1,x,=3) ] dx;
D i=1
with
D ={-pg(r)<x;<r,i=1,...,t—1},
and denote by P,(¢, r, s) the probability in (2.14) when the X, are iid. [Though
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P(t,r,s) and P,(t,r,s) depend on K, we have suppressed this fact for
notational convenience.]

Lemma 2.3. If X, .,T(n)l < and [7_log f(A)dA > —x, then there ex-
ists an ry > 0 and two positive constants ¢, and ¢y, a Ky > 0 and a 74> 0
such that forallr > r,, 0 <7 <7yand 0 < K < K, :

P(t,r,s)

Bitrs) <ey[G(r)]”

(2.15) sup
1<t<(r/G(rNog(l/G(r)
0<r<s<pg(r)

[Note that the conditions of the lemma are satisfied if either one of
Hypotheses H,, H, or H; are satisfied (see Section 1, Remarks 3 and 4).]

Proor. With the notation in Lemmas 2.1 and 2.2, let

A2j=l“(i—j), 1<i,j<t-—-1, A% =0 ifi=¢and A9, =1.
Set
(2.16) A, =T(i—j), 1<i,j<t,
and consider first with Q(¢, r, s) as defined in (2.10),
P(t,r,s) —Q(t—1,r,r)e(s)

(2.17) ==F(1)—F(O)=f01F’(h)dh, o(s) = ‘/21_7(3-32/2.

[Note that F in (2.17) is not the same as in (2.3).]
Let f;, be the density of an .#7(0, A*) variable associated with A* = AA® +
(1 — A)A°. Then, by proceeding as in (2.4) to (2.6), we have

F'(h) = X (A - AY)

i <j
r r af
X yenns 1, =3 d d _
() f—ux(r) OA" (> Yi—1>Yt ) dy, Vi1
t — 1 times
ro oY,
= l"t— vee s Ve 1Y) Ay o dy,
(2.18) ( l)f-#,gr) f_#K(r)ayiayt(yl Ye-1,¥s) Ay Yi-1
r afy
= I'(t—1 e € 2T o A VR
Z ( )f_#K<r) f—MK(r)l:ayt (yl i i+1 Yt )
t — 2 times
0y

geeey l=_ r » Vi e ey =8 d .
3y, (yl Y ‘ Re(T),Yie1 Yt ) kl:I1 Ve

k#i
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Now, let forany 0 < h < 1,
(2.19) X'=X, j=1,...,t—1, and X}=hX, +Y",

where Y” is independent of X,,..., X,, and has .#10,1 — h?) distribution.
Let S* be the lower triangular matrix such that the random variables

(2.20) Zl= Y SExE i=1,...,t,
Jj=1

form an orthonormal system [i.e., E(ZZ‘Z}’) =0if i #j and E(Z}Z") =1 if
i =j]. Then

; 2
Si';yj) .
-1

(2m) 2\
From (2.19) and (2.20) it follows that for any 0 < & < 1,

Sl}‘l]=Sl]:] fOI‘].Sl,JSt_l-

IS* 12
(2.21) flye -5 90) = ~—l/2 exp{— r) (

Note that we can choose Z! in (2.20) of the form

t—1 Stlt
Zt”=a S}J.Xj+ W X,” ,
Jj=1

since forany 1 <k <t -1,
E(Z!zZ}) =0,
and the condition ||Z”||” .= E((Z}})?) = 1 is satisfied for
B2
5 ~ <1
h? + (S,lt) (1-h)
Denote by XX~ % the orthogonal projection of X, on H(r, s). Then we have
Ztl — (Xt _ thl ..... X,_l) ” X, - thl ,,,,, X,_1”_1

from which it follows that S} = | X, — XXv-%-1]7! > 1 and [see Grenander
and Rosenblatt (1957), page 69]
1

( mean square error]

2 _

EARE

of prediction

(2.22) one step ahead

1 1 .«
= — S — 72
) . exp{ . ;wlog f(a) d/\} L*.
Thus, for 0 < h < 1,

(2.23) |Sk|<|SL|, 1<i,j<t




96 G. HAIMAN AND M. L. PURI

Going back to (2.18), and using (2.21), (2.22) and (2.23) and the fact that for
any 0 < a < 1, there exists c(a) such that

xe */2 < c(a)e /2 x>0,
we have, with 2! = Zj~=lsi';y;’, i=1,...,t,0<a <1,
|S*| 1 & e
(yt tJyJ ,S |fh(yt) < g/2L| |eXp -5 Z (zi)
(2m) 2,3
IS”| 1
—— 5 Le(a) exp{ - e E (zh)
(2.24) (2 )
S| 1 g
(2 )t/ZLc(a) eXp _Ealzl JZIStJyJ

= Le(a) fu(Vayy,...,Vay,).
Next, if in (2.18) we write

r r 0fh ,
/ f —_(yl’ ~~’yi=r7yi+1"-~’yt=s)d2
) —ug(r) 0Y;
t — 2 times
r r af
- SEi=ry=s)dy,
—pg(r) '[— px(r) 0y, -

then by (2.24), for any 1 <i <t — 1, we have

. roof,
[ SR gi=ry=s)dy
'[—ux(r) f—#x(r)ayt( § =Y =) -l

< Lc(a)f_+: e f_+:fh(\/c7yi = Var,Vay, = Vas)dy

t — 2 times

2.25
(2.25a) Le(a)

a=D7227(1 = RT(¢ — i)

1 (r?2—2hT(¢t—i)rs +s?
XOP\ o T R )

Ay(h),



STRONG INVARIANCE PRINCIPLE 97

and similarly for the term containing w,(r) in (2.18), for which we obtain
r r afh
e —(y; = r), =3 dy/
/_W /_#K(r) 9y, i = u(r).y: = 8) dy
L-c(a)
<
(2.25b)  «7P2m(l - T - 0))
(ux(r))? = 2RT(t — i)ug(r)s + s*
1= hT%(t — i)

1
X exp -3¢

|

= A,(h).
By (2.17) and (2.18),
‘P(t,r,s) -Q(t—1,r,r)e(s)
Q(t—1,r,r)e(s)
[t IF'(h)|
o Q(t—1,r,1)e(s)
_ JoZiTAIC(t — DI(Au(R) + Au(h)) dh
- Q(t—1,r,r)e(s)
supo <4 <1(A;(h) + Aj(h))
[ Q(t—1,r,r)e(s)

By Lemma 2.2 and (2.13), there exists an r, > 0 such that for any 0 < 7 < 7,
0 <K <1and ry <r, we have

dh

(2.26)

< Y IT(n)|x max

n>1 l<i<t-1

1 1
Qt = 1,r,r) > 5@t = 1,r,r) > 2[G(N]”,
(2.27)

T 1
2<t< G(r) lOgG(r) + 1.

Next, if we put, for any 1 < j,

1 (r2—2hF(j)rs+sz) N 32}
2 )

Bj‘=Bj(b,r,s,a) = exp{—ga 1= R2r%())
r<s<pug(r),
we have, by (2.25) and (2.27),
Ai(h) Le(a)
QUE—1,r,me(s) ~ a-2/%(2m) (1 — KTt — 1))
(2.28)

B, A[G(r)] ™",

T 1
1<i<t,2<t< log

< +1,
G(r) ~G(r)
0<7<75,0<K<1,0<ry<r.
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By using the fact that ux ~ V1 + Kr as r 1 and writing B; in the form
1 r2b;

J

S A— P> 1
2 (1-rry)) " 77

B; = exp{ —

it follows by routine computations that there exists r, > r, such that for any
r>ry,

(1-e)[l -2V (1 +k)] - (1+Fk)%, if A2T'2%(j) <e,
(2.29) b; = ¢ (1 ~IT())* ~ 2(IT() |k + (1 =TI + k))),
if h2T2(j) > &,

where k:=V1+ K —land a =1 —¢.
Notice that for &, k, < (1 — 8)?/48, we have for all & < k,,

(1-8)"

max[(1 ~[T()) - 20I0()] = =5, &= max|T(n)| <1.

By (2.29), it is possible to choose &, > 0 such that for any 0 <& < ¢, and
0 <k <k, we haveinf,,; b, > (1 — §)*/4.

From there it follows from (2.28) that there exists an r; > 0 such that for
any 2 <t<(r/G(r)logl/G(r)+1, 0<e<gy 0<7=<7), 0<K<K,
[where K, = (1 + k,)> — 1] and r; < r, we have
max;.; ., 1SUPg<p <1 A;(h)

Q(t—1,r,r)e(s)
2L (1 —¢)
< .
T (1-9%) (-7 exp{
Next, if we take ¢ = e(r) = G(r)/2, then by the same arguments as in (2.13),
there exists 0 < 7; < 7, such that for any 0 <7 < r; and r > 0, we have

[G("]”
2

(2.30)

1 2 2 -2
RN

1
2<t<

(1-e(r))”*> , T log a0 + 1.

