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NONLINEAR TRANSFORMATIONS ON THE WIENER SPACE

By OGNIAN ENCHEV

Boston University

We study shift transformations on a general abstract Wiener space
(E, H, 1), which have the form:

Es0n T% =0 - [ ¢()Z(d) €E,
0

where ¢, (w) is a scalar function on [0,T] X E and Z is an orthogonal
H-valued measure. Under suitable conditions for the kernel ¢, we con-
struct explicitly a probability measure u® on E, which is equivalent to the
standard Wiener measure u and has the property: u*{7 ¢ € A} = u(A),
A € #y. The main result presents an analog of the well-known
Cameron-Martin-Girsanov theorem for the case where the shift is allowed
to anticipate. This leads to an additional integral term in the Girsanov
exponent. Also, the Wiener-It6 integral in this exponent is now replaced by
an extended stochastic integral.

1. Introduction. Let (¢ (w); 0 <¢ < T) be a process on (C[0,T], n),
where w is defined as the standard Wiener measure, which is adapted to the
natural filtration in C[0, T'] and satisfies

[ ¢}(w)dt <= forp-ae. we C[0,T].
0
Set
T T
Ré(w) = exp| [T,(0) do(t) = & [ 160) [t
0 0
The celebrated Cameron—Martin—Girsanov theorem (cf. [3] and [6]) states that
if
E#{R"’(w)} =1,
then

T (w) = w(t) — fot¢s(w) ds, 0<t<T,

is a Wiener process relative to the measure u® = R?® du. The expression for
the Radon-Nikodym derivative R? suggests that the eventual extensions of
this result would depend on how far one can go with the definition of the
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stochastic integral. Ramer’s work [20] (see also [15]) shows that this is only a
part of the problem. This pioneering work deals with the following type of
shifts on a general abstract Wiener space (E, H, u),

Es0w~- 9(0)=w—-1[0] €E.

The mapping 7: E — H is assumed continuous and H-differentiable in the
sense of Fréchet, the derivative 7'[w] being a Hilbert—Schmidt operator on H.
It is shown that relative to the measure u"b = R™ du, with

R(0) =[8(I - 7[o])|exp[(r[w], &) — tr(<[])”~ 3 r[o]l%],

I (w) is white noise in E; that is, u" {7 € A} = u(A), A € 5. The expression
in quotation marks is identified by Ramer as a version of the Wiener-Itd
integral. (The quotation marks are due to Ramer. In general, neither of the
two quantities makes sense; only the difference is shown to be defined unam-
biguously.) The appearance of the Carleman-Fredholm determinant &6(I —
7'[w]) clearly indicates that the stochastic integral is not the only object that
requires special attention. This determinant is expressed by the eigenvalues of
the operator I — 7'[w] and its computation does not seem to be obvious,
especially if the Radon-Nikodym derivative R” is to be treated as a function of
the time, as is the case in most applications.

In 1975 Kabanov and Skorohod [10] initiated a new type of calculus with
Wiener functionals. The adaptedness requirement, typical for the Itd calculus
and martingale theory, was replaced by a special type of smoothness. Based on
this concept, they developed the so called extended stochastic integral, which is
analogous to the Wiener-Itd integral, but, instead of adaptedness, requires
smoothness of the integrand. In fact, this integral is analogous to the object
which Ramer puts in quotation marks, but requires a less stringent type of
smoothness. Independently and from an entirely different point of view, the
concept of smoothness was developed by Malliavin [17] and Stroock [23]. With
this technique at hand, Ramer’s original result was generalized towards
relaxing the smoothness requirement for the shift term 7 in the works [22],
[15] and [19].

The goal of the present article is to study a class of shifts, which is more
restrictive but allows the Carleman-Fredholm determinant to be expressed in
more convenient terms. To be more precise, we study shifts on a general
abstract Wiener space (E, H, u), which have the form

T =w- [ $(0)Z(dt), wek.
A ,

Here Z(-) is some orthogonal H-valued measure, which obeys certain condi-
tions, and the scalar process (¢,) is assumed to be smooth (but not necessarily
adapted) in Malliavin’s sense. We will obtain an analog of Cameron-
Martin—Girsanov’s theorem, in which the Radon-Nikodym derivative is de-
scribed again as an exponent. It resembles the usual one but, because of
the lack of adaptedness, contains an additional integral term, and the It6 inte-
gral is replaced by the extended stochastic integral of Kabanov and
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Skorohod. The present study was initiated in the work [2], which deals with
semigroups of shifts, defined by equations of the type

TH(w) = o(t) — [ ¢,(T*0)2(ds), weE, 0<t<T.
t .

