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WALD’S EQUATION FOR A CLASS OF DENORMALIZED
U-STATISTICS

By Y. S. CHow, V. H. DE LA PENA! aND H. TEICHER

Columbia University, Columbia University and Rutgers University

Under suitable conditions on a stopping time 7' and zero mean i.i.d.
random variables {X,,, n > 1}, a Wald-type equation ES,, = 0 is obtained
where S, ,, is the sum of products of & of the X’s with indices from 1 to n.
This, in turn, is utilized to obtain information about the moments of
T, =inf(n > k: S, , > 0}and W, = inf{n > 2: 87, > c¢X?_ X7}, ¢ > 0.

1. Introduction. For any sequence {X, X,,, n > 1} of i.i.d. random vari-
ables and integers n > k > 1, define

(1) Skn = > X, X, Sf,= maxlS, |
1<i;< - <iz=<n k<j<n

and set S; ,=8,, So,=1, n>1. Then, if EX=0, for each k>1, U, , =

(Z) S}, » is a so-called degenerate U-statistic since the kernel A(x,,..., x,) =

I1%_,x; is such that E{h(X,,..., X)IX,,..., X;} =,. 0for j =1 (also for 2 <
J<hk.

For k =1, Wald’s equation (as generalized by Blackwell) asserts that
ES; = 0 whenever EX = 0 and T is a stopping time of {X,} with ET < .
Numerous extensions in a variety of directions have appeared over the years
involving alternative moment conditions, higher moment analogues, martin-
gales, Banach space random elements and so on. Closest in spirit to the
current work are articles of Burkholder and Gundy [3] wherein it is shown
that when p = 2, EX =0, E|XI” < o, ET'/? <  imply ES; = 0 and Chow,
Robbins and Siegmund [4] where this is extended to all p in (1,2].

Naturally, for & > 1, any Wald-type equation will involve the sums S, ,
rather than the averages U, ,. In particular, it will be shown for any p in (1, 2]
that EX = 0, E|XI” < » and ET*~9/®~D < o imply ES, 7 = 0 (Theorem 2)
and this will be utilized to obtain information about the moments of T, =
inf{n > k: S, , > 0} (Theorem 3). The special case of T, has bearing on the
behavior of W, = infln > 2: S? > ¢X7_, X7}, ¢ > 0 (see Corollary 1). Mean
convergence is discussed briefly in Theorem 4. Finally, some partial results
involving a second moment analogue of Theorem 2 are given (Theorem 5).
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2. Mainstream. The analysis is facilitated by the simple but pivotal
recursion relation

(2) Sk,n = Z XjSk—l,j—l7 n > k > 1.

THEOREM 1. Let {S, ,, n >k = 2} be as in (1) where {X, X,,, n > 1} are
i.i.d. random variables with EX = 0, E|XPP < o and let T be a stopping time of
{X,; n>1} with ET? < », where p <2, ¢ >1 and q(p — 1) > r for some
nonnegative integerr. If a = a, = (pq)/(q +r)thenl<a<puwithl <a<
p when r > 0 and moreover,

(3) E(S}1rrn)" =0(1) asn e

Note that «, = p implies r = 0. The special case a, = 1 in conjunction with
dominated convergence yields:

THEOREM 2. If{X,X,,n > 1} arei.i.d. with EX=0, EIX]" <o, 1 <p <
2, then for any positive integer r and stopping time T,
(4) ES, . ,r=0 ifET™/ ™D < oo,

THEOREM 3. Let {S, ,, i > k > 2} be defined by (1), where (X, X,,, n > 1}

are i.i.d. random variables with EX =0 < E|XP <w, 1 <p < 2. Then if
=infln > k: S, , > 0}, ET "D/~ D =0, k> 2.

ProorF. Suppose ET*~D/(P~D < « for some integer & > 2. Then via Theo-
rem 2,
0<E(X, - X,) <ES, =0,
implying
(EIX)* =EIX, -+ X,| =2E(X, - X,) " —EX, --- X, = 0,

contradicting the hypothesis of nondegeneracy. O

CoroLLARY 1. Let W, =inf(n > 2: S2> c¢X7_, X7}, ¢ > 0, where {X, X,
n > 1} and i.i.d. random variables with EX = 0, EX 2=1. Then EW,< »
or = o accordingas 0 <c<1lorcz=1.

Pkoor. For ¢ > 1, the conclusion follows from Theorem 3 via W,.>W, =
T,. Let 0 < ¢ < 1 and suppose EW, = . Now if V=W, A n, then EV <o
and EXZ=0(EV) as n — = ([10] or Lemma 5.4.2 of [7]). Thus by the second
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moment analogue of Wald’s equation [5],
EV=ES};=E(S¢_, +2X,Sy_, + X3)

v 1/2

cEX}E ) X} + EXZ=CcEV + o(EV),
j=1

\4
<cE Y X?+2
j=1

yielding a contradiction as n — «. O

REMARK. Clearly, EW,/®?~D =, ¢ > 1, if X €_#, for some p in (1,2)
rather than p = 2.

