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STABLE LIMITS FOR ASSOCIATED RANDOM VARIABLES

By ANDRE ROBERT DABROWSKI! AND ADAM JAKUBOWSKI

University of Ottawa and Uniwersytet Mikotaja Kopernika

We consider a stationary sequence of associated real random variables
and state conditions which guarantee that partial sums of this sequence,
when properly normalized, converge in distribution to a stable, non-
Gaussian limit.

Limit theorems for jointly stable and associated random variables are
investigated in detail. In the general case we assume that finite-dimen-
sional distributions belong to the domain of attraction of multidimensional
strictly stable laws and that there is a bound on the positive dependence
given by finiteness of an analog to the lag covariance series.

1. Introduction. Random variables X, X,,..., X,, are associated if
(1) cov( f( Xy, Xy,..., X,), 8(X,, X5,...,X,)) 20

for each pair of functions, f,g: R™ — R!, which are nondecreasing in each
coordinate and for which the above covariance exists. An infinite collection of
random variables is associated if every finite subset of that collection consists
of associated random variables. These definitions are due to Esary, Proschan
and Walkup (1967) (which is also our main reference for basic properties of
associated random variables) and seem to be the description of positive depen-
dence phenomena most appropriate to reliability theory [Barlow and Proschan
(1981)], statistical physics [Newman (1980), (1983)] and percolation theory
[Cox and Grimmett (1984)].

Let X;, X,,... be associated and strictly stationary. In what follows S, will
always stand for X; + X, + --- +X,. Suppose that EX, = 0, EX? < +. The
remarkable central limit theorem of Newman (1980) states that if

(2) o?=EX}+2Y) EX X; < +x,
j=2
then
3 S, A0, 02 +
—_ — + 0,
(3) n 7 (0,0%) asn

This result inspired a series of limit theorems for associated random variables:
the functional central limit theorem [Newman and Wright (1981)], the func-
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2 A. R. DABROWSKI AND A. JAKUBOWSKI

tional law of the iterated logarithm [Dabrowski (1985) and Dabrowski and
Dehling (1988)], Berry-Esseen-type estimates [Wood (1983) and Dabrowski
and Dehling (1988)], local limit theorems [Wood (1985)], the Glivenko-Cantelli
lemma and invariance principles for empirical processes [Yu (1993a, b)], exten-
sions to the nonstationary case [Cox and Grimmett (1984) and Birkel (1987)]
and extensions to weakly associated sequences [Burton, Dabrowski and Dehling
(1986)].

A natural question in this context is whether the central limit theorem
holds for a stationary sequence of associated random variables whose common
marginal distribution does not belong to the domain of attraction of a normal
law, but rather to the domain of attraction of a p-stable limit distribution,
0 < p < 2. The goal of this paper is to provide such a p-stable central limit
theorem for stationary associated sequences. The principal difficulty is to find
a suitable analog to (2) which preserves the simplicity of that condition.

While the general idea for such limit theorems remains unchanged—we
need a bound on positive dependence similar to (2)—it is not clear which
two-dimensional characteristics can replace covariances when variances are
infinite and it is the regular variation of tail probabilities which is of basic
~importance. To make this evident and to exhibit the principal differences from
the case where p = 2, our first results, Theorems 2.1, 2.2 and 2.3, examine the
convergence of sums of jointly p-stable associated random variables with
standard normalization n'/?. Next, Theorem 2.8 is a direct analog of Newman’s
result for variables satisfying a condition like (2) and which satisfy an en-
hanced condition on p-stable domains of attraction. Theorem 2.13 improves
this result for 0 <p < 1.

The full statements of our results are given in the next section together
with explanatory remarks and examples. The proofs of the first three theorems
are given in Section 3, and those of Theorems 2.8 and 2.13 are found in
Section 4.

2. Theorems. Random variables X, X,,... are jointly p-stable if for
each n € N there exists a finite Borel measure I, on the unit sphere in R”,

Sl = {s= (815---,8,) ER™ Y sZ= 1}
i=1

and a vector b, € R” such that the characteristic function of X, =
(X, X,,...,X,) is of the form

® dr
(4) Eexpi(t,X,) =exp(i(bn,t) +//n_1/0 g(t,s,r)%l‘n(ds)).