The paper is organized as follows. Section 2 includes essential facts and
notation that are needed in the sequel. Section 3 provides a special integral
representation for determinants. It is the key technical tool for the method
adopted here. The main result is proved in Section 4 by using a special
factorization technique developed by Gohberg and Krein [7]. The use of such a
technique should not come as a surprise. In a somewhat different context, the
same factorization has been explored by Kallianpur and Oodaira [13] in the
study of linear transformations on the Wiener space. Other related works are
those of Shepp [21] and Hitsuda [9].

2. Preliminaries.

2.1. The Wiener space. We fix once and for all an abstract Wiener space
(AWS) (E, H, u) (cf. [8]), and, as usual, regard H as a proper dense subset of
E, and E*, the dual of E, as a proper dense subset of H. For [ € E* and
w € E we set (I, w) = l(w). Note that {/,h) = (l,h)y,forle E*, h € HCE.

We also fix a compact interval [0,T] and a vector-valued measure Z(-),
defined on the Borel o-field %, 1}, which takes values in H and obeys the
following conditions:

@ Z{H =0,t=1[0,T];
(i) 0+ Z(s,t) €eE* for0 <s<t<T;
(i) Z([sy,2)) L Z([s9,25)),for 0 <5, <t; <8, <ty; < T,
(iv) the family {X([0,¢)): 0 < ¢ < T} spans E*, in that all linear combina-
tions of functionals from this family are dense in E*, with respect to the
uniform norm.

A typiral example of an AWS and a measure Z(-) which have these
propertie , is the following:

E=C,[0,T] = {f: f is a continuous function on [0, T'], f(0) = 0};
(2‘1)HE{,[O,T] = {fE CO[O’T]: f(x) =Lf(r) dr, fELz[O,T]};

z([s,))(") = [1, (1) dr € €[0,T], 0<s<t<T.
0

~For any scalar function fé& L%»;R), v given by v(A) =[Z(A)l%4, A e
%o, 7 We define the element Z[ f] € H as the following integral:

zifl=[ "F(r)2(dr).
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This integral is defined first for simple functions,
f(r) = ZailA,-(T)a a,€R, A € By 1)
13

by the obvious expression Z[ f]= X;a;Z(A,). For every simple f,

120F 2 = [T () Pocan),

so that Z[-] extends to a unitary equivalence between L2%(v;R) and H. If, for
example, Z(-) is the measure given by (2.1), then Z[f], as an element of
€'0, T], coincides with the function [§”f(r)dr.

For every € E*, E>w— {l,w) is a zero-mean Gaussian r.v. on
(E’ ‘QE’ “‘)7 and

fE<z, oXl', odu(dw) = (1,1 gy, L, €E*,

2.2. Stochastic derivatives and integrals. Following [14] and [18] we will
introduce now stochastic derivatives for certain functionals on (E, %, 1), and
also extended stochastic integrals with respect to the random measure
{(Z(dt), w). These objects are defined first for the so-called ‘“smooth function-
als,” and then the definition is extended to a larger class of functionals by an
appropriate limiting procedure.

Every functional ¢: E — C, which has the form

?(w) =f(<Z(A1)"">""’<Z(Ak)’w>);
A; = [s;,t;) c[0,T], 1<i<k; feCyRY),

is called a smooth functional and its stochastic derivative D,¢(w) is defined as
the following process on (E, %, w):

k
Dt¢(‘”) = ‘g:l(aif)«Z(Al)’w)’“"<Z(Ak)’w>)1A,-(t)’ 0<t<T.

Here 6, stands for the differential operator d/dx;. The vector space of all
smooth functionals we denote by . The usual topological structure on . is
given by the seminorm

lolls, s = (EJlel?))" + ( ) T[E,L{Itholz}V(dt))

The completion of .~ relative to the seminorm || - [l ; is denoted by D**. The
class 12! comprises all processes (¢ (w)) € L%(v X u;R) with ¢, € D>!, t
[0, T'], and with

1/2

f f {ID,o,I? v(ds)v(dt) < o,
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Endowed with the norm

1/ 1/2

llz,s = ( . T[E#{|¢t|2}v<dt)) 4 ( IR CXARECORCOI IS

[>! is a Banach space.
Every process of the form

n
¢e= Ll (), 0=t <t < <t,=T,y D>,
i=1

we call a simple process and define its extended stochastic integral by

8(¢) foTz d(0) Z(dt), w):

(2.2)

L (@l 2t t)), )~ I [ Db,

If we have above §; € ., 1 < i < n, then (¢,) will be called a smooth simple
process. The vector space of all simple processes will be denoted by S and that
of all smooth simple processes will be denoted by ©.
For n > 1 and for 0 < i < 2", we introduce the following notation:
iT
r

i = ?’
A’LL = [t?—l’t? ’
{M(w) =<Z(A’}),w>, weEE.

By ¢* we denote the Gaussian vector ({7, ..., {s), and the probability distri-
bution of this vector in R2" we denote by I'x(dx). For every (¢,) € L*>' and
every n > 1, define the following simple process:

gn
[(Z.d], = Z b, 1m(t),
(2.3) =t

3 1
d)i,n = m&g¢sv(d8).