If r, is such that (G(r,)/2) < ¢,, then by combining this inequality and (2.30),
we obtain, for any 2 <t < (r/G(r)log(l/G(r) + 1, r>ry>r, 0<7<1
and 0 < K < K,
max; ;<;-15UPg<n<1 Ai(h)
Q(t - 17r7r)¢(s)
4L ) G(r)
=a-a°" T T2

)exp{— %r2(1 - 52)}[G(r)]‘3’.
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Thus, since

1 1
li =1 and G(r)~ —e /2
al_)mlc(a) an (r) or e

we deduce that there exist 7, < 7; and two constants #; > 0 and u, > 0 such
that for any r > 0,0 <7 <1, and 0 < K < K;, we have

max;_; ., 1SWPo<p<1 A;(h) uy
max <u {G(r)]*.
1<t <(r/G(r)log(1/G(r)) Q(t—1,r,r)e(s)
From (2.25b), we obtain in the same way and under the same conditions the
analogous inequality for the term corresponding to A;(k) in (2.26):
max, _; .,_;Sup A (h “
l<i<t-1 o<n<1Ai(h) SuI[G(r)] 2
Q(t—1,r,m)¢(s)

asr — o,

max
1<t<(r/G(rNlog(l/G(r))
0<r<s<pg(r)

Thus, we deduce that there exist 7, > 0 and two constants v; > 0 and v, > 0
such that for any 0 <7 <7, and 0 < K < K;,, we have

P(t,r,s)
max -
1<t=(r/GrMlog(1/G) | R(E — 1,7, 7)p(s)
0<r<s<ug(r)

(2.15) follows by combining (2.31) and Lemma 2.2, since P,(¢t,r,s) =
Qit — 1,r,r)e(s). O

1

<v,[G(r)]™

(2.31)

LEmmA 2.4. Let Y be a random variable taking values in a measurable
space (B, &). Let ¢y € & and let P be a probability measure on (E, &) such that
0 < P(y) < 1. Assume that on ¢, the probability measure endowed by Y has a
Radon~Nikodym derivative (dPy/dP)(y) with respect to P such that

dP _
(2.32) sup | —(y) — ll(l - B(y)) fog <1
yeul dP

Let @ be a Bernoulli random variable independent of Y such that
P(Q = 0) = q. Then there exist two &~measurable random variables Y' and Y,
taking values, respectively, in E and ¢ (the complement of ), independent of
Y and Q, and such that if we put

Y, if@=1landY €y,
(2.33) Y={Y, ifQ=1andYey,
Y, ifQ@=0,
then the probability measure endowed by Y is P.

_Proor. See Haiman [(1987a), lemma, page 448]. O

In the construction of {(S,, R,), n > 1} we shall utilize the recursive
method used in Haiman (1987a). Let us recall this method by first construct-
ing (S, R,).
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2.2. Construction of (S;, R;). We apply Lemma 2.4 with
(2.34) E=NX{(—», —ug(0)) U (By, +x)}, ©;>0,
and Y defined by

(¥ = (t,p),(t,p) € E)
o {~ug(@) <X, <@ i=1,...,t —1,X,=p},

T 1
G(,) *G(0y)’
P being the probability distribution of ¥ when the X, areiid .#70,1). Thus

dPy(t,p) = P(t,p,0)8p,  dPy(t,p) = P(t,p,0) dp,

(2.35)

(2.36) ¢ := {(t, p)EE1<t< Oy <p < /J'K(@O)},

with P(-,-,-)and P,(-, -, ) as in (2.14). By Lemma 2.3, there exist 7, > 0,
Ky,>0,c, >0and c, > 0 such that for any 0 <7 < 7;, and 0 < K < K,
dPY c
su - - 1| <¢;[G(0,)] 2.
yeg aP (») 1[G(0y)]

Next, by the same arguments as in (2.13) we see that, with ¢ denoting the
complement of ¢,

PA(J) > {1 _ G(@O) _ [G(®O)]1+K>(T/G(®))log(1/G(®0))
_ [6(e))”
2

Combining these inequalities we deduce that for any 0 < 7 < inf(7(, 71, ¢, /4)
and 0 < K < K, we have

dPy
dP
with @ = 2¢; and B = ¢,/2.

Thus, for ©, large enough, we have ¢ < 1 and we can apply Lemma 2.4. Let
Y be the corresponding random vector given by (2.33) and put

(2.38) (AS, %) =Y.

Let Y= (AS*, #Z*) be a random vector independent of o{X,, n > 1} X
olY,Q,Y’, Y} and such that

forany 0 < 7 < 7;.

(2.37) up (y) - 1’[13@)] T <a[G(0,)]F =g -0 as®, >,

d
fy(t,p) = EP{AS+= t, B <p} = B(0,) 'o(p),

t>1,1<0,<p.

(2.39)

Put
S, =A814.q + (AS +AS)1 5,
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and

(2.40) R =RLg,o+ R g<q.

Then, it is obvious that for any s > 1 and r > 0,

(2.41) P{S,=s, R, >r} = [®(0,)]° (1 — ®(r)).

We shall further make use of the preceding construction of (S}, R;) under the
following more general form.
Let r > ©,. Let n > 1 be fixed and define Y,(n) by the following relation:

Y, (n) = (¢, p) if and only if
(242) {-wpx(r)<X;<r,i=n+1,...,n+t-1X,,,=p}
(t,p) € E(r) =N X {(=, —px(r)) U (r, +=)}.
Let 7 > 0 be given and let
¥ =(r)
(2.43) ={(t,p) € E(r); 1 <t <7[G(r)]'(~log(G(r))),

r<p<pg(r)}.

Let n,_, be a random vector defined on (Q,d{X,, n>1}, P) and
taking values in &, = (N*x R*)4, d > 2, and of the form =, ; =
(S, R, ...,(Sy_1, Ry_1),(Ny_y, M;_1)) (these notations are motivated by
the iterative construction of Proposition 2.1). For d = 2, S; and R, are the
random variables constructed above. Moreover, if we denote by Y;, @, Y, Y]
and Y; the corresponding random variables and vectors used in the construc-
tion of S; and R, and if we put

Y, = (Y1), (Y1)2)s (Y1), €N,

(2.44)

(Y1) € (=, —ug(0)) U (0, +=),
then
(2.45) M, = max{Rl’Ql]‘(I(Y1)2|>#K(®o))|(Y1)2|}
and
(2.46) N, = Qll(Yle$(®0))1((Yl)1—Sl>0}((Y1)1 -8y).

PROPOSITION 2.1. Assume that n,_,, d > 2, defined above is such that for
any integers s; < +** <Sg_q, V4120 and any 0<p; < -+ <pg_; <
m,_,, the events ’

{ﬂd—ﬁ (S1=s, R, < p1)s-s(Sqo1=584-1, Rg_1 <pa-1),
(Ng_y1=vge1, My_y <my_y)}

are o{X,, n <sg_1 + 2q_1; 2q_1 = [(G(m4_ N1 + vy_;} X o'-measurable,
where o' is a o-field independent of o{X,, n > 1}. Furthermore, put
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Zy_ 1, =[GM,;_)* 1} + N,_, and assume that the conditional distribution
of Yy =Yg, (Sy_1 + Z;_,) given ny_, =1,_, exists for a.a. (almost all with
respect to the probability distribution of my_,) l;_, and has a density function
with respect to P denoted by

Na-1=la-1

dP (¥)
such that fora.a.l;_, € &,
P;ld—1=ld—1 _
(2.47) sup |[——(y) -1 p_l(‘/f("d—l)) =qq <1.
yeurg_pl  dP

Then, there exists a o{X,, n > s;_; + 2,_,} X o’-measurable random vector
(AS,, #,), d > 2, taking values in N X (R*, "), such that

(2.48) P{AS ;=¢t, Ry>plng_y =141} = [q)(rd—l)]t_l(l - ®(p)),
t=1,p>ry_q,
and
P(AS,=min{t > 1, X, .. .. >rsq}
Ry = Xsd_1+zd_1+Asd|77d—1 = ld—l}
=1-(1-[@(ra-)]™)(1 -~ qa)
XP{Yrd_l(sd—l t2q_1) €EY(rg_y)ng_, = ld—l}'

(2.49)

Proor. We apply Lemma 2.4 by taking, for a.a. I;,_;, d > 2, the condi-
tional probability distribution of Y,, given n,_; = [,_;. Note that
the probability distribution of 7,_; is concentrated on the set of [,_;
such that I, _; = ((sy,ry),...,(s4_1,75_1), (g, my_ ) wWithl <s, < -+ <
Sg_1V3_120,and0 <O, <r; < -+ <ry_; <my_;. Thus, in the following,
l4_, will be assumed to belong to this set. Let E := E(r,_,) as in (2.42). Writing
¢ == y(ry_,) as in (2.43) we note that (2.47) implies (2.32). Put

(2.50) (AS,, #,) =Y,

with ¥, := ¥ as in (2.33) (in which we also put, in order to keep homogeneity,
Q@=@Q, Y =Y, and Y:=Y,), these random variables and vectors being
chosen independent of of{X,, n <s,_; +2,_,} X o'

Let (AS7, #7) be a random vector independent of

o{X,;n <sg_1+24_1 X0
and such that
d .
——P{AS;=t, Bi<plng_,=14_1}
(2.51) dp
= [q)(rd—l)]t_l‘P(P) =t de+(t’ P, t>1,r;_; <p.
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Let
(2.52) AS,;=AS; 1g,.0 + (AS, + ASS )14, <o
and
(2.53) Ry=Ry Lg,o0+ Rilia, <o
Let L, be a Bernoulli random variable such that
(2.54) P{Ld =1lng_, = ld—l} =1- [‘I’("d—1)]z‘i_1

and let (AS,, £#,) be a random vector such that

d
EP{A§d = t, 'Zd < P|77d_1 = ld—l}

2.55 . .
(259) = [®(rs-)] e(p)[P(Lg=1lmg_y =14-1)] ",

tef{l,...,zq 1}, rq1 <p.