Here
N el®tor _ 1. ifo<p<l1,
(5) g(t,s,r) = {e'®9 — 1 —i(t,s)rl(r<1), ifp=1,
e!®9r — 1 —i(t,s)r, ifl<p<2.
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That is, for each n € N the joint distribution of X;, X,,..., X, is p-stable.
Write

‘“/(Xn) = yp(bn’ Fn)
Clearly, if {X;, X,, ...} is also strictly stationary, then, for some b € R,
(6) b,=(b,...,b), neN. '

~—————
n times
For one-dimensional stable distributions we have .#°={—1,1}, and we
shall use the notation

(6, T({1}), T({=1})) = %,(b,T).

Jointly stable random variables X, X,,..., X, are strictly p-stable, if
either:

(@ b,=0,neN, when p # 1, or
(b) [ n-18T(ds) =0, n €N, when p = 1.

This holds if, for instance, T, is a symmetric measure on "~ 1. As in the
case of independent summands, we have separate results for the three cases
where 0 <p<1l,p=1land 1l <p <2.

THEOREM 2.1. Let X, X,, ... be stationary, associated and jointly p-stable,
0<p <1 Then
S,
(7 p g B

where u,, is a strictly p-stable distribution.

THEOREM 2.2. Let X,, X,,... be stationary, associated and jointly 1-stable.
Then there exist constants A,, such that
S,
(8) T An ~X 1

n
In particular, if T, is symmetric for each n € N, then
S

—~~X N.
(‘9) - 1 ne

THEOREM 2.3. Let X;, X,, ... be stationary, associated and jointly p-stable,
1 < p < 2, with two-dimensional distributions

(10) L((X1, X,)) = %,((5,0), Ty, »y)-
I '
(11) k§2 //131321_‘(1,1@)(915) < Tt
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then

S,—ES, S,-nb

(12) nl/p nl/p

7 Mo
where u, is a nondegenerate strictly p-stable distribution.

The proofs of these results rely on a very simple description of association
for jointly p-stable variables due to Lee, Rachev and Samorodnitsky (1990).
The measure I, has to be concentrated on the ‘“positive’” and ‘“negative”
parts of "1, that is,

(13) L("" 10 {[0, +)" U (—=,0]"}) = 0.
This feature will enable us to characterize the limits in these theorems.

REMARK 2.4. Let X be strictly p-stable, 0 <p < 2, and define X; =X,
J € N. Then X, X,,... are stationary, associated, jointly strictly p-stable and
S,

n__ o 1-(1/p)
Tp n X.

For 0 <p < 1 we have S,/n'/? -, 0, and the limit w, in (7) is degenerate.
However, for 1 <p < 2, (S, — ES,)/n'/? = S, /n'/? diverges. Consequently,
restrictions like (11) cannot be completely omitted.

REMARK 2.5. Relation (9) is a generalization of the well-known property
of Cauchy-distributed random variables [see Feller (1971), page 51],
X+ X)=A(X)x A(X). Both X, X,... and the sequence of independent
copies of X are associated.

REMARK 2.6. Let v, ;, be the Lévy measure of .Z((X;, X})) and let a > 0.
Under assumptions of Theorem 2.3, relation (11) is equivalent to

oo

(14) > f x1%9v0, y(dxy, dxg) < +oo.
E=2"l%<a
|xgl<a

REMARK 2.7. The integrals in (4) and (5) can be evaluated further [see, e.g.,
Weron (1984)], but the given form seems to be appropriate for associated
variables. It provides a formula for the stable Lévy measure [see, e.g., Araujo
and Giné (1980)].