ProOF OF THEOREM 1. For n > %2 > 1and n > m > 0, define
mSk,n= Z Xil Xik’ oSk,n=Sk,n’ mSO,nE 1’Sn=Sl,n
m<i;< - <ip<n

Then for r > 2 and j > 2,
j—1

r,j—1 = Sr,2‘ + Z Xhlsr—l,hl—l
hy=2'+1

S

j—1 h;—1
=8, o+ 8,1 (281,-1) + X X X, X5,8, 2 h,-1

hy>20 hy> 21

-
= Z Sh,2'(2'sr—h,j—1)’
h=0

and this also holds for r = 1. Hence for any stopping time T relative to
F =o0(X,,..., X)),

2n+1 n 2l+1
Z ijsr2,j—11[sz] = 0(1) Z I[T22i] Z X2 Z Sh 2‘(2’Sr h,j— 1)
j=r+1 i=logy(r+1) j=2i+1 h=0
21+1
- O(I)ZI[T>2’ Z Sh 2¢ Z X; (2‘Sr h,j— 1)
=0 Jj=2'+1

implying for 1 < a < 2 that

2n+1 0‘/2
— 2Q2
Jrw=at E| X X} Sr,j-llszjl)

j=r+1

n

(5) <OME Y [T>2q Z 1S}, 211"

i=logy(r+1) _ h=0

g +1 N a/2
Z X; (2' r—h,j— 1)]

j>ot

2t

a/2
2Q2
Z Xer—h,j—l) ’

j=r—h+1

n

—0(1) ¥ Elg.y X 18,5IE
i=logy(r+1) h=0 A
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whence for r > 1 and 1 < a < 2, recalling (2) and a martingale inequality of
Burkholder [2] and Davis [8],

n a/2
(6) EIS¥ . ,% < O(I)E( Z Xj2Sr2—1,j—II[sz]) <O0)d,_q,-

J=r

Let X € 7. Since the special case r =0, a = p = 1, is included in (171),
suppose that 1 < a < p < 2, whence r > 1. By the martingale extension of the
Marcinkiewicz—Zygmund inequality [2],

n p/2
E|S, P < 0(1)E( Y XfS?_l,j_l)

j=r

< O(I)E ZlX |p|Sr 1,j— 1|P 0(1) ZElSr 1,j-1 7

Jj=r j=r
implying E|S, I’ = O(n"), r > 1, whence [2]
n a/2 n p/2
E( ZXJZSr2—1,j—1) SEa/p( ZX1253—1,J'—1)
j=r j=r
<O(1)E~/?|S, P = O(n™/P).

Moreover, if J,_; , = 0(1) as n — » for some positive integer s, then (6)
ensures E|S; 7| = O(1) whence (Corollary 7.4.6 of [7]) with probability 1,

E(S, L%} = 1S, ol ey m= 1.

Thus, for r > 1 and 1 < a < p < 2, recalling (5),

J. . <0(1) hZO ZIEI[T>2 Sy, gl QIR D/p
(7 <0(1) Y ¥ 2i(r_h+l)a/pEI[Tzzi]|Sh,T|a
h=0i=1

= 0(1) X EIS, (°T¢~+barp,
h=0

Consequently, combining (6) and (7), the desired conclusion (3) is implied by
Z EISh'TlaT(r—h+1)a/p < oo,
=0

or equivalently by
(8) L(h) =g EIS, [°TCHDe/p <o h=0,1,...,r.
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Since Sy =1 and (r + Da/p = (q(r + 1))/(q + r) < q, (8) holds for » = 0.
Thus, it suffices to verify (8) for h = 1,2,...,r.
To this end, define

pq
pq —a(r —h +1)

(9) 6, = 6,(r) =

and note that since 6, = (¢ +r)/(qg + h — 1), necessarily 6, > 1, 1 <h <r.
Thus, by Hélder’s inequality,

I(h) < EY/%|S, f|*% - E1-1/0Tq
and so (8) is implied by
(10) E(Sfrnn)™=0(1) asn - h=1,....r.
However, .8, = gp/(q + h — 1) = @), _;, whence
(11) E(Sfran)"'=0() asn—>o,h=1,...,r,
ensures (10). Proceeding inductively, (3) or (11) is implied by
E(S%,,)®=0() asn— .