L, AS, and &%, are mutually independent, independent of o{X,, n <s,;_; +
z;_1 X o' and depend on the other previously defined random variables only
through 7,_;. Put

AS,=LyAS;+ (1 - Ly)(2,_, + AS,)
and
(2.56) RBy =Ly R, + (1 - L)%,
It may easily be checked that these random variables satisfy (2.49). O

2.3. Construction of (S,, R;) for d > 2. We apply Proposition 2.1 recur-
sively to define

(2.57) Sd = Sd—l + ASd, Rd = ‘@d’ d > 2,
(2.58) M, =max{R,, M; 1,(1 - Ly)Quliv,> ucisonl(Ya)2l}
and

Ny = (1~ Ly)Qulyy,cpr, mlas,<zs.+Taw

(2.59)
X(Zgo1 + (Yy), — ASy),

where

(2.60) Y= ((Ya) (Y)), (Ya) &N,

(Ya)y € (=, —ug(Ry-1)) U (Rg_1,),

M and N, are defined, respectively, in (2.45) and (2.46), and the other
random variables are those defined in Proposition 2.1 and in its proof.

It is assumed that at any step of the construction, d =1,2,..., the
hypotheses of Proposition 2.1 are satisfied. Before proving this fact, it is an
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easy exercise to check that the process {S,, R,}, . ; constructed in this way has
the same probability structure as the record sequence based on an iid .#10, 1)
sequence and ©,, that is, we have:

P{Sn+1=sn+l’ Rn+1<pn+1|S1=31’R1=r1""’Sn=sn’Rn=rn}
Sp+1—Sp—1
=[CI)(rn)] o .P(rn<X1<pn+1)’
n>11<s< " <§,<8,,1,0<0,<r; < <r,<p,.

We now prove that {n, = (S, Ry,..., Sy, Ry Ny M), d > 1} satisfies the
hypotheses of Proposition 2.1.

Let 1 <s; <sy3< -+ <s, and O, <r; < -+ <r, be given. Let . be
the set of vectors ¢ of the form
(2.61) {={(sipmi)s- (50,1}
with
1<i;<ig< -+ <i;<n,

or,if (s, m,)is such that s; <s <s; forsomel <k <[ and m, > r,, then

ip-1

(261) &= {(s171)s -5 (S5, iy )y (8,m0), (815 70,)s -5 (85,073 -
Let E be an event of the form

(2.62) E={ai<Xti<bi,i=1,...,n}

and ¢ € .7 such that

(2.63) {t1,..,t,) N {s;,...,8;) =D if {isof the form (2.61)

or

(2.63) {t, .t} N {88, 18,8558, =@
if ¢ is of the form (2.61).
Let

P(EIX, =r,...,X, =r}, if{isof the form (2.61),
P(EIX, =r,....X, =r

Sip_q k-1’

‘Ys j’ln’lzs» ri"""‘gs ri}’
ip k 17N l
if ¢ is of the form (2.61'),

(2.64) P(EI) =

which exists for any { € ., since the covariance function I of the process is
positive definite. Put

(2.65) P,(E) =P(El{)g(¢),
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where g(¢) is the Gaussian joint density of Xsil, cee, Xs” in which we take
X, =r,j=1...,1(X, =m,).

LeEmmMa 2.5. (i) For any d > 1, the random vector ny has a density function
with respect to the Lebesgue measure given by

fnd(sl’rl""’sd’rd’yd’md) = fnd(ld)

= X Y AL, ld)P{(Ej(ld))

(eSS U) 1<j<Jd, 1)

+ Y B, (1) P(EL(14))
ISkSJI(ld)

(2.66)

+ C(ld)l{vd=0,md=rd)’

where #(l ;) denotes the set of { defined in (2.61) and (2.61') associated with
(53,7, ...,(sq,79) and m 4, J(1 ;) and J'(1,) are finite integers and the E’s
and the E,’s are of the form (2.62) with

{ai <X, <b,i=1,...,n(j);n(j) < rd[G(ry)] }(~log G(ry)),

tay < Sq + vg,max{(la,l, b;]),1 <i <n(j)} < md}

n(j

and the A;’s, the B,’s and C are > 0.

(ii) For all l; € &,, the conditional probability distribution of Y, , given
Mg = L4 has a density function with respect to the Lebesgue measure, denoted
by fy,, (¢, plly), such that for any t > 1 and ry < p,

fr, {t,pllg) £, (1a)

a
= > )y Aj(§7ld)a_P§(Ej(ld) nFrd,sd+zd(t’p))
(e Ay 1<j<d(L, 1y p

(2.67) o
+ X Bk(ld)a_P(Ek(ld) NF,, 2t pP))
1<k<J'(ly) p
a
+C(ld)l(ud=0,md=rd)a_p-P(Frd,l(t’ P)) ’
with
Frd,s(t7p) = {_:U‘K(rd) <Xi <rg,
(2.68)

i=s+1,...,s+t—-1,r4 <Xs+t<p}
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and

24 = [(G(m)* 7] + v,

PrOOF. Let us recall the construction formulas of (S, %,) for any d > 1.
We have: :

(484, 2a) = Ya = Qu(Yaly,cucr,in + Yalpycicr, ) + (1 — Q)Y
[see (2.33)],

AS;=AS, Lig 0+ (ASy+ AST)ls, <o [see (2.52)],
'@d = ‘@d ‘ 1(@d>0} + -@J 1(‘@d<0) [See (2.53)] .

Ifd=>2,
ASy;=LyAS, + (1 —Ly)(Z4_ 1 + AS,) [see (2.56)],

Ry =LyR;+ (1 — L)%, [see (2.56)]
and

Sd = Sd—l + ASd, Rd = ‘@d [See (2.57)] .

If d =1,

S;=AS1lg. 0+ (AS +AS*)L 5y
Ri=RLg.0+ R gy [see (2.40)].

Let us first consider the terms of (2.66) when d = 1.

By the proof of Lemma 2.4 [see Haiman (1987a)], if the conditional probabil-
ity distribution of ¥, in (2.33) given R,_, = r,_, is absolutely continuous
with respect to the Lebesgue measure of E; and has a density function fy,
where

fe(s1,r1) = [q)(®o)]31_1€°("1)a §121,00 <ry,

then Y,;, Y, and Y, are also absolutely continuous with respect to the
Lebesgue measure, with density functions denoted by fy, fy, and fy,

respectively. ‘
In particular, for any s; > 1 and r; € (—, —ug(8,)) U (0, +=), we have,
with the notation in (2.60)-(2.65), in which we take { == (s, r,

d
(2.69) fy(sy,r) = ?dTlp{_’uK <X;<0p,i=1,...,5, -1, X, < ri}.
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Let ¢, = 7(G(®,))X—1og(G(®,))) and put

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

aY‘(t’ rl) =

t

k=1

ng(0o) < IX,| <ry},

ax(t,rl) = ZP{_IJ’K(QO)<Xi<®0’i=1""’k_1’

a
ax(k,ry,m) = = P{—pg(8g) <X, <O, i=1,.. k-1,
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t <ty

pr(0g) <1 <IX,| <m},

1<k <ty png(®y) <r, <m,

t

ax(t,ry,m) = E a'(k,ry,m),

k=1

by =P{-ug(0y) <X; <O, i=

min(¢, ¢g)

j=1

Xfo'(t_j’rl) +f71(t’r1)

with fy:= fy+ as in (2.39),

(2.74)

(2.75)

ay(t, ry) = _

J

1<t<t,,

1,...,t0},

> P{(?l)l =Js (?1)2 < _#K(Go)}

glp{(Y')l =7, (Y])y < —pux(0,)}

Xfyp(t —Jsri) + fy(t, ).

With this notation, it is easy to check that if g, := ¢ defined in (2.37) =
P(Q, = 0), we have: If v, = 0and m, = r;,

fm(ll) =qay(sy, ) + (1 —qy)

(ax(ty,ry) +bx(ty))ap(s1, 1),
ax(s;,r) Xap(sy, ),
bxay(s1,r1),

fY1(31,"1)’

if ry > ug(0o),
s > 1y,

if 7, > pg(0,),
s; < ty,

if r; <pg(6),

81> to,

if rl < I“LK(@O)’
s, < ty.