Our next results on arbitrary associated sequences will require the concept
of a domain of attraction of a jointly stable sequence. Let {X};.\ be an
arpitrary strictly stationary séquence and let {Y;};cy be a jointly strictly
p-stable strictly stationary sequence. We say that { X} belongs to the domain of
strict normal attraction of {Y;} and write {X;} € Z, ,({Y}}), if for each N € N,
the joint distribution of Z, = (X, X,, ..., Xp) belongs to the domain of strict
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normal attraction of -£(Wy) = Z((Y},Y,,...,Yy)), that is,

Zy,+Zy,+ - +Zy,
nl/p

(15) _—@>(Y1,Y2,...,YN) asn — +o,

where Zy 1,Zy 5,...,Zy ,,... are independent copies of (X;, X, ..., Xy
Let us sketch a proof of Newman’s central limit theorem (p = 2) along the
lines we intend to pursue. Suppose that {X;} € Z, (Y}, and for each A € RY,

lim lim sup ‘ E exp{iAS, /n*/P}

m=®  p_50

(16)
—(E exp{i)t[n/m]_l/pSm/m4P})[n/m]| =0.

By the definition of {X;} € Z, (Y},

(E exp{iA[n/m]_l/pSm/ml/P})[n/m}

- E exp{iAT,,/m'/?} asn — +o,

(17)

where T,, = Y, + Y, + -+ +Y,,. If, in addition,

T,
(18) W ?[.Lm asm — +w,
then (16) implies
S,
;;1—/7 -§> Lo asSn — +oo,

Note that association of { X} implies association of {Y;}. Thus, to check (18), we
can apply Theorems 2.1, 2.2 and 2.3.

The above reasoning may be of some value provided there are tools with
which we may verify (16). In the case p = 2, Newman and Wright (1981) used
Newman’s inequality to obtain the estimate

| Eexp(inS,../vm 1) — (E explix /%S, /vm })'|
(19) 2
< %(Var(Sm.,/\/m 1) - Var(8,,/Vm)).

In our case such an inequality cannot be applied to (16) directly, since
variances of X;’s are infinite for p < 2. However, we will show that a close
analog to (19) remains the crucial condition in central limit theorems for
associated sequences when 0 < p < 2.

For an associated strictly stationary sequence {X}; <, define

Fix A > 0, and define

a a
(21) IXMNX;, X;) = sup aP—zf f aH(Xi’Xj)(x,y) dxdy.

az=A —a”—
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TueOREM 2.8. Let Xy, X,,... be stationary and associated. If {X;} €
9, (YD), where {Y};cn is jointly strictly p-stable, 0 <p <2 (and T, is
symmetric if p = 1), and if for some A > 0,

(22) Y INX,, X,) < +o,
k=2

then there exists a strictly p-stable distribution u. such that both
X, +X,+ - +X,

(23) nl/p 3 Mo
and

Y, + Y, + - +Y,
(24) nl/p 5) Moo

The proof of this result uses a generalization of Hoeffding’s lemma due to
Yu (1993a) and a careful analysis of (16). Moreover, the proof of (16) uses only
the portion of (15) which relates X; to X, for each k—that is, set Z, =
(Xy, X;) in (15)—and does not require the full force of (15). The bivariate
nature of this reduced condition is more in keeping with (2) than is (15), and is
easier to verify.

REMARK 2.9. The covariance-like quantity IA(X;, X;) satisfies the
Cauchy-Schwarz inequality

IA(X,, X)) < \/I;(X,., X;) \/I;(Xj, X;).

It follows from stationarity that IX(X;, X;) is finite if I/N(X;, X;) < +. This
is the case if, for example, the law of X, belongs to the domain of normal
attraction of a p-stable law.

PropositioN 2.10. If for some K> 0, P(IX| >x) <Kx™?, x>0, then
IXNX, X) <162 — p)?K < +o,
Proor. We have
H(X,X)(x,y) =P(X<xAy)P(X>xVy)

< K min{lx A yI 77, lx V y| 7P} < Klx|P/?ly| /2. 0

REMARK 2.11. When additional information is available (e.g., the sequence
is -mixing), it may be possible to compute

(25) c,(X,Y) = sup lep/zlylp/2|H(X’Y)(x,y)|.
x,yeR!