It is known (cf. [18]) that [Z,¢] € [>! and [#,¢] - ¢ in [>'. Thus, S is a
dense subspace of 121, and, since [E“{|6(¢)I2} < ¢ 1ll3 1, whenever ¢ € S, the
integral 8(-) can be extended .by continuity for all elements of 1*', due to
the following closure property, established by Kusuoka and Stroock [14]: if the
sequence {¢™: n > 1} € S converges to 0 in L%(v X pu;R) and {6(¢"): n > 1}
converges in L%(u;R), then {8(¢") n > 1} converges to 0.

Let, for n > 1, E{-} denote the conditional expectation with respect to the
family {: 1 <i < 2"}. It is easy to see that, for every ¢ € ./ and n > 1, one
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has
1P (@) Priae) < E{ [ 1Ds0(0) Futan |,

which shows that [E:{ } is a projector in D*!, and the last relation extends for

all ¢ € D>, Clearly, for ¢ € D>, EZ{y} has the form
[Ez{dt}(a)) = A./;z(gl R §2”)’

where AY, is a function on L%(T,.; R). In general, although as an element of
D! [E"{w} is stochastically differentiable, A* need not be differentiable in the
usual sense. However, A% turns out to be a function on the Sobolev class
#'%YIy.), which means the following: there exists a sequence {f,: k£ > 1} C
C7(R?"), such that f, > A% in L*(T,:;R) and, for every i = 1,...,2", {9, f;:
k > 1} is Cauchy sequence in L2%*(T,:;R). It is then straightforward that
) € 2'(R?") and, for every i, the generalized derivative 9,A” is a function on

L(Ty; R), defined as the limit of the sequence {9, f,: &k > 1}. We call {f,:
k > 1} c C3(R?") the Sobolev sequence for A%. The existence of such a se-
quence implies that the stochastic derivative of E{¢/} retains the usual form

gn

im
even if 9;A”’s are to be understood in the generalized sense. One obvious way
to construct a Sobolev sequence for A%, and thus to show that AY, € 7% X(T,.),
is the following. Since ¢ € D*!, by definition there exists a sequence {¢,:
k > 1} ¢ ., which approximates ¢ in D*'. But each E'{¢,} has the form

[E,'f{ﬁok} = fk(£f7 ) {2"'")7

with some f, € C3(R*"). We now have that E{¢,} — EX{y} in D*', which
yields

2 n
i l]?n Z E <|(a fk)(gl ’e "{2’1”) - (aifk’)(gln" : ’{él")| }V(Ai) =0.
Hence, for every i, [(9; f,) — (9; )] > 0 in L%(T,~;R), as k, k' — .

The natural topology in # %(I';.) is the one defined by the seminorm

- [[RI f(x)|T n(dx)]l/z + izé [[RZJa,. f(x)]ZI‘zn(dx)]l/z,

and in fact #*'(T,.) is the completion of C;(R*") with respect to this
seminorm. It is then evident that, for ¢ € D%, {¢,: k > 1} c D*! and for
some fixed n > 1, Ep{y,} — E"{¢} in D%, as k — o, if and only if A% — A” in

A >N (Tyn).

2.3. Factorization of matrices and operators. In [7], Gohberg and Krein
developed a technique, which allows certain operators on a general Hilbert
space & to be factorized along a given chain of orthoprojectors. In the finite
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dimensional setting, this operation corresponds to representing a matrix as a
product of two, respectively, upper and lower, triangular matrices. This tech-
nique plays a crucial role in our approach. Namely, we will use the following
result, due to Gohberg and Krein [7]:

THEOREM 2.1. Let # be a separable Hilbert space and let § be a closed
maximal chain of orthoprojectors in . [This means that B is a family of
orthoprojectors which is closed in the strong operator topology; 0, I € B, and,
for P, P' € B, either Range(P) c Range(P’) or Range(P’) c Range(P) (cf. [7]
for details).] Assume that K is a Hilbert—Schmidt operator on % and that all
operators I — PKP, P € B, are invertible. Then the operator (I — K)~! admits
the following representation:

(2.4) (I-K) '={I+VHD(I+V),

where V* and V™~ are Volterra operators, D — I is a compact operator, and the
following relations hold for every P € 3.

PV*P =V"*P, PtV P+=V"P+, PD = DP.

The representation (2.4) is usually referred to as a special factorization of
the operator (I — K)~! along the chain B. The operators V* and V™ in this
representation are unique and can be expressed as special operator-valued
integrals along the chain %, which now plays the role of an operator-valued
measure (cf. [7]). We will use the above result in the case where #= L2(v;R),
and by factorization of operators in L%*(v;R) we will always mean special
factorization along the chain B, = {P,: 0 < ¢t < T}, given by

P, f=1,nf, feL*(v;R).