(1)

(2)

(3)

(4)
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If v; > 0 or m; > r;, we have the following situations:
If v, > 0 and m, = r, then

fm(ll) =(1- q1)

if ry > I.LK(®O),
81 + V]_ < to,

(5)

bx-ayp(s;, i), if s; + vy =¢,. (6)

(2.75) % ax(s; +ny,r)ap(s,r),

If v, =0and r; <my, then

fm(ll) =(1-q)

, if r; > ug(0,),
dx(to, 11, m1)ap(sy, 1), st (™
, if r; > ug(0,),
(2.75) aX(Sl’rl’ml)a}_’(slarl)’ ! SK;S(;O, (8)
X
, if r; <ug(0,),
ax(to,ﬂx((ao),ml)a?(sla’l)’ ' :;>(;0 9
, if r; <pg(0,),
aX(Sl’:U’K(®0)’ml)al_/(sl’rl)’ ! :1530. (10)
If v, > 0and r; <mj, then
foll) = (1 —qy)
if r;, > 0
ax(sy +ny,r,my)ag(sy, ), 7y > ka(®o) (11)

(2.75) and s; + n; <,

if r; <pg(0)

and s; + ny <t,. (12)

dx(s1+ny, kg(®g), my)ay(sy,ry),
Thus, the decomposition (2.66) corresponding to (2.75)-(1) is
C(ly) = q1ay(s1,11),

Ej = {~ug(®) <X, <0,i=1,....k — 1, ug(0,) < |X, < ry,

B,=(1-qy)ay(sq, 1), k=1,...,t,=4dJ'(l;) - 1;

Ejp={-pg(8y) <X;<0,i=1,...,¢};

By =(1-gy)ag(sy, ).
There are no terms corresponding to LY in (2.66). For the other terms in
(2.75)-(2)-(12), one obtains similar identifications.

Thus, it is not difficult to see that the above decomposition may be extended
to any d > 1. The term C corresponds to the event {{L, = 1) U (L, = 0) N
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(@; = 0), i =1,...,d} whereas the other terms (T and XX) correspond to the
complement of this event.

_ The factors P,(E;(1;)) correspond to events {Y, e Y(R,_)} or {Y, e
Y(R,_),M,>R,}, 1<t<d, and the factors P(E, (1)) to events {Y, €
(R, 1), M, = R}, 1 <t <d. The factors A ; and B, are related to probabili-
ties of events generated by {@,, L,, Y,, Y/, Y ,t=1,...,d}, which are indepen-
dent of o{X;, i > 1}.

The decomposition (2.67) is a straightforward consequence of (2.66). O

Let us observe that the fact that for any s, < -+ <s,, v;> 0 and 0 <
p1 < '+ <py < my, the events
{nd; (S;=s1, R, <p1)s--5 (Sg = Sas Rg <pg),(Ny = vg, My < md)}’
d>1,

are o{X,, n <s; +2z,} X o’-measurable is a straightforward consequence of
the method of construction of (S,, R,) [see (2.33)-(2.57)].

In order to prove (2.47), we shall utilize Lemma 2.5 together with the
following:

LEMMA 2.6.  With the notations in (2.68) and (2.69), if one among Hypothe-
ses Hy, Hy or Hy is satisfied, then there exist an A, > 0 and two constants C;
and Cy > 0 independent of 1 ;, such that for any 0 < A < A,, we have

sup max
e Ay 1<j<Jd(,1y)

a
{an(Ej(ld) N Frd,8d+zd(t, p))}

(2.76) X (P (Ea(L)) - P(t,700)) " - 1’
<Ci[G(ry)]*
and
W O { %P(Ewd) n Frd,sd+zd<t,p>)}
(2.77) x{P(Ej(1y)) - P(t,rg,p)} " — 1’

<CG(r)]®  t=1,r,<p,
with P(-, -, ) as in (2.14).

Before proving Lemma 2.6, let show that this lemma combined with Lemma
2.5 implies that at any step d > 2 of the construction, (2.47) is satisfied. By
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(2.43) and the same arguments as in (2.13), we have

B(#(ra-n)) 2 {1 = G(ram) = [G(ra)]'™™)

(r/G(rg_Nog(1/G(rg_1)

2.78 r
(276) [G(rap)]’
> .
2
Next, with the notation in (2.47) and P,(-, -, - ) defined in (2.14), we have
dP;ld—1=ld—1 f (t,p|l B )
(2.79)  —t—(t,p) = 5o (t,0) SY(ray).

dp B PI(t’rd—l’p),

Observe that P and P, satisfy (2.15) with r == r,_; and s == p. Thus P(¢, ry, p)
in (2.76) and (2.77) may be replaced by P,(¢, ry, p).

Notice that (3/dp) P(F, (¢, p)) = P(t, 1y, p). Further, observe that if p; > 0
and p;>0,i=1,...,n, are such that max, _,_, |(p;/p,) — 1| < g, then for
any a; > 0,i=1,...,n, we have

Ya;p;
Zaiﬁi

-1 <gq.

By using these remarks in (2.68) together with (2.76)-(2.79), we obtain (2.47)
with

qa < 2G:[G(r)] 7.
Thus, if we take 7 < inf(r, C,/2) with 7, as in Lemma 2.3, we have
(2.80) qu<v,[G(r))]? vi=2C,v,=Cy—27,d=1,2,...

(so that for a sufficiently large ®, we have g, < 1 for any d > 1).
Let us now prove Lemma 2.6.

Proor oF LEmMA 2.6. Let
{(ji< - <k <7d[G(ry)](~log(G(ra)))

(2.81)
+d + 1, j, <54+ V)

be the sequence formed by the ¢, of (2.67) and the s i (or s) of ¢ in (2.60) and
(2.61). Put

Jre1 =84+t 24+t Vaso o s Jprer1 =Sa T 2a tvgt i,

) 1<t <7[G(ry)] '(~log(G(ry))).
Let [R(u,v)] be the (& + ¢ + 1) X (k + ¢ + 1)-matrix spanned by

(2.83) R(u,v) =T(Jj, —Jj,) = E(X X, ;) w,v=1,...,k+t+1,

(2.82)
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and let
R(u,v), ifl<u<k,l<v<k
(2.84) R, (u,v) = ork<u<k+t+1,
m E<v<k+t+1,
0, otherwise.

[Though %, j,,...,Jj, and ¢ depend on I, = ((sy,7y),...,(s4,7y), (vg, my)), we
have suppressed this fact for notational convenience.] Since I' is positive
definite, R and R; are positive definite. Thus, the inverses of these matrices
exist; we denote them, respectively, by R~! and Rj'.

We shall deduce Lemma 2.6 as a consequence of the following lemma.

LEMMA 2.7. There exists a universal constant [denoted by (const.)]l, such
that: (i) If Hypothesis H, is satisfied, then

max |R7Y(i,j) — Ry'(i, J)|

1<i,j<k+t+1

(2.85) .
< (const.)k(t+1) max [I'(j)|
Jiz[GmPIA?
and
2
(2.86)  |Det(RR7Y) - 1| < (const.)(k2 max |r(j)|) .
J=[Gm A~

(ii) If Hypotheses H, or Hy are satisfied, then
max |R7Y(i,j) — R7'(i,J)]

1<i,j<k+t+1

(2.87) < (const.)k%(¢ + 1) max [T(j)|
j=[Gm A1
and
(2.88) |Det(RR;') — 1] s(const.)((k(t+ 1))*  max |1“(j)|)2.

2(G(mg)A~!

Proor. See Appendix A. O

Put
F, J(t,(p,p+3p)) = {_'/J“K(rd) <X;<rg
i=s+1,...,s+t—1,p<X,,, <p+8p},

t>1,r;<p<p+dp.
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We shall prove Lemma 2.6 with (2.76) and (2.77) replaced, respectively, by

S lPEl nF t,p,p + 8p
ZE/(ld)l_JsJ(: 1) ‘ (la) Td, sd+2d( ) ))

(259 X{P,(Ey(La)) - P(F,,1(t:(p,p + «‘510)))}_'1 - 1|

< Cy[G(r)]*
and

s [P(BY1) 0yt (010 + 00))

2.90 _
(2.50) < {P(Ey(12))P(F,y st (pr0 + 50)))} = 1]
<C[G(r)] ™
Clearly (2.89) and (2.90) are equivalent to (2.76) and (2.77), since

ap (E (ld) N F, rg, sd+zd(t p))

1
= 61;])1}]65 (E (ld) n rds Sd+2d(t (p’p + Bp)))’

_P(Ek(ld) NF rd, sd+zd(t P))

~ lim —P(Ek(ld) NF, ,.elt:(pp +3p)))

8010 Op
and
ad 1
55 D (Froi(t:0)) = P(tirg,p) = lim = P(F,i(1,(p,p + 3p)))-
Put
(2.91) = (x; X )
Let g(x") be the Gaussian joint density of the random variables X, ,..., X

and let g,(y’) be the function deduced from g(x) by fixing x, = ri,J = 1
(x, = m) (thus depending on the vector y' formed by “the ® +¢ + 1 —l
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remaining variables). If we put V= R~! — R, then we have

1
8(x) = (2m) "+ (Det B) ™ exp - 52 x )

2.92 ~
(2.92) e (DeRY
-|e'@ * (par | ew{-3Eve))
where
1
gI(lC) — (277)_(k+t+1)/2(Det RI)—1/2 exp{_ELC,RI_IILC}.
Next
P(E;e(ld) nFrd,sd+zd(t’(p’p + BP)))
(2.93)

= g(x') dx’'
E(IDNF,, s 42,0, (0, p+8p))

[where we use the same notation for the domain of integration of g(x’) and the
corresponding event in (2.90)].
Observe that

/ g'(x) dz’
(2.94) EyI)NF,, s yr2E (0, p+8p))

= P(E&(ld))P(Frd,l(t’(P,P + 5/’)))
and that for x’ in the domain of integration in the left side above, we have

maxlx'Vx| < max |R7Y(i,j)— R7(i, Jj)]
1<i,j<k+t+1

(2.95)
X (k +t + 1)%(m3).
Furthermore, by (2.81), (2.82) (and again using the fact that G(u) ~

1/ 1/2'rr)(1/u)e"‘2/2 and u% ™" — 0 for any a > 0 as u 100), for any n > 0
arbitrarily small, there exists a C(n) > 0 such that

(2.96) (k+t+1)°<C(n)[G(r)] 7,

k(t+ 1) < C(n)[G(r)] 727"
Next,

[G(md)](l—A)(4+e)’ by(1.6),
[G(m )], by (1.8) or (1.10).