Since Hyx yy(x,y) = Cov(I(X < x), (Y £ ), ¢,(X,Y) possesses essentially
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the same properties as I ;(X, Y):
¢p(X,Y) < /e (X, X) /e, (Y,Y),
c,(X, X) < sup xPP(1X| > x).

x>0

Further,
-2
I;,"(X,Y) <16(2 —p) "¢, (X,Y).

Hence in p-stable limit theorems we can replace (22) with
(26) Yy c,( Xy, X)) < +oo.
k=2

REMARK 2.12. One can extend Theorem 2.8 to provide finite-dimensional
convergence of the partial sum process indexed by ¢ € [0, 1]. Weak convergence
in the function space is a delicate question and can easily fail to hold. Theorem
2 of Avram and Taqqu (1992) shows that for certain associated variables
(generated by moving averages of independent and p-stable variables) their
partial sum processes converge weakly with respect to the Skorohod M,
topology on DI[0, 1] but not with respect to the J; topology.

Although valid for 0 < p < 2, Theorem 2.8 seems to be most appropriate for
the case 1 <p < 2. The example contained in Remark 2.4 shows that a
p-stable limit theorem may hold for 0 < p < 1, while

Y IMNX, X)) = ) I;‘(X, X) = +co.
k=2 k=2

In fact, {X;} € 9, ,(Y;}) may fail while the p-stable limit theorem continues
to hold. Let Y,,Y,,... be independent identically distributed with _#(Y;)
being strictly p-stable, 0 < p < 1. Let Z be arbitrary but independent of {Y;}.
If X;=Y,+Z,j €N, then

’—1% ~Y, +n"VPZ - Y,
Clearly, -Z((X;, X, ..., X)) may have very bad asymptotic properties.
On the other hand, without any assumptions on multidimensional distribu-
tions the theorem does not hold, even if we impose very restrictive additional
mixing properties. This can be seen by the example given in Jakubowski
(1993b). The stationary sequence X, X,,... is 1-dependent, has infinitely
divisible finite-dimensional distributions, is such that #(X,) is in the domain
of strict normal attraction of some nondegenerate strictly p-stable law pu,
0+< p <2 and is such that A(X, + X,) does not have the immediately
preceding property for any . So

(27) n(P(X, + X, > xn'/?) — P(X, > xn'/?)) diverges for some x + 0.
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Further, for each N € N, the Lévy measure of .Z((X,, X,,..., Xy)) is concen-
trated on the positive part of the space, that is, on the set [0, + ). It follows
from Resnick (1988), that X, X,,... are associated.

In summary, there exists a stationary associated sequence satisfying (22)
(since it is 1-dependent) and such that (27) holds. However, partial sums of
this sequence cannot converge by Kobus (1991). There it is shown that for
1-dependent sequences, and under sup,, .y nP(IX;| > xn'/?) < +o, x > 0, the
weak limit of S, /n!/? exists if and only if we have convergence in (27) for
each x # 0.

That we need more information than only (22) is not surprising. Even for
independent sequences, non-Gaussian stable limits involve more detail than
Gaussian ones, and the dependent case can involve additional complications
[see Samur (1987)]. In search of conditions which are weaker than {X} €
2, (YD, we suggest the following direction, which we prove only for 0 <
p <Ll

THEOREM 2.13. Let X,, X,,... be strictly stationary, associated and such
that for some A > 0 and 0 < p < 1 condition (22) holds. If, for each m € N,
(28) Z(8,) € D, (1n)

for some strictly stable laws w,,, then there exists a strictly p-stable distribu-
tion u, such that

(29) Y™ =, asm — o
and

S’l
(30) /p G M

ReMARK 2.14. Jakubowski (1993a) provides necessary and sufficient condi-
tions for the convergence S,/n'/? -, u., where u, is a strictly p-stable
distribution and the S,’s are partial sums of a stationary sequence (not
necessarily associated or strongly mixing). These conditions, however, are
more complicated than the conditions of the present paper. We defer the
discussion of the more general setting to another place.

3. Proofs in the jointly stable case. To begin the proofs of Theorems
2.1, 2.2 and 2.3, we observe that a linear transformation of jointly stable
random variables is again stable and that we can calculate its characteristic
function.