Every Hilbert—Schmidt operator in L2(v; R) can be represented as an integral
operator with some kernel K € L%(» X v;R); that is, can be written as

(KF)(s) = ["K(s,r) f(ry(dr),  feLiwiR)

(with a slight abuse of the notation, for integral operators we will use the same
symbol for the kernel and for the operator itself). We will deal with integral
kernels having the following property: [I/F|K(s, t)|2V(dS)V(dt) < 1, in which
case the assumption of Theorem 2.1 is met, and therefore (I — K)~! can be
factorized along the chain %,. Because of the choice of the chain and the
Hilbert space, we have D = 1. Also, V* and V™ are integral operators with
kernels V* (s, t) and V™ (s, ¢), such that V*(s,¢) = 0,for s < ¢,and V(s,¢) = 0,
for s > t. We will refer to V* (s, t) and V™ (s, t) respectively as the right and left
Volterra kernel of (I — K)~1. The right kernel admits the following expansion
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in the triangle 0 <t <s < T:
Vi(s,t) = K(s,1)

(2.5) + ¥ [

m=1"1%

T T
o [ K r)K(rra) e K (e T)

xXK(r,,t)v(dry) -+ v(dr,),
which yields the estimate

K |las
IV*lgs < ————
B =1 — K llus

Here || - ||gs stands for the Hilbert—Schmidt norm. Obviously, the composition
K o V" is again a Hilbert—Schmidt operator with kernel

(KoV*)(s,2) = [ K(s,r)V*(r,t)v(dr),
and we have

[II(K V) (8, 8) Iv(dt)
0
/2

1/2 1
SfOTV(dt)([OT|K(t,r)|2V(dr)) ([()T|V+(r,t)|“’v(dr)) < oo,

Let {K,: n > 1} c L3(v X v;R), be a sequence of integral kernels, all having
the property ||K ,llas < 1, such that ||K — K, |lgs — 0. Then it is easy to show
that [V*— Vfllgs — 0 and

(2.6) fOT(KnoV,j)(t,t)v(dt) > /OT(KOV*)(t,t)v(dt).

Here V" is the right Volterra kernel of (I — K,,)™ 1.
Suppose that

2"»
(2.7 ®(s,t) = X @ dam(t)lw(s), 0<s,t<T.
ij=1
is a given simple function on [0, 1] X [0, 1] and define the matrix
2"»

(28) A= (ai,j = a; \/V(A’:)V(AZ) )i,j=1'
Note that

2" ‘
I1Plfs = Alfis = Xl j1Pw(A7)w(A).
R - i,j=1

Thus, if ||®||%s < 1, then the operator (I — ®)~!, which acts in L2(v;R), can
be factorized along the chain . The following fact is an easy consequence of
the Carleman-Fredholm theory of determinants (cf. [20] or, more recently,
[12D.
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LEMMA 2.1. Let ® and A be given respectively by (2.7) and (2.8) and
suppose that (I — ®)~' = (I + V*XI + V™), where V* and V~ are Volterra
operators of Hilbert—Schmidt type acting on L%(v; R). Then

det(I — A) = exp[—tr(A) = /OT(q>oV+)(t,t)v(dt) .

3. A class of nonlinear transformations of the Wiener measure and
their absolute continuity. In this section we will study the transforma-
tions % E — E, ¢ € 1>, defined by

(3.1) Tw] = - fOTqSt(w)Z(dt), wek.

We will refer to the process ¢ above as the kernel of the shift 7 %[-]. Since
¢ € 121 implies that E {fOT|¢t(a>)I2v(dt)} < o, then for p-a.e. o € E, t » ¢, (w)
is a function of L%(v; IR) and so, the mteg'ral in (3.1) is a correctly defined
element of the Hilbert space H C E, for a.e. € E. For example, if Z(-) is the
measure, given by (2.1), then I~ s transforms every continuous function
w(+) € C,l0, T into the function w(-) — [{’¢ () dt. Obviously, ¢™ — ¢ in [**
implies that E {II7' ¢" — 79|%} - 0 (the Hilbert norm can be applied here,
because I ¢" — I¢ € H), and therefore, for some appropriate subsequence,

T w] » I?[w] foru-ae. w€E.
Another useful observation is that, for every ¢ € 1%1,

[ [71D,bi(w) Pu(ds)v(dt) < for p-ae. o <E.
0“0

Hence, for u-a.e. w € E, the function (s, t) —» D,¢(w) defines a
Hilbert—Schmidt operator in L%(v;R), which we will denote by D¢(w). The
corresponding right Volterra kernel in the factorization of (I — D¢(w)) ! we
will denote by V' ¢,(w), and the Volterra operator in L%(v;R), defined by this
kernel, we will denote by (V* ¢ )X w).