Jj=[G(m 1At

(2.97) max |T(j)| < {
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Combining (2.92), (2.93) and (2.94) we have for
D =Ey(ls) N Frd,sd+zd(t’ (psp + 8p)),

’P(Elle(ld) N Frd,sd+zd(t’(p’p + Bp)))

x{P(Ey(14)) X P(F,, (t,(p,p + 310)))}_1 - 1'
oo g ([grera)

Det R \~'/* LI
Det R, eXp{_Elc -}_

)

g(x') ‘
—T oy ~ 1| = max
g'(x") ¥'eD

< max
x'eD

of (22 1) 10 v;
= Y1 Det R, 2;1,1:%((9_5 1‘7)),
where |0,(v)| < olul, i = 1,2, for some o > 0 independent of /; [we use the
fact that (1 + u)'/2~ 1+ (u/2)and expv ~ 1 + v as u and v — 0].

Now, combining (2.98), (2.85)-(2.88) and (2.93)-(2.97), it is easy to check
that O((IRI/IR,) — 1) = o(max,_c,eD(o_c’Va_c)) as G(ry) — 0, so that the last
term in (2.98) is dominated by

20(mg)*C(n)[G(ry)] 27"

(const.)C(m)[G(rs)] > "(G( md))(l—A)(4+s)
(2.99) 9 under (1.6),

(const.)CX(n)[G(ry)] (G (my))* €
under (1.8) or (1.10).

Finally (2.99) = (2.90) since 7 is arbitrary, (m ;)? ~ —2log G(m ) as m ; — »
and G(m,) < G(ry) for ry < myg.

The above proof of (2.90) may readily be adapted to prove (2.89) by replacing
(2.93) by

P{(Ej(ld) N Frd,sd+zd(t’ (P,P + 5/’)))

(2.100) , ,
= g:(y") dy. O
E(ADNF,, 5,42t (0, p+8p)) -

The above lemma completes the proof of the first part of Theorem 1.1 for
Jo=1. '

We now prove (1.11), that is, that there exists almost surely an n, and ¢
such that for all n > n, we have S, =T,_, and R, = 0,_,. We need the
following lemma.
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Lemma 2.8. For any fixed J > 1, let {®), n > 1} be the sequence of Jth-
upper records based on the sequence {X,, n > 1} of iid random variables with
common continuous distribution function F(x) = P(X, <x), x € R and 0,.
Then for any 0 < a < 1 we have

(2.101) P{G(O7)>e™"/7io0}=0
and for any B > 1 we have

(2.102) P{G(0]) <e P"/7 .0} = 0.

Proor. Observe first that {F(®7), n > 1} is the sequence of Jth-upper
records based on the sequence of independent random variables V, = F(X,)
uniformly distributed on [0, 1] and F(®,).

Consequently, for any 0 <& <1, (2.101) and (2.102) are, respectively,
equivalent to

(2.103) P{F(0J) <1—e ®1=e/Njo} =0
and
(2.104) P{F(0]) > 1 —e a*+o/Djo ) = 0.

Consider Y, = log(1/(1 — V,)) which is exponentially distributed, and denote
by Z7 [=log(1/(1 — F(®7))] the nth Jth upper record based on this se-
quence. An application of Theorem 7 of Deheuvels (1984a) shows that {Z7,
n > 1} forms a Markov chain with stationary transition probabilities such that
for any n > 1, Z7,, — Z/ is independent of Z7 and

(2.105) P(Z],,-Z]>t—slZ]=s)=exp{-J(t—5s)}, O0<s<t.

Thus Z; is the sequence of arrival points of a Poisson process of intensity
and by the strong law of large numbers, we have

(2106) ’}l_{I:o—n— =E(Zn+1 —Zn) = :i a.s.
Next,
VA 1+e
PlF(®Y > 1 — e~ (rl+e)/d) =P _n >
(F(07)> 1~ - P> 55
and

’ zJ 1-
P(F(87) < 1 — e~i=/7) — p{ =7 }

which by (2.106) implies, respectively, (2.103) and (2.104). O
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LeEmMA 2.9. With the notation in (2.33)-(2.40) we have
P{(AS,, #;) €e¥(R,_y)i.0}=P{@;=0i.0.}
=P{L,=1i.0.)=0.

(2.107)

Proor. Put
(2.108) A, ={((AS;, #,) € ¥(R, 1)) N (G(R,) <e™*?)}.
By (2.101), we have
(2.109)  P{(AS,, #;) € $(R,_,)i0.}=0eP{A io0)} =0.
Now, with the notations in Proposition 2.1,
P{(AS, #y) € d(rq_1)Img_y =141}
= P{§(rs-0)
(2.110) = 2[G(ry_)]®

1+K\7(1/G(rg_X—log G(rg_1)
+(1 = G(raey) = [G(ra-n]™™™)

< 2[G(ra- )] + [G(ra-p)]
Thus, there exists a d, > 0 such that for any d > d,, we have
P(Ag) = [P(Agng_y =14-1) dP,, (14-1)
(z2111) 2lG K 1G(r, D] ) AP, (r
= o e 2LCCa D+ [G(ra )] dPr, (ra-s)

—aK(d—1 —a(d—1
< 2e 2K@-1 4 g-ald=Dr d>1.

Since the RHS of (2.111) is the general term of a convergent sum, the
Borel-Cantelli lemma implies that P{A; i.0.} = 0. By (2.80),

(2.112) P{Qd =0lng_, = ld—l} =qg= vl[G(rd—l)]Uz’
which by the same arguments as above implies
(2.113) P{Q,=0i.0.} =0.

Since P{A,io0}=0and P{(Q, = 0io0.} =0, we have

(2.114) P{Z;# [G(R)]* "i0.} = 0.
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Thus, by (2.54) and using the same arguments as in the proof of (2.113),

P{(Ld =1)nN (Zd = [G("d—l)]A_l)|"Id—1 = ld—l}
]A—l

= 1= [®(ry_)]' ¥
=1 - [1 = G(ry )]

<1- exp{—G(rd_l)A(l 4 G-y )}

2(1 - G(r4-1))
G(ry_
1+ (rg-1) )’
2(1 - G(r4-1))
which by the preceding arguments implies
(2.115) P{L,=1io0.} =0. O

= G(rd—l)A

From (2.33)-(2.40) and (2.107) it follows that there exists a.s. n, > 0 such
that for any n > n,,

(2.116) Spe1 =S, + min{t > [G(R,)]* "X ., > R,

and
Rn+1 = XS,H_I’

LEmMA 2.10. For any fixed J > 1, let {(T,,0,), k > 1} be the Jth record
sequence based on {X,, n > 1} and ©,. Let {(T,,®,), n > 1} be a sequence of
random vectors such that there exists a.s. p > 1 and such that for any n > p,
we have

Tooi=inflk; k=T, X, ;.1 > Xy p-1)

and

(2-117) 0,1 = {XT;,+1—J+1,T;,+1a s XT;,+1,T;,+1}~

Then, there exist a.s. two integers n, and q such that for any n > n,, we have
(2.118) T,=T,., and ©,=0,_.

ProoF. See Section 2, Lemma 4 in Haiman (1987b). O
Put, for any n > 1,

(2.119) C, = {max(XSnH: 1<t<[G(R, )] ") > R,,}.

LEmMA 2.11. If one among.Hypotheses H,, H, or H; is satisfied, then
there exists a 0 < A, < 1 such that for any 0 <A < A,, there exists a 0 <
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K(A) such that for all 0 < K < K (A),
(2.120) P(C, i.0.) = 0.

ProoF. See Appendix B. O
3. Proof of Theorem 1.1 for the general case (J > 1).

3.1. Construction of {S,, R,},.. (S, R is constructed independently of
{X,, n > 1} (ie., by using a sequence {X*, n > 1} independent of {X,, n > 1},
of iid .#1(0, 1) random variables, and by taking

S]_ = inf{n; n = J, X:—J+1,n > ®0}’

— * *
El - {XSI_J"'LSI’ e XS1,S1}’

where 0, is a fixed real number). In order to construct (S,, R,) for n > 2 we
shall adapt step by step the method of construction in the J = 1 case.
Observe [see (1.2) and (2.3)] that T, k2 > 1, are the times m at which
X,,_j+1,m changes. Moreover, for any n > 2, the J-ordered random sequence
0,,...,0, is uniquely determined by ©7,..., 0} and the sequence of n — 1
(not necessarily increasing) values corresponding to the consecutive changes,
0,,0,,...,0,,07 <0,,0, <6l such that if ®, = {67,0/71,...,0}, then

(32) {8/,077%,...,01}U{0,,...,0,} = (Xr, —en-2p1» Xp, 1)

For any r > ®, and n > 1, let Y,(n) be given by (2.42) and ¢(r) by (2.43).
Let my_1, d = 2, be a random vector defined by

(3.3) Ng-1°+= ((Sla Ri)s- s (Sq-1, Bg—1)s (Ng—1, Md—l))'

m,_, takes values in the set of ((sy,ry),...,(sg_1,7g_1),Wg_1, my_1)) such
that J <s; < -+ <s4_1, v4_1 >0 and {r,, 1 <k <d — 1} is a J-ordered
sequence. For d = 2, S, and R, are the random vectors given above, M; = R}
(we have R, == {R},...,R}}, k> 1) and N, = 0.