LemMA 3.1. Let X =(X,, X,,..., X,) be jointly p-stable, with representa-
tion (5). Let A: R® —» R™ be a linear mapping. Then Y = AX is again p-stable,
with the Lévy measure determined by a measure Ty on ™! given by

A(s)

(31) T,(B) = f/n_lllA(s) ||”I(m = B)l“n(ds), Be B n.
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If either p # 1 or p = 1 and T, is symmetric, then the vector in representation
(5) of the law of AX is given by Ab,,.
We apply the lemma to the linear map on R” given by
(%1, X9,y %,) = b (%, %9,...,%,) =%, + X5+ -+ +x,.

and obtain that the distribution of S, is p-stable with the measure T},
given by

pI( T s, > O)Fn(ds),

i=1

=L =/,

(32) .
I( Y s, < O)Fn(ds),

i=1

a=h{-1h=[ :

where #""!> s =(sy,Ss,,...,5,). Consequently, if X, X,,... are associ-
ated, we have by (13) that

= f (si+s,+ +5,)"1(s;20,5,20,...,5,> 0)T,(ds),
(33)
T = — — P — p
;= [/ﬂ_l( S, — S, $,)°1(s;<0,5,<0,...,s, <0),(ds).

Since the function x — x? is subadditive, additive and superadditive in-non-
negative arguments for 0 <p <1, p = 1 and 1 < p < 2, respectively, we have
the following key result.

CoroLLARY 3.2. If X, X,,... are stationary, associated and jointly p-sta-
ble, then the sequences {c,}, cn and {c,}, cn are subadditive for 0 <p <1,
additive for p = 1 and superadditive for 1 <p < 2.

PRrOOF oF THEOREM 2.1. Let
X+ X9+ 00 +x,
ni/p
Applying Lemma 3.1, we see that .Z(S,/n'/?) = y,(n'=%/Pb,c;/n,c, /n).

Since {c,;} and {c,} are subadditive and nonnegatlve they converge, when
normalized by n. Flnally,

g, R" >R g (x,%5,...,%,) =

S ch ¢ c,
(349 R Rt T e b :
Proor oF THEOREM 2.2. Suppose X, X,,... are jointly 1l-stable with

symmetric T,. By Lemma 3.1, Corollary 3.2 and since I, is symmetric, we
have, for ¢ = ¢; = ¢y,

Z(8,/n) = v,(b,c,c) =L(X;).
Since (31) also holds in the general case of jointly 1-stable distributions, for
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such X, X,,... the law of S, /n may differ from ¥,(0, ¢, ¢;) [and hence from
Z(X))] by at most a shift. O
PRrROOF oF THEOREM 2.3. Exactly as in the case 0 < p < 1, we have
Z(8,/nYP) = y,(n'=Pb, ¢t /n, e, /n).

Since 1/p < 1 and the sequences {c,'} and {c} are superadditive, it is neces-
sary and sufficient for the weak convergence of S,/n'/? that b =0 (i.e.,
EX, = 0) and

cr+c,
(35) sup < +oo,
neN n
We shall prove that (11) provides a bound for (35). Observe that s =
(sl,sz,.. s,) € "1 implies max |s;| < 1, max,, ;(s? + s?) < 1but |s,| +
sg| + +|s | > 1. Hence
ls; +sg+ -+ +s,/P
< (Isql + Isgl + -+ +1s, )7
< (Isy] + Isgl + -+ +ls,])?
n
=Ysi+ X lsllsl
j=1 l<i#j<n
n Is;] Is;| P
< YlsilP+ X . J (\/s-2+sz)lsz+sz>0.
j=1 J lsi;ean ‘/Sl2+s‘]2 ‘/s?+s‘]2 1 J ( 1 J )
Applying Lemma 3.1, we get
et e, = f Is1 + 85+ o +5,[PT,(ds)

<n(ef+er)+ X f 1|'51| IsolT; ;(ds)
1<i#j<n e

=neiter) + L[ sl (ds).

l<i#j<n

The last equality holds by (13). O

4. Proofs for sequences in the domain of attraction of jointly
stable sequences. First, recall (20) and the well-known Hoeffding identity
for two random variables X and Y,

(36) Cov(X,Y) -[ j “Hox y(%,y) dxdy.