Our main objective now is to construct a measure u? which is equivalent to
w and has the property u?{9 ¢ € A} = u(A), A € %. In fact, we will study a
subclass of the transformations (3.1), with the following additional require-
ment for the kernel ¢ € 1%

IDd(w) s = [T[T| D,é,()[*v(ds)v(dt) <1 forp-ae. w e E.
0“0

As one can expect, our plan is to study the problem first for smooth kernels ¢,
and then, using an approprlate approximation, to extend the result to general
¢ 121

“Let h be a test functlon from the class Z(R), such that A > 0, [gh(x)dx =
and h(x) = 0, for |x| > 3. Then the function

Wy(x) = fo (h* Ly n-y)(r)dr, x€R,
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has the following properties:

) vy eC

Gi) [Ty < |x] A (N + 1), for all x € R;
(iii) ¥py(x) =x,forx €[-N+ 1, N - 1];
(v) [P(x)l <1, forall x e R;

W) 1Py(x)l =1, forx e[-N+ 1, N —1].

LeMMA 3.1. Let A€ #?*XI'y). Then (a) for every N >1, ¥y(A) €
YET,), and 9(Ty(A) = We(ABA, 1<i<2% () Wy(A) - A in
W2 Tyn) as N - .

Proor. Let [{-} stand for [gz+{-}T5(dx) and let f, € Ci(R*), k=1, bea

Sobolev sequence for A. Obviously this sequence can be chosen such that
f, = A a.s. Then, by the dominated convergence theorem, we have

lim [{[¥y(A) = ¥n (£} = 0.

On the other hand, for every i,
J{w(£)0 fi = T (B)3A[)

< 2[{| W (FO110 Fi — 4AF) + 2 {10AP ¥R (£i) = Ya(A) ).

The first term above goes to 0, because |¥j(f,)| < 1. The second term also
goes to 0, due to the dominated convergence theorem. This concludes the proof
of (a). To show (b) it is enough to notice that

li Wo(A) — Al =0,
lim [|¥y(A) - Al

lim [| W, (A)(5A) — (3,A)[F =0,
lim [|%(A)(3:A) = (:A)]
both due to the dominated convergence theorem. O

LemMa 3.2. Let T be a nondegenerate (i.e., supported by the whole space)
Gaussian measure on R" and let h;(x) = j"h(jx), x €R", j=1,2,..., h e
D(R™), be an approximate identity. Then, for every Borel function A on R",
with |A] < C, (a.e.), one has h;* A = A, in LX(T;R), as j — .

Proor. Let, for r > 0,
B,={xeR":|x|<r}

(here |- | is the Euclidean norm), and let d > 0 be such that h(x) = 0 for
x & B,. Let € > 0 be arbitrarily chosen and let r, > d be such that (B, _z)°)
<e. Using Fourier transforms, one can easily check that h;* f—f in
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L%(dx;R), as j — , for every f <€ L%(dx;R) N LYdx;R). Now, since A €
L2(l" R), we have that 13 A € L*(dx;R) N Ll(dx, R), for every r > 0. Hence,

h;*(1g A) > 1 A in LAR", dx), and therefore also in L*T;R), as j — .
Thus

fikyxh = AP <2f|hy e (15,A) = 1o A"+ 2f|B;(1ac8) = oA |

<2f|h;*(15,4) — 15 A +8C%.

The integration here is with respect to I'. Passing to the limit as j — «, we
get

hmsupflh * A — AI” < 8C%. |

J—ooo

COROLLARY 3.1. Let A € #?>YT,.) be such that (a.e.) Al < C and 16;(A)|
<C, 1<i<2" Then, for any approximate identity h(x), x € R, j =
1,2,..., one has h; *A—»Azn%/ZI(I‘zn)as.]aoo

Proor. We know already, due to Lemma 3.2, that h; * A — A in L*(Tpn; R).
But for exactly the same reason, for every i,

Bi(hj *A) = hj *(3iA) - 9;A
in L2(F2,,;IR). m]

LEmMMA 3.3. Let ¢ € 2! and let | D(w)lifis < C, for p-a.e. o € E. Then
there exists a sequence of smooth szmple processes {¢": n > 1} € & such that
" > ¢ in 121, and sup,  z(IDF™(w)llfis) < C for every n > 1.