(3.1)

ProrosiTiON 3.1. Assume that m,;_,, d =2, is such that the events
of probability > 0 of the form {ny_;; (S; =5, Ry €b)),...,(Sy_;=54_1,
Ry ,€b; ),N;_1=vy_,My;_; <my_;}, wheres; < -+ <sg_1,v4_1 20,
by,...,b,_, are Borel subsets of (R*)’ and m,_, >0 are ofX, <s;_, +
24 13241 =[G(m4_ N2 + v;_;} X 0'-measurable (where o' is indepen-
dent of o{X,, n > 1}). Furthermore, set Z;_, = [(G(M,_)*"*1 + N,_; and
assume that the conditional distribution of Y, :=Ypy (S,_1 + Z,;_,) given
Mg_1 =1 _; exists for all l;_, € & and has a density function with respect to

P denoted by ’
dp;l,; —1=lg—1

2P (¥)
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such that for alll,_, € &,

dP;:ﬂ:ld—l PR
3.4 max |—2+———(y) — 1|P Yy(r],)) =q, < 1.
©4 yeyrd_p) dP () ( (rd 1)) d

Then, there exists a o{X,,n > s;_, + 24_1} X o'-measurable random variable
(AS,, #,) taking values in N X R™ such that (2.49) is satisfied with n,_,
and l,_, replaced by ny_, and l,_, and ry_, by r]_,.

Proor. See the proof of Proposition 2.1 in which n;_; and [, _; are
replaced by m,_, and I, _, and r;,_, by rj_,. O

Construction of (S,, R,) for n > 2. We apply Proposition 3.1 and define
(35) S;=8,_,{+AS,, R,=Q(RJZ},...,R1,%,), d=2,
where Q(x,,...,x;) = (xy,...,x;;) denotes the ordered sample (xy, ..., x;),
(36) M,= max[Rb, My_1, (1 = Lg)Qalyw,yy> ugcri_py ¥ |(Yd)2|]
and
N;=(1-L,)Qs X Ly, cpri_y
X Lias, <z +@pp(Za-1 + (Yg), — AS,),

where L,;, @, and Y, are the corresponding random vectors used in the
construction of (AS,, %,).

Let ry,73,...,7,, 1Y <ry, 1, <1}, n > 2, be the sequence which together
with r; uniquely determines the J-ordered sequence r,,...,r, [see remark on
(3.2)].

Let . be the set of { defined in (2.60) with the above (not necessarily
increasing) r;,, i = 2,...,n, 2<i; <iy, < -+ <i;<n (instead of 1 <i; <

- <i,<n)and m, > r} [instead of m, > r, in (2.61)].

The fact that at any step of the construction d = 2,...the hypotheses of
Proposition 3.1 are satisfied may be deduced by the same arguments as in the
case J = 1 by the following substitutions in Lemmas 2.5 and 2.6.

ng=my lg=1,; in(2.66)-(2.68),
(3'8) ((slarl)""’(sd’rd)) = ((32,"2)’-~-a(3d,"d)) in (2'66)’
ry=rJ in(2.67)-(2.69) and (2.76), (2.77).

(3.7)

Let us now prove that the above construction of {(S,, R,)}, ., satisfies

(1.11).

3.2. Proof of Theorem 1.1 (J > 1). With the notation in Proposition 3.1
(and its proof) we have the following version of Lemma 2.9:
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LEMMma 3.1.
(3.9) P{(AS,, %;) € 4(RJ_,)i.0.} = P{Qd =0i.0} =0,
(3.10) P{L;=1i.0.) =

Proor. The proof of (3.9) is similar to the proof of Lemma 2.9 for J = 1.
To prove (3.10) we need the following:

LEMMA 3.2. There exists a sequence {n,}, ., lim, . n, = 0, such that for
any € > 0,

(3.11) P{G(R},) < (%)_(HS) exp(— 3(1 + nn)) i.o.} 0.

PrOOF. Observe that when J > 1, R. has the same probability distribu-
tion as max(Xj,..., Xg ), where S, is the nth Jth record time based on an
independent 1dentlcally 4(0,1) dlstrlbuted sequence of r.v.’s. Thus, the proba-
bility distribution of G(R}) is the same as that of min(U,,..., U, L) =Ui,.,
where {U,}, is a sequence of independent random variables uniformly dis-
tributed on [0, 1] and v, is the nth Jth record time based on this sequence.

By Deheuvels [(1986), page 134], for any ¢ > 0 there exists a.s. an n, > 0
such that for any n > n,,

(3.12) Uy ,>n"(logn)

and by Deheuvels [(1984b), Theorem 7], there exist a.s. two sequences, n,(n) >
0 and ny(n) > 0, n,(n) > 0 as n — », i = 1,2, such that

—(1+e¢)

(3.13) P{log v, > 3(1 + n(n)) i.o.} =0
and
(3.14) P{log v, < -3(1 — (1)) i.o.} = 0.

By combining (3.12), (3.13) and (3.14), we get (3.11). O

By (8.9), it is equivalent to prove that

(3.15) P{L,io0)} =0 and P{B,io} =0,
where
B,=({{L;,=1 n{M,=R}} n{N,=0}

N{G(RJ_,) < e~(a@-1/D}
d'_ 1 —(1+¢) d -1
O{G(R}i_l) > ( 7 ) eXP(_T(l + nd—l))})’

0<a<l.

(3.16)
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By (2.54),
P{By} = [P(Bymg_ =14_1) dP,, (14_,)

(3.17)

- '[D'[(l _ (¢(réz_1))la(r)],\_1) dPy e )
with ' .

G(”J’—l) < e~ (@@=1/J)
(3.18) D= d—1\-a+ d-1

o= () ew{- S my).
Next

(3.19) 1 (®(rd_1)) """ =1 - exp{[G(r)]* M log(1 - G(ri-1)))

and log(1 - G(ri_ ) ~ —G(rf_) as d - .
Hence, there exists a positive constant (independent of d) such that, on D,

- [te(r))* M 10g(1 - G(r1-1))

d-1
< (const.)e~(@=D/I) x exp{— 7 ) (1 +m4_1)(A - 1)}

d—1 (1-AX1+e)
(3.20) X( 7 )

d—-1 (1-AX1+¢)
= (const.)(—) exp{—

-1
(a+ (1+ng1)(A - 1))}

d-1A ) A
< exp{—T—g}, d > d,, sufficiently large, 0 <1 — a < 3

Thus, since e* — 1 ~ x as x — 0, by combining (3.17)-(3.20), for d > d,, we
have P(B,) < exp{—((d — 1)/JXA/2)}, which implies (3.15) by Borel-
Cantelli. O

J

From (2.33)—(2.40) for J > 1 [see (3.8), (3.9) and (3.10)] it follows that there
exists a.s. ny, > 0 such that for any n > n,,

Sn+1=Sn+min{t> [(G(R ) ] Xs > R; }
and ‘
(321) En+1 = ‘Q,'(Rg_l’ M R}l’ Xsn+1)'

Thus, if we put &, = {max(Xg ,,; 1 <¢t<[GR)*'D >R} and if we
prove that P(£) i.0.} = 0, then by (3.21) and Lemma 2.10, the result will be
established.
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Next, the fact that P(¢, i.0.} = 0 results as a straightforward consequence
of the transcription of Lemma 2.11 with R,_,==R7_, and R, =RY in
(2.119), the first equality in (3.9) and the following lemma.

Lemma 3.3. For any K > 0,

(3.22) P{G(R}) < (G(RJ_1) " i} =o0.

ProoF. By (3.11), a.s. there exists an n, such that for n > n,,
n\—-QQ+e)
(3.23) G(R.)> (3)

and by (2.99), for any 0 < a < 1 a.s. there exists an n, such that for n > n;,

n
eXp(_j(l"'"‘ln)), nn—)07n—)°°’

(3.24) G(R]_,) < exp{—@a}.

Thus, if a(1 + K) > 1,
-1

-0

5ol -0

n-—1
exp{—T(l + K)a} X
as n — «, which implies (3.22). O
APPENDIX A

Proor or LEMMA 2.7

Proof under Hypothesis H,. Put
(A1) U=R;'(R - R)).
Then we h‘ave
(A2) R'-R;'=(I+U) 'R;*-R;'=(-U+U?----)R;.
It may easily be checked [by using recursively the inequality |AB(ij)| <

nmax,_; ., lAGk) max,_,_,IB(j)l, 1<i,j<n] that V2+l.= U2+l x
R;, g = 0, are of the form

0 |vgeer|tk with max|[VEUGEL )<,

(A3) V2q+1 —

V12q+1 0 }t+1 with ma?(|Vz2q+1(iaj)|59’
iJ

2g+1

where o0 = p(pyk(t + 1))
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and where the maximum is taken over 1 <i <k,1<j <t + 1and

= max R7Y (i,
p lsi,jsk+t+1| AUMIE

max |(R - R;Y)(i, )],

1<i, j<k+t+1

and that V%7 := U% X R;1, q > 1, are of the form

(Ad)

‘y :

vae | o [ with max|VEGi, )| <o,

0 | U2 |}t+1 with ma?(l‘/lzq(i,j)|SQ',
i, J

(A5) V2 =

where ¢ = p(pyk(t + 1)),

Thus, for any n > 1,

(A6) max |U"R7'(i, /)| < p(pyk(t +1))".