The Hoeffding identity is a particular case of a fact we will find very useful.
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LEmMA 4.1 [Yu (1993a), Lemma 3.1].  Let f;, i = 1,2, be absolutely continu-
ous nondecreasing functions on R'. Then, for any random variables X, and
X,, we have

+oo .4®
(87) cov( fi(Xy), fo(Xy)) = f_w f_w fi(xy) fé(xz)H(Xl,Xz)(xl’xz) dx; dx,
if EIf (X)) fo(Xy)| and Elf(X))|, i = 1,2, are finite.

When we apply Lemma 4.1 to (40), we will get

(38) cov( f(X.), fu(X;)) = [:’a [:H(Xbxj)(x,., x;) dx; dx,.

Proor oF THEOREM 2.8. By the remarks preceding Theorem 2.8, we only
have to check (16) and (18). Observe that (16) is equivalent to

lim limsup|Eexp{i)\Sm.l/(m -1y
(39) ™7 iow
~(Eexp{ial=v7S,,/mv?))[=0, reml.
Hence in what follows we may assume that n =1 -m with m fixed and !
tending to infinity.
Fix a > 0 and define the function f,: R! > R! by
a, ifx>a,
(40) fu(x)={ x, iflxl <a,
—a, ifx< —a.
Note that f,(x/b) = b~ 'f,,(x), that f,(x) is a nondecreasing function in x

and that {f,(X)): j > 1} is again an associated sequence of random variables.
Consider the following decomposition:

n n n
VP Y X = ¥ f(nVPX) + L (n7VPX; - f,(n7VPX)))
j=1 Jj=1 j=1

=8, ,+8S;,.
Since (X)) is in the domain of normal attraction of a p-stable law, there

is a constant C > 0 such that P(|X,| > x) < CxP.If a = a(X},n) > (C/n)"/?,
then

P(S,,#0) <P(31 <j <n:IX,| > an'/?)
<nP(X,| > anl/l’)
<Ca™®<n.
Consequently,
(41) |E exp{iAS, /n'/?} — E exp(iAS, }| < 2.
A similar reasoning also shows that
1

(42) (Eéxp{iAl‘l/pSm/ml/P})l - (E exp{ f) fa(n-l/PXj)} < 27.
1

j=
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Therefore, we may concentrate on the analysis of S, , alone. For notational
convenience, set

U, ;= U = fo(n™V7X;).
Take A € R! and recall that n = - m. By (19),

m 1
Eexp{iA Y Un’j})
j=1

n
Eexp{iA Y U,l,j} -

Jj=1

=‘Eexp{i(m/}{)—‘/% i U,w-}

Jj=1

—

- 2)\2(j§ (-’:—L - —-)(J - 1)(n Cov(U, 1, U, ;))

+ fj (1 4 ; ! )(n COV(Un,l,Un,j)))
< 2/\2(-"1; i i (n Cov(U, 1, U.,.;))

Y % (nCo(U, U, )))

i=1j=i
m n
- 2)&2 Z Z (nl_(2/p) COV(fa.nl/p(Xl): fa~n1/p(Xj)))'
i=1j=1
By definition (21), if a - n'/? = A we have
P/ Cov( fomm(X), fanin( X))
< nl=@/»(g - nt/P)’PIA(X, X))

= a2 PIA(X,, X)).
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Combining the two last estimates, we get

penfin £0.) - [sesfu £, )|

Jj=1 Jj=1

1 m I'm
<28a* P = ¥ Y IA(X,, X,)
m—1j=i
1» =
<227 — ) Y IAX,,X;) >0 asm— .
M i=1j=i
We have established (16). For 0 < p < 1 nothing remains to be proved since
(18) is satisfied automatically by Theorems 2.1 and 2.2. For 1 < p < 2 we have

to check (11).
We know by our condition on domains of attraction, (15), that for each

keN,

Viit Vot -4V, ,
nl/p

= (Y,,Y,) asn — +x,

Here V,, 1,V 3,..., Vi, ... are independent copies of (X;, X,). In particular,
it follows from Jacod and Shiryaev [(1987), page 362, Theorem 2.35] that for
each a > 0as n » +ox,

(48) n Cov(f(n~V?X,), f(n"V?X,)) — /R a(®1) Fa(%2) vy, y(dy, diy).