Proor. The statement is equivalent to the following assertion: There
exists a sequence {¢": n > 1} c © which converges to ¢ in 1%!, and has the
property sup,, c z(IDé™"()lfis) < C, n > 1. This is because if such a sequence
exists, one can form the sequence {(1 — 1/n)¢™: n = 1}, which will be exactly

what we are looking for.
Let ¢ € 12! be such that |[D¢llfis < C, p-ae., and let {{Z,¢]; n > 1} CS
be the sequence constructed in (2.3). Note first that for every n > 1, we have

u-a.e.,

2n
ID[2,81ls = [ v(ds) T 1DF:al (A
i=1

o _ T
-] 3

< jOT]OT|DS¢t|2V(ds)V(dt) <cC.

f D ¢tV(dt)
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Since the sequence {{Z,¢]: n = 1} C S is known to approximate ¢ in 121, the
proof would be completed, if we show that the assertion holds for every process
¢ € S with |[D¢ll%s < C, u-a.e. So, let us take a simple process

2"
= Z wi,nlA’}(t)> l/’i,n € D>!
i=1

and let us assume that ||D¢’|I%Is < C, p-a.e. Consider the following sequence of
processes:

2"
B, = Z[EZL{‘/fi,n}lA’;(t), m > 1.
i=1
For every m > 1, we have u-a.e.,

2n
T 2
IDE™ ¢ |3 = /0 v(ds) ¥ | DER{y; | v(AT)
=1

N
< EL"{/OT”(ds) Y 1D, P (A7)
i=1

= Er{ID¢'llEs) < C.

On the other hand, for every i, the sequence {E{¢; ,}: m > 1} approximates
; , in D>', which yields that the sequence {Iqu{)’ m > 1} approximates ¢’ in
121, Now our work is reduced to showing that the assertion holds for any
process of the form:

on
(3:2) ¢ (w) = .glAi(Q”(w))lm(t), Ay € W2 (Tp),

with ||D¢"|lis < C, u-a.e. Note that the following sequence approximates ¢”
in 121

on
= »g:lq,N(Ai(;n(w)))lA’}(t)’ N=1,

because, due to Lemma 3.2, for every i, ¥5(A;) = A, in D*! as N — . Also,
for every N > 1, we have y,-a.e.:

| DL s = Zl ; Wi (M) (3A,) [ (A v (AT
< z 2 (3;A;)*v(A)w(A%) =D’ lI}s < C.

i=1j=1

Therefore, if we show that the statement is true for every process of the type
(3.2), with the additional requirement that all functions A; € L*(T:;R) are
bounded w-a.e., that would complete the proof. But note that ||D¢”||HS <C,

u-ae., yields that (3,A,)*»(ADu(A") < C ae. in R, for all i, ) = 1,...,2".
Thus all derivatives (9;A ;) are bounded a.e. Then let us take some approximate
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identity A (x), x € R2?, j = 1,2,... and define the following sequence:

gn
2(’% * M) (" (@) 1m(2), Jj=1.

Due to Corollary 3.1, this sequence approximates ¢” in [*!. Now the following
observation completes the proof: For every x € R?",

2n 2"

Y X k(M) ()| v (AT v(AY)

k=1i=1
2n 2"

< X T hyx((9,A:)7)(x)v( A w(AY)

k=1i=1

DA 1
- h,-*( Yy (akA»%(A's)v(A'z))(x) <C

k=1i=1

(here we use the fact that if |F| < C almost everywhere then |h ;*F |<C
everywhere). O

For every ¢ € 12!, with ||Dollhs < 1, u-a.e., define the following function
of w € E:

Ré(0) = exp| [ 60X 200, 0): ~4 [ o() ()
(3.3) ] ]
- [t [T Db (@)V: 0 ds)]

Note that, following our notation in subsection 2.3, the last integral can be
written equivalently as

[[1Ps(0)= (Vo) (@)1, (),
or as
glj;TV(dt)j;T,.. j;TthSrl((l))Drld)rz(w) Drm ‘(w)v(drl) V(drm)7

and this expression is nothing but the trace in L?(y;R) of the composition of
the Hilbert—Schmidt operators D¢(w) and (Vo)X w),

LEmMA 3.4. Let
e 2”
(3.4) ¢(w) = gﬁ(é"(w))lzsy(t), f; € C5(R™),

be a smooth simple process from the class ©, such that sup,, - sl DP()lfs < 1.
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Then E, {R*(w)} = 1, and, for every functional on E which has the form
o(w) = F({™(w)), € E, for some m > 1 and some bounded Borel function F:
R2" — C,

(3.5) Efe(T?[w])R?(w)} = Efe(w)}.
Proor. We remark first that in the representation (3.4) of the simple

process ¢ € ©, we can increase the number n arbitrarily by setting, for any
N > n,

Ly(2) = ) Lay(2),
G—12N"r<p<igN-"
{in = Z 51?’-

G-12N""r<p<igN—n

With the same argument, we can increase the number m in the expression
F(¢{™(w)). Therefore, with no loss of generality, we may and do assume that
m=n.

For the stochastic derivative of ¢, we have

on gn
Dyp(w) = X X (4 £;) (8" (@) 1a(5)1y(2),

i=1j=1

and for the stochastic integral 8(¢), by (2.2), we have

-
3(9) = [ d@)2(d), )i = T (" (@)8(0)

;
= L @) (@)r(8).