1<i, j<k+t+1
Let us now give bounds for p and y defined in (A.4). We have
(A7) Ri'=(I+(R,~I)) '~I-8+82%---

with S =R, — L.
By (1.5) we have

k+t+1 ®
(A8) max Y IS(u,v)[<2 Y IT(n)]=2<1
l<v<k+t+1 ,_; o
and
E+t+1
(A9) max Z |S(u,v)|<)t,
l<us<k+t+1 [T

from which it may be easily seen that for any n > 1,

(A10) max  |[S"(i,j)| <A®

1<i, j<k+t+1

and hence
o 1
(All) p =< ngl)t = 1_—X
Next, .
(A12) y<max|T(j)|, j=(G(my)* "

Thus, by combining (A2), (A6), (A11) and (A12) and since by (2.96) and (2.97),

kE(¢+1) max |I'(j)|—>0 asd - x,
J2(G(m )41 N
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we deduce that

max |((R™' = Rr') + URTY)(i, J)]

1<i,j<k+t+1

(A13)
X|k(t+1) max IF(J)I —)0
j=(G(mg»4-1

as d — «, from which (2.85) follows.
Let us now prove (2.86). We have

(Al4) |Det(RR;') — 1| =|Det(I + U) — 1]
and
Det(I + U) = Det(el + U.’l,...,ek+t+1 + U-,k+t+1)’

where e, denotes the nth column of I and U., is the nth column of U. By
the multilinearity of the determinant we have

k+t+1 determinants of all submatrices
(A15) Det(I+U)=1+ Y, of U obtained by removing n
n=1 \rows and columns of the same rank.

Next, since U is of the form

W/

//n e+ 1,

among these determinants, only those belonging to the submatrices having the
two zero blocks of equal size are not equal to 0.

Each such determinant of size 2p, 1 < p < inf(k, ¢ + 1) (there are CfC?, ;
of them) is bounded by (p!) X u?, where

(A16) u= max |U(i,j)| <pymax(k,t+1)=pyk.
1<i, j<k+t+1

Thus
inﬁk,t+1)
Det(I+U) -1l < X CPCA(P)u? < Z (k(t + Du?)’
=1 =
(A17) g "

< X (Rt + l)pzyz)p < Z (p2k472)p,
p=1 p=1

from which (2.86) follows since by (2.96) and (2.97),

kZ2y <k? max |I(j)|—>0 asd — «.
jZ(G(md))A—l )
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Proof under Hypotheses H, or H,. Let R;'/? be the lower triangular
matrix of order k such that R;*/*(X,,..., X, forms a complete orthonor-
mal system of H{j,, j,} and R;'/? the lower triangular matrix order ¢ + 1

such that (R; /%X, _,..., X, )Y forms a complete orthonormal system of
H{jk+1’ jk+t+1}'

Consider

-1/2
RT1/2 = E, 0 Yk
I 0 |Ryvz|)t+1

and observe that
(A18) (R7Y?YR;Y? = Ry

Put
(A19) U=R;Y*(R - R;)(R'?).

Then we have
R™'—R;'=(R,(I+R;'(R-Ry))  -R;!
= (R7V?)(-U+ U2 - --- )Ry~

U2+t ¢ > 0, are of the form

(A20)

02q+1 _

and, as before, it may be easily checked that

(A21) max  |U2+1(i, j)| <421 x (k(¢+1))7,  ¢=>0,

1<i,j<k+t+1

and

(a2 | max [0%G) stk D) gz,
with

(A23) 4= max llj(i,j)|‘sﬁ2ykx(t+1),

1<i, j<k+t+1
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where

p=__ max |R;V(i,j)l,
(A24) 1<i,j<k+t+1 o
max (R - R;)(i,j)|.

1<i,j<k+t+1

’y :

Let us now give a bound for § in (A24). .
Bound for p under Hypothesis H,. For any 2 <n <k, let X * be the
projection of X; on H(j,, j,_,) and put

n—1
(A25) X = Zla,l,pxjp.
p=

If we denote by o, the one-step prediction error [of the projection of X, on
H(—o, —1)] and by o; the interpolation error of the projection of X, on
H(—x, —1) U H(1, + ), then, if (1.10) or (1.7) are satisfied (see Remark 4 in
Section 1) we have

1 =
(A26) g, =V2m exp{af_vlog f(A) dA} > 0.
If (1.7) is satisfied, then we have

= dr V2
A27 o, =2m| [ —— >0
(427) (f—wf(A) )
and
(A28) [X; —X}| =0,>0>0.
Put

Yl le
= Ry12

which, by the definition of R;'/2) is an orthonormal complete system of

H(X;,..., X;) such that Y; = X; and forany 2 <n <k,
A29) Yy — X;, _X;'I:,
( "X, XA
Thus, for any 2 < n <k,
(A30) R{Y?%(n n)=—1-s—lhsl
’ “Xjn - XJt” O 0;

and forany 1 <p <n — 1,
-a,,

A31 RiY?*(n,p) = ———.
( ) 1 (n p) ||Xjn_XJ>|;||
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Let 1 <p,<n—1 and X be the projection of X on H(X p=

1,.. —1; p # py) (the Hllbert space generated by X p 1,. .,n -1
p *po) :
Then, we have
n—1 .
(A32) X5 = T a,,X; +a,,(n, + %, ),
I?;PIO

where 7 o is orthogonal to H(X oP=1...,n—Lp+ Do) By the orthogo-
nal projection theorem, we have

(A33) lan, pol Xy, I <[ X;, [ =1
and since ||77jp0|| > o0;, we deduce that forany 1 <p <n — 1,
= dr \Y?
< — = — [o.0]
( ) Gn,pl = o 2

13

By combining (A30), (A31) and (A34), which are also valid for R; /%, we obtain
that
1 .= dA

(A35) p < E-/’—ﬂ-?(—)t)—’

Bound for p under Hypothesis H,. Let —i,,., < —i, < —i,_; <
< —i; < 0 and put (with the notation defined in the proof of Lemma 2.3)

(A36) X o= Ry, = aX 4o X
Let '
(A37) X, 1=l VX 4 o 400 TUX, + e TVX

and observe that
XAO/n = a(in+1)X_i + - +a(i':;+1)X_in

A38
(438) +a T (bMX_, + o +IX ),
where
(A39) X Xm0 X Z bWX_,
Thus, by combining (A36) and (A38) we obtaln
(A40) a?*b = al» — o+ Db E=1 n
lpy1l “ip 2 et

Let us now suppose that there exists a sequence u, > 0, X _,u, < » such
that for any n > 1and —i, < -+ < —i; <0, we have

(A41) la™| <u,.



128 G. HAIMAN AND M. L. PURI

Thus, if we put M, = sup;_; ., la{” | and since [6{*| <u,, we have by
(A40),

(A42) Mn+1 < Mn(l + un+1)
and hence
(A43) sup|M,| <M, [T(1+u,,,)=M<ow.
nx>1 p=1
Next, with the notation in (A25) and (A36), by making the identifications
(A44) a,,= ag’;jpl), p=1,...,n-1,
we deduce, by (A31) and (A43), that
Ad5 s< X oY ol 2L 7 10 f(0) da) <
_— = — o0,
(A45) ps ‘/z—wexp{%f_wogf( )

Let us now show that if Hypothesis Hj is satisfied, then there exists a
sequence u, > 0, X% _; u, < « such that (A41) holds.
Let

m=Xoi,  me= (X, - X5 | X0, - X5,

(A46) o
M= (X_i, = Xi{i',f""”x_i"")/“ X i, = XX Ko

?{e an orthonormal complete system of the Hilbert space generated by
_\li’,lth élfi_rigtations in (A36) we have
(ad7) 20 = T E(Xy n)m,
{m
where, by expressing the 7,’s as linear combinations of the X_; , k =1,...,n,

only 7, contains X_; .
Thus, by (A46),

(A48) o = E(X, m,)| X, = XEgwFonn|
Next, by observing that 7, € H(—x, —i,),
(A49) |E(X, n,)| <p(iy) < p(n) < Cn=®+o
[where p(n) is as in (1.9)], we obtain finally

-1

Ia(,n) < in—(6+e)
i, | — a_p
(A49') c -1
. = — [ 1 A) dArn=€+e
= exp{ 5 ) log () d }n
=U

no

where C is a positive constant.
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Let us now return to (A18)-(A24). We have by (A23) and (A12),
(A50) 4 <p?k(t+1) ~ max [T(J)]

.]Z(G(md»A_l

and if we put

(A51) V= (R;?)UR;"?,

it is easy to check that

(a52) max V(i )| <p*P(e+1)° max [T())].
<i, j<k+t+1 J=(G(m At

Thus, from (A20) and (A50) we deduce, by routine calculations, that
max |(R™'—R;'+ V)(i, )]

1<i,j<k+t+1
(A53) L
x|r2(t +1)?  max IF(j)I] 50 asd -,

J=(G(m N4t

which implies (2.87). ,
In order to prove (2.88) we can use (A14)-(A17).
Thus we have

(A54) |Det(RR;Y) — 1| < ¥ (k(t + 1)u?)”
p=1
with u as in (A16), from which (2.88) follows. O

APPENDIX B

Proor oF LEmMMA 2.11. Put
A(R,) = [7(G(R,)) (~log G(R,))]
(Bl) —(1+KX1-A)
+[G(R,) Y], ne1,
and
(B2) &, = {max(|Xs,.z,il;i=1,..., A(R,)) > pr(R,)}, n=1.