_ As stated previously, v ;, is the Lévy measure of -£((Y}, Y,)). Hence

//lslsznl,k)(ds) =(2 _p)j;lz+xgslx1x2y(1,k)(dxl7 dx,)

<(2 _P)ji;_«zﬂ(xl) fi(xg) vy, py(dxy, dxy)

< (2-p)IN Xy, X,).

The last inequality follows from (43). The series in (11) therefore converges by
(22). O

Proor oF THEOREM 2.13. Observe that (16) holds since its proof is based
solely on (22) and properties of one-dimensional distributions. We shall check
(29). For each m € N we have

wn™ = v,(0,c5/m, . /m),

and similarly as in the proof of Theorem 2.1 it is enough to prove that both
{c}), en and {c;.},, < are subadditive sequences.
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Lemma 4.2. If X, X,,... are associated and (28) holds, then, for each
m € N and x > 0,

(44) nP( Z1Xj > xnl/P) - nP( Z X I(X; > 0) > xnl/P) — 0,

Jj= Jj=1

(45) nP( 'ZlXj < _xnl/p) - nP( 'le'iI(Xj < 0) < —xnl/P) —0
J= Jj=
asn — o,

Proor. Consider (44). First, we shall prove a slightly weaker statement:
Foreach § >0as n » +,

(46) nP( XX > xnl/P) - nP( Y XI(X, > —8n'/P) > xnl/”) — 0.

j=1 j=1

To see this, set
m m
An={2Xj>xn1/p}’ Bn={2XjI(Xj>—5n1/p)>xn1/”}.
Jj=1 Jj=1
Then A, c B, and
nP(B,NA,)<n )} P(X;<-8n"?, X;>xn"?/m)

l<i#j<m
< Y PXx< —8n1/p){nP(Xj > xnl/”/m)>
l<i#j<m
— 0 asn — +ox,

where the last inequality holds by association.
By (28) the limit of nP(X7_,X; > xn'/?) is c;,x~P. Hence by choosing 6 > 0
small enough we can make

m
lim nP[xnl/p > Y X;I(X; > —8n'/P) > (x — m&)n/P
n-—oo j=1
as small as desired. It remains to observe that

{ XjI(Xj > —8n1/1’) > xnl/”}
j=1

m

c { Y X;I(X;>0)> xnl/P}

j=1

L m .

: c { Y XI(X; > —ont/P) > (x - m8)n1/"}.
j=1

Relation (45) can be proved the same way. O
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By (28), (44) and (45) as n - +x,

(47) (Eexp{—/\n_l/p 72'1: XI(X; > 0)}) — exp(cih,y),
Jj=1
(48) Eexp{—)\n'l/l’(— rzn: XI1(X; < 0))} —exp(ch,),
Jj=1

where h, = [g(e”** — 1)/x?*'dx. Notice that —exp{—CX%_ 1X; I(X; > 0)}
and —exp{ C Ek 241 X;I(X; > 0)} are associated when C > 0 is a constant.
Thus

—\ kI
j=1

zEexp{nl/p ‘ZXI(X >0)} .Eexp{ 1/); ‘ZXI(X >0)}.

j=1
Hence
exp(c;,h,) = exp(cy h,)exp(c; k),

or ¢;,; < ¢+ ¢/, that is, subadditivity of {c;},, < holds.

The reasoning for {c,,},, < is similar, with the only exception that in this
case different random variables, namely exp{CL%_ X JI(X; < 0)} and
exp{CLZ42} , , X;I(X; < 0)}, are associated (C > 0). O
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