Now @y =p, S; , =S, andsince 1 <p <2,

n p/2
E(S§, )" < 0(1)E( XJZI[TZj])
=1

(11) g

n
j=1
completing the proof. O

A perusal of Theorem 1 reveals that when r > 1, necessarily a, < 2, so that
it does not encompass the case of a moment of order 2.

In [13], a Marcinkiewicz—Zygmund type strong law is obtained for S, ,.
Specifically,

Sk,n/nk/p a.c. 0

if E|X|” < « for some p in (0, 2) provided EX = 0 whenever 1 < p < 2. Under
the same hypothesis, convergence in mean of order p obtains.
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THEOREM 4. Let {X, X,, n > 1} be i.i.d. random variables with E|X|° <
for some p in (0,2) with EX = 0 whenever 1 <p < 2. Then fork =1,2 -,

p

12 l'ES
(12) im -

Proor. For k = 1 this was proved by Pyke and Root [12]. When % > 1 and
1<p<2

g%l 0(1) (

nt =

» E|S
Z kkli] 1 _0(1)

p/2

o1
ZX2Sk 1,j- 1) =< ()
j=k

as n — o and (12) follows inductively. For p in (0, 1) the argument is similar
via S, /P < X7_IX;IP1S,_, ;1. O

TuEOREM 5. Let {X, X,, n > 1} be i.i.d. random variables with EX = 0,
EX? =1 and T a stopping time relative to %, = o(X,,...,X,). Then for
k=2,

T
(13) ES}?,TZEZS’?—I,j—I<OO
j=k

provided T € £,, X € £;,,,_1, for some p > 2. Moreover, (13) holds for
k=3ifTe s, X€2Ly,4/,-1, for some p >3, B> 2 where

(28 - 1)[28 - 1+ (4p> - 88 +1)*] - 28

(B-1)[28 -1+ (4p>- 88— 1)""] - 28

(14) p=

ReEMARK. When % = 2, the most natural parameter choices are p = 2(T €
2y, X £) or p=3T € £, X €_£5), whereas for k = 3, one might select
p=38+17Y2 B=1+7Y2/2 (T and X are both elements of £, ;,2) or
p=3,B8=10/3(Te £, X Lyorp=4,B=21/8T € £, X L.

Proor. Since the proof of (6) and (7) in Theorem 1 carry over to the case
l1<a=p<2,

(15) ES}%,,<O(1)d,_,,<O()|ET" + ET""'S}+ --- +ETS?, ;]

and so if the right side of (15) is finite, dominated and monotone convergence
applied to (13) with T replaced by T' A n yield the desired conclusion.
Now for kA < p,

(16) ET"S% < E*/eTv - E®~M/e|G |2/ (PR

and so when p = 2, setting h = 1, (13) follows.
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When p =3, choosing h =2 in (16), ET?S% < » since 2p/(p — 2) <
2pB/(p — 1), or equivalently, p > 28 — /(B — 1) in view of (14). Moreover,

ETS22 r < EYVeTr - E'(10~1)/10|S2 T|2P/(P‘1)
and for g > p(p — 1),

2, -1
ElSz,T N n| p/(p—1)

TAn p/p—1
< 0(1)E( 3 szsf_l)
j=2

)p(B—l)/B(p—l)( T )p/(B(p—l))

T
< 0(1) . E(Z|xj|2l3/(3—1) ZlSj_llzﬂ
2 2

: T p(B—1)/(Bp—p—B)
<0(1) .E(Bp-p—B)/(B(p-l))(lejlzﬂ/(p—l))
2

T
X Ep/(B(p-l))( Z|Sj_1|23) ,
2
where (see, e.g., the proof of Lemma 9 of [5])

T
EY IS, ,|* < ETIS;|* < E'/*T* - E®=1/p|S |2 /07D < oo
2

and for y > (p(B — 1))/(Bp —p — B),

T (p(B=10)/(Bp=p—B)
2 -1
E(Z|XJ| B/(B ))
1

(p(B—1)/(¥(Bp—p—B)
) T(p(ﬁ—l))/(Bp—p—B)(v—l)/v

T
2By/(B=1)
T
< E(B— 1)/(v(Bp—p—B)) Z |Xj|213“//(l3 -1
1

% E@Bp—p=B)—p(B=1))/(y(Br—p —BN (py = 1XB— 1)/ (v(Bp —B —p)=p(B-1)

The last expectation on the right side will be finite provided (y — 1XB — 1) =
v(Bp —p — B) — p(B — 1), that is, if
b1+ By
S (B-D(r-1°
Furthermore, via the hypothesis and Wald’s equation, the first term on the
right of (17) is finite when 2B8y/(B — 1) =.2Bp/(p — 1), which, recalling (18),

(18)
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is tantamount to

B-1
2p

and the latter, in conjunction with (18), implies (14). O

y= 28 -1+ (48> - 88 + 1),
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