Due to Lemma 2.1, the left-hand side of (3.5) can be written as the following
integral in R2":

= - _1 “f ( ))
1 = F(d,(x
(,—)2 2,.(

X exp

" Lo 2
L fxu(®))Vr (&) x = 5 L fi(xa(%))] V(A'E)]

X exp

12 7.
—sz?]

i=1

X det[ ((8 f)(xn(x))‘/y(An v(4n )) ]dx1 o dxgn.
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Here 9,(x) and x,(x) are vector-functions given by

3. (%) = (le — AoV 21 (B s o (B) 20 ) AL,
VoCAT) ;= (VP OB) %4y (AT 2, V(B0 e ),
VoY = For VBT s (B 0 B ) )

X"(%) = (Vo(B) 21, (0 (85) 55, (B0 ).

Next, change the variables as follows:

y, = x; — fi(‘/v(A’{) Zpyee o V(A 2, o (B xzn),/y(A';) ,

1<i<2”,

An easy application of Picard’s method shows that the above transformation
on R?" is one-to-one. Jacobi’s transformation formula now yields

I=—1—nj F(Vo (&) 31, o (8) 355 oV (Be) 920
(V2" Je o
27l
X exp| — 5 Zy?] dy, - dysn.
=1

This last integral obviously coincides with the right-hand side of (3.5). This
proves (3.5). In particular, for F = 1, we get E, {R*(0)} = 1. D

COROLLARY 3.2. Let ¢ € © be exactly as in Lemma 3.4. Then, for every
|l € E*,

E#{ei<1,y"’[wl>R¢(w)} = o~ 1/21l%
Proor. Obviously
2n
Te]l =0 - ¥ fi(§"(0))Z(4}).
i=1
Also, all functionals on E which have the form
2m
&€, )= Zai<Z(A'i"),'>, a; €R,
i=1 -
for some m > 1, form a dense linear subspace of E* (dense with respect to the
uniform norm). Then, due to the dominated convergence theorem, we only
have to prove the statement for functionals of this type (we know already,
from the preceding lemma, that R? is an integrable function). Consider the

functional E 3 w — (I', %[w]), where I is as above. The argument in the
last proof shows that, with no loss of generality, one can assume that m = n.
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This implies

2".
el T = exp[i Yy ajf(?“’[w])]. ,
i=1
The statement now follows from Lemma 3.5, by taking there

F(xy,...,%0) = el@®it " +agnxgn) O
Here is our main result.
THEOREM 3.1. Let ¢ € 1>! and let |D(w)liis <1, for p-a.e. o €E.
Assume that E {R*(w)} = 1. Then, for everyl € E*,
[E#{eiu,y"’[m»R«b(w)} = e~ 1/2Il%
Proor. According to Lemma 8.3, we choose a sequence " n>1)cq,
such that ¢" » ¢ in 1!, and sup, . zIDé™(w)lfs < 1, for every n > 1.

Obviously, we can replace this sequence by an appropriate subsequence, so
that, for u-a.e. w € E,

lim [*: § (wX Z(de), 0):= [": d(0X Z(dt), o),
n—oxJ(Q 0
lim ["]67(w)["v(dt) = ["|6(0) Pr(dt),

lim fonOT| D,é7(w) — D,d,(w)| v(ds)v(dt) = 0.

n-—o

Note that [cf. (2.6)] the last relation yields that, for u-a.e. w € E,

lim [ "u(dt) / "D () Vi dr(w)v(ds)

= ['v(dn) [" Db (0)Vi b (@) (ds).
0 t

Hence, lim, ., R*"(w) = R*(w), p-ae.; and since 1 = [Eu{R";"(w)} - 1=
E{R%(w)}, as n — », we conclude that the family {R“’"(m)ﬂ: n > 1} is uniformly
integrable. But then, for every | € E*, the family {e<* 7" “DR*"(»): n > 1} is
also uniformly integrable; and so, since

lim ei<1,9“5"[m]>R4§"(w) _ ei(l,?"’[mDbe(w)’

n—o

for p-a.e. w € E, we conclude that

IE“{eiU'yd)[‘”DR‘b(w)} = lim [E#{ei”vy";"[“’DR";"(w)} = e~ 1/21lIE 0

n-—o

The conclusion of the last theorem can be paraphrased as follows: The
distribution of the element 7 %[w] € E, with respect to the measure du® =
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R?% dpu, is the same as the distribution of w € E, with respect to the measure
w; that is, 7 ¢[w] is a white noise in E, relative to the measure u®.