We shall make use of the following propositions.
ProposITION B.1. If one among the Hypotheses H,, H, or Hj is satisfied,

then there exist a 7> 0 and Ay, > 0 such that for any 0 <7 <7, and
0 < A < A,, there exists 0 < K(A) such that if 0 <K < K,(A), then

(B3) P(Z, i) = 0.

ProorF. Forany r>0,n > 1and ¢ > 1, put
(B4) (1) = (max(IX, ., k=1,...,t) < pr(r)}
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and observe that
(B5) G = Fr, 5,+2{MR,)),
where, if (1 + KX1 — A) < 1 [and since by (2.101) and Lemma 2.8, G(R,) |0
a.s. as n — ), we have
(B6) A(R,) =(G(R,)) '(~log G(R,))(1 +0(1)) asn — .
The proof of Lemma 2.5 implies the following analogues of (2.67):

P{Fp, spezft)ma = La} fo (1)

> Y ANGI)P(E(La) N T spnaft))
(e ) 15j<d(,1y)

(B7) + X Bl)P(E(ly) N F, e (1))
ISkSJ/(ld)

+ C(ld)l{vd=0,md=rd)P(9;d,1(t))
+C(la)1 P(Z,1(8))-

{va=0,mg=rq}
Similarly, by using the proof of Lemma 2.6, we obtain:
LEMMA 2.6'. If one among Hypotheses H,, H, or Hj is satisfied, then

there exist an 0 < A, < 1 and two positive constants C, and C, independent of
l,, such that for any 0 < A < A,, we have

max max ‘P E(l,)n & ¢
te Uy 1<j<d(,1y) Z( J( a) rd’sd"'zd( ))

(B8) {P(E (1) P(F,(1)) -1
< C,[G(r)]*
and
1<lﬂ?l)’{(l )IP(E;e(ld) n (?\;d’sd"'zd(t)) '{P(E;(ld))P(g;d’l(t))}*l - 1’
(B9

<C,[G(ry)]”.

By combining (B7), (B8) arid (B9) and by again using the fact that

( D; )
1<i< .
(B].O) p;>0, ﬁiil()f’llsign,' :
La;p; .
= -1 <q foranye;>0,1<i<n,

Zaiﬁi
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we obtain
P{‘%% sy+z(t)mg = ld} c
B11 4 2d"d -1 <C 2,

Next, if we apply Lemma 2.2 with & (¢) :== Qi ryrp)and(1 + K)1 - A) <
1 [in order to have (B6)], it follows that there exist two positive constants c,
and c, and 7, > 0 such that for any 0 < 7 < 7,

P(Z, (1))
(1~ 2G(px(ra)))
since @,(t, ry, ry) = (1 — 2G(ug(ry)))'. Furthermore,

(B13) max |(1-2G(ux(ry)) — 1| <37[G(r)]*(~log G(ry))

1<t<A(ry)

(B12) -1/ < C1[G(”d)]cz,

1<t<A(ry)

[by the classical inequality (1 — a¢) < (1 —a)* <1,0 <a <1,¢> 0.] Thus, by
combining (B5), (B11), (B12) and (B13), we obtain that if 0 < K < K, (A) =
A/(1 - A), A<A, then

| P{lng = L4}
(Bl4) < Ci[G(ry)]® + e[ G(ra)]” + 37[G(72)] " (~log G(ra))
< a[G(ry)]° for some positive constants a and b.
Finally, for any 0 < « < 1,
P{in N (G(Rd) < e_“d)}

(B15) ,
< a|G(r dP 1, ,) <ae 2,
'/;G(rd)<e‘“d} [ ( d)] ’7'1“1( d 1)

from which, by using the Borel-Cantelli lemma and (2.101), we deduce (B3).
O

Now, forany 0 <r <p <p +8p <ug(r),n >1,¢t>1and ¢ > 1, put
HM  (p,dp) = {—pg(r) <X,,,<r;s=0,...,t -1}
N{p <X, <p + dp}
(B16) ;
N{—pg(r) <X, ippeg <p+dp;s'=1,... ¢t — 1}
N{p +8p< X, 4shp < pg(r)}

PropOSITION B.2. If one among Hypotheses H,, H, or Hg is satisfied, then
there exists a 0 < A, < 1 such that for any 0 <A <A, and K <A/(1 — A)



132 G. HAIMAN AND M. L. PURI

we have
max dP{H e+ (p)lmy = 1)
1=t<7(G(rg)~ '(~log G(ry)
(B17) lst’s(G(rd))—<1—Ax1+K)

< (const.) dP{HL"*(p)},

where dP{ Hr';,t,t/(p)} = P{Hr’;"’t'(p, 5p)} and (const.) is a positive-constant
independent of p and 1.

PROOF. As in the proof of Proposition B.1, we may replace in (B7), (B8) and
(BY), Z, ,,+. ) and Z ((t), respectively, by His+2e»%(p) and H, 4%(p) in

rds

order to obtain, by (B10), that there exist ¢; and c, > 0 such that the
inequality corresponding to (B11) [which clearly implies (B17)] holds. O

ProposITION B.3. If one among Hypotheses H,, H, or Hg is satisfied, then
there exist ¢ > 0 and & > 0 such that for any r > 0, we have

KET , .
(B18) Yy = D f dP{Hrl’t’t(p)} SC[G(r)] ‘
) 1<t<r (GG U-log G(r) "
1<t/ <(G(r))~A-A1+K)

Proor. Forany 0 <r<p<p+38p <pg(r),t=1land ¢ > 1, we have
dP{Hrl’t’t'(p)} <P{p<X,<p+6p, Xy>p+ dp}
dp oo p22T () px + x2
1/2[ Py~

2m(1 = T2(¢)) " = 2(1 - I(#))
(8p = @)
. o m&__i_ﬁ
(B19) " 2r(1-Tx(r))” 2(1 + 10D
o \ x2
><fp exp{— ————-2(1 T } dx [by (2.8)]

op

<_____xi{4w( i n
T a-rxe))” ar\ "N @ ren”

1 p
= 1/2 d{-G* . 12 ||
(1 - 1T (T + @)
_Thus, by splitting the summation with respect to ¢’ in (B18) into
' HG(r)~H(~log G(r) ( (T) [(G(r))]"‘l_A’(”K))

@0  TZ- L |I+

r) t=1 t'=T+1
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where 1 < T < G(r)"@~A1+K) " and by using (B19), we obtain

2 r ) Y=
2(:}: ST X (G ((1 +8)1/2) X (G(r)) (~logG(r)T

T

2

(1+ a(T))”)

(B21)
X(G(r))—l—(l—Axl+K)(_log G(r)))
=i Gl,n + G2,n’
where 6 = max, _,[I'(¢)| and 8(T') = max, _,|['(¢)|. Next,
2 r ) -1
——— | X (G(r
e R
(1+8) 1 J 1 1)
~ - - - - = — oo,
Vom reXp{ r(1+5 2}’ r

Observe that (1/(1 +8)) — (1/2) > 0 since 0 < 6 < 1 and take T = T(r) =
e with

0<n< %inf((l 5 %),(1 ~ A)(1 +K)).

Thus [since —log(G(r)) ~ (r2/2) and for any a,b > 0, r%~"® - 0 as r — ],
there exist a ¢ > 0 and & > 0 such that G, , < (¢/2XG(r))*. Likewise, if we
consider G, ,, we have

2 r —1-(1-AX1+K)
G ((1 N 8(T))1/2)(G(r))

(1+8(T))
T m

(B22) A+ AS(T) - 25(T)
+E(1 - A)(1 +5(T))
2(1 + (1)) ’

r(l—A)(1+K)— 1

2

X exp{ —r

r— o,

Thus, since by Hypotheses H,, H, or Hj, lim,_, 8(T) =0, for r > To
sufficiently large, the factor of —r? in (B22) is larger than

A K(1-A)

—_ + —_—

2 2
This, by the same arguments as above, completes the proof of (B18). O

> 0.
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We can now prove Lemma 2.11. Put
D, = {((A8,.1, #y11) € W(R,))
(B23)
n(2,=[6(R)" ) N (G(R,) <e™™)), =1

By Lemmas 2.8, 2.9 and 2.10 and Proposition B.1, it is equivalent to prove
(2.120) and

(B24) P{&, i0.} =0,
where
(B25) &=C,.,NnD,NZ, n=x=2.

We have, with the notation in (B18),

(B26) P& = [ (Z = [“5 dP{Hp e (), = en}) dP, (e,),
t t T

G(r,)<e "

where L¥ is over 1 < ¢ < 7(G(r,))"Y(—log G(r,)) and 1 < ¢’ < (G(r,)} A0 +E),
Using (B17) and (B18) in (B26), we obtain

(B27) P(&,) < (const.) -c-e "
from which (B24) follows by the Borel-Cantelli lemma. O
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