ReMARK. The Radon-Nikodym derivative R?® was described here by the
process (¢,) and the two integral kernels: D,¢, and V, ¢,. Since in our
approach “past” and “future” play equal roles, one may ask: Why is the right
Volterra kernel V"¢, in the factorization of (I — D$)~! more important than
the left Volterra kernel V" ¢,? In fact, it is not, for it is easy to check that

[[v(dt) ["Dib (@) Vi b(w)p(ds) = [v(dt) [[Digr (w)Vi bi(w)(ds),

and so, R? can be described with the left kernel as well. However, choosing
the right kernel better explains why in the classical nonanticipative case,
neither of the kernels D,¢,, V."¢, or V. ¢, appears in the Radon-Nikodym
derivative. Indeed, if the process (¢,) in Theorem 3.1 is such that each random
variable ¢, is measurable with respect to the o-field generated by the family
{((Z(s',t)),  »: 0<s' <t <t}, then D,p, = 0 whenever s > ¢, which yields
that V"¢, = 0. Thus, in the latter case, the third integral in (3.3) vanishes, and
the extended stochastic integral becomes the usual It integral, and so we
come to the standard form of the Radon-Nikodym derivative, known from the
classical Cameron-Martin-Girsanov theorem (cf. [3] and [6]). It should be
noted, however, that this theorem requires no differentiability of any kind for
the shift term, and therefore cannot be viewed as a particular case of Theorem
3.1 above. After the original works of Cameron-Martin and Girsanov, many
different proofs of their result were published. All these proofs essentially use
martingale methods and the It6 calculus (cf. [4] for one of the most recent
expositions). It turns out that an independent proof, based on the approxima-
tion technique used above, is also possible (cf. [5]). This proof involves no
martingale methods or It6 calculus.

REMARK. After the present paper was completed, the author learned about
the work [1] which deals with the shift transformations 7 ¢, discussed above,
in the case where these transformations act on the classical Wiener space
and the vector-valued measure Z(-) is taken to be as in (2.1). The fact that
one can construct a probability measure du® = R? du with u?{9 % € A} =
w(A), A € %y, established here in Theorem 4.1 under the assumption
[E T 1D, b Lw)*v(ds)v(dt) < 1, for u-a.e. w € E, and E;{R*} = 1, is obtained in
[1] under the following assumptions:

(a) There exists a constant C < 1 such that, for u-a.e. w € E,

. 1/2
Do (o) lus = ([OTjOT| Ds¢>t(w)|2v(ds)v(dt)) <C<1.
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(b) There exists a constant « > 1 such that,

[E“{exp[%jjwt(w)|2v(dt)]} <o,

The method used in [1] is entirely different and the Radon-Nikodym derivative
R? is described there by different means. Moreover, (a) and (b) imply our
condition E {R *(w)} = 1. This follows easily by the standard argument of the
classical theory (cf. [16] and [11]). Indeed, (a) and (b) imply that there exists a
sequence of smooth simple processes ¢" € S, n =1,2,..., which approxi-
mates ¢ in [>! and is such that |[D¢"(w)llus < C < 1 and

supt. fexp| 5 [161 (o) Putan)] < =

(cf. Lemma 4.2 in [1]; this also follows easily by the argument in the proof of
our Lemma 4.3). Let 8 > 0 be chosen so that (1 + )1 + ) (1 + 8 + %) <a
and (1 +8)1 +8%)C <1.8et e =82 p=1+8 and ¢ = (1 + 35)/8. Let, for
n>1, ¢" = (1 + €)p(¢™) and let us denote respectively by U} and V] the
right Volterra kernels in the factorization of the Fredholm operators D¢"(w)
and D¢"(w). Then we have, for every n > 1,

+e 1 ?
(R)™" = exp|(1+ ) [+ K Z(dt), 0): — Grap NI
0 2 0
1 7
-—] [De™ o U] (¢, t)v(dt)
b-o
(1+e)2p l+e) 1 .
Xexp[ 3 -3 )fo|¢t *v(dt)
X ex lfT[D no UM (¢, t)v(dt
Pl ), D¢ F1(¢ t)v(dt)
—(1+€)fT[D¢"°Vf](t,t)V(dt)]
0
=X,XY,XZ,.
Note that
T rm S IDe"llus (1+¢)pC
‘fo [De oU+](t,t)V(dt)’ <|IlU}lgs < 1= iDe s < -1+ pC’
ID$"|lus c

[ (Do ULty | < IV s <

< )
1 - ID¢"llus 1-C
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and so all exponents Z, are globally bounded by some constant M. Hence

EJ(R)™) < My(E{(X)7) ) (ELF0") ).

But (X,)? = R*", and therefore, due to our Lemma 4.4, we have [ X )P} = 1.
On the other hand, due to our choice of &,

(1+e)2p 1+e
2

[lioi ()| < exp| 5 [Mo2 (@) o(an)].

exp q(

Thus
sup [E”<(R¢n)1+e> <o,

which yields that {R®", n = 1,2,...} is a uniformly integrable family. Since,
ELR?} =1, for every n > 1 and since there is a subsequence of R*",
n =1,2,..., which converges a.s. to R?, it follows that E ({R*} =
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