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ROTATIONAL REPRESENTATIONS OF TRANSITION MATRIX
FUNCTIONS

By S. KALPAZIDOU

Aristotle University

Let P(h) = (p;j(h),i,j=1,2,...,n),h > 0,n > 1, be a transition matrix
function defining an irreducible recurrent continuous parameter Markov
process. Let (S;,i = 1,2,...,n) be a partition of the circle into sets S; each
consisting of a finite union of arcs A,. Let f; be a rotation of length ¢ of
the circle, and denote Lebesgue measure by A. We generalize and prove for
the transition matrix function P(k) a theorem of Cohen (n = 2) and Alpern
(n > 2) asserting that every recurrent stochastic n X n matrix P is given by

() Py = (MS; N £71S)) /X)),

for some choice of rotation f; and partition {S;}. We prove the existence of
a continuous map ® from the space of n x n irreducible stochastic matrices
into n-partitions of [0, 1), such that every domain matrix P is represented
by () with {S;} = ®(P) and ¢ = 1/n!. Furthermore, the representing process
(ft, {S;}) has not only the same transition probabilities but also the same
probabilistic cycle distribution as the Markov process based on P.

1. Preliminaries. Cohen [2] has proposed a geometric approach to finite
order stochastic matrices. Given a natural number n, theset S =1,2,...,n and
the probability space ([0, 1), B, \), where B and ) denote the o-algebra of Borel
subsets of [0, 1) and Lebesgue measure, Cohen’s idea starts heuristically from
the pair (¢, §), where ¢ > 0 defines the shift transformation f;(x) = (x + ¢) (mod 1)
on [0,1), and 8 = (S;, i € S) is a partition of [0, 1) into sets S; with A(S;) > 0.
Then he points out that the expression

1) py=A(SiN 1S /NS, i, jeS,

defines a stochastic matrix of a recurrent S-state Markov chain having an in-
variant probability distribution « = (m;,i € S), with m; = X(S)).

When (1) holds, the stochastic matrix P = (p;,i,j € S) is said to have a
rotational representation symbolized by (¢, 8). The partition 8 is said to have
type L if the number of components of S; is less than or equal to L,i = 1,...,n.
Let b = b(n) denote the least integer such that any n x n recurrent matrix has
a representation (¢, 8), where 8 is of type b.

Conversely, Cohen [2] conjectured that any n x n irreducible stochastic ma-
trix with n > 2 has a representation as in (1) such that each set S; is the union
of finitely many intervals Az,. He proved this conjecture when n = 2. Alpern [1]

Received January 1992.
AMS 1991 subject classifications. Primary 60J25; secondary 05C85.
Key words and phrases. Canonical cycle representation of stochastic matrices, rotational

representation of stochastic matrices, probabilistic cycle distribution, transition matrix function.

703

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

®
www.jstor.org



704 S. KALPAZIDOU

showed that this conjecture can be extended from irreducible to recurrent ma-
trices, proving that there exists a rotational representation (¢, 8), with ¢ = 1/n!,
and that b(n) belongs to a bounded interval (exp(an'/?), exp(8n)), where o and
B are certain positive numbers. The latter corrects the original false conjec-
ture of Cohen asserting that 6(n) = n — 1. Haigh [3] has proved that b(3) = 2
and that b(n) is nondecreasing. Recently Rodriguez and Valsero [8] improved
the Cohen—Alpern rotational representation for reversible stochastic matrices.
Moreover, a necessary and sufficient condition for the reversibility in terms of
rotational representation is given.

All these solutions to rotational representations are combinatorial ap-
proaches that provide decompositions of the stochastic matrices in terms of
nonunique cycle distributions.

In the present paper we prove the existence of a continuous map ® from
the space of n x n irreducible stochastic matrices P into n-partitions § = (S;,
i=1,...,n)of [0, 1) such that the rotational representation process has not only
the same transition probabilities but also the same distribution of cycles as the
probabilistic cycle distribution of the Markov process ¢ on P (Theorem 1).

The difference from Alpern’s approach consists in using a canonical decom-
position of P in terms of the directed cycles ¢ that occur along the sample paths
of ¢ and of a unique cycle distribution é§ = (wz)s, where each cycle weight w; is
given a probabilistic interpretation as follows: w; is the mean number of occur-
rences of ¢ on almost all the trajectories of €. For this reason the distribution
6 is called a probabilistic cycle distribution. In Theorem 2 this proof is general-
ized to any semigroup P(h) = (p;j(h),i, j=1,...,n),h > 0, of stochastic matrices
accepting an invariant probability distribution = = (n;,i = 1,...,n) using the
canonical cycle decomposition of [6],

@) m pyh) = Y we(WJeG, ),

where ¢ and ¢ are directed cycles and circuits, (ws(h)); is the probabilistic cycle
distribution of the A-skeleton chain on P(k), and J;(i, j) is 1 or 0 according as
(i, j) is or is not an edge of the circuit c. A rigorous presentation of the canonical
decomposition of stochastic matrices is given in Section 2.

Finally, in Theorem 3 it is shown that the type L(h) of the partition ®(P(h))
in the rotational representation of each matrix P(h), h > 0, is independent of
h [then L(h) = L is a semigroup feature].

2. Mapping recurrent stochastic matrices into partitions. Let n be
any natural number and S = {1,...,n}. Consider P = (p;;, i, j € S), a stochastic
matrix defining an S-state homogeneous irreducible Markov chain & = (£,
m > 0) with the invariant probability distribution 7 = (m;, i € S).

In this section we deal with the existence of a map from n x n irreducible
stochastic matrices P above into a set of n-partitions of [0, 1) and with the study
of the continuity properties of this map.

Before this we motivate a basic modification that we introduce into Alpern’s
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algorithm (recalled in subsection 2.2) to ensure the uniqueness of the cycle
decomposition on P.

First we notice that the combinatorial device of the Alpern algorithm for ob-
taining an n-partition depends upon many arbitrary choices, such as the choice
of the starting point from where the representative circuits are constructed
as well as the choice of the starting circuit of the decomposition (see also [4]).
Therefore Alpern’s algorithm associates each recurrent matrix P with more
than one cycle decomposition that in turn involves many distributions of cycles
in the rotational representation process.

On the other hand, when we generalize the rotational representation to tran-
sition matrix functions {P(h), A > 0} (cf. Theorem 3), the class C(h) of repre-
sentative circuits for P(h) occurring in the Alpern algorithm depends upon k.
For the latter it would then be difficult to prove that the type of n-partitions
associated with the semigroup {P(k), h > 0} is independent of ~—as we shall
show in Theorem 3.

In light of this, we must change the combinatorial criterion in the Alpern
algorithm to a probabilistic criterion ensuring that the distribution of cycles in
the rotational representation matches the unique probabilistic distribution in
the Markov process defined by P.

To this end we give in the following subsection a presentation of the proba-
bilistic cycle distribution and of the canonical decomposition of stochastic ma-
trices as studied in [5] and [6]. This will be followed by a subsection recalling
Alpern’s algorithm.

2.1. A directed circuit ¢ in a finite set S is any periodic function ¢:Z — S,
where Z is the set of integers. The smallest integer p = p(c) > 1 for which c¢(n +
p) =c(n) for all n € Z is called the period of c¢. Cyclic permutations are avoided
if we redefine a circuit to be any equivalence class of periodic functions ¢ with
respect to the following equivalence relation: ¢ ~ ¢’ iff ¢(n) = ¢/(n + i) for some
i € Z and all n € Z. Then a circuit ¢ of period s is defined by taking any sequence
of s consecutive images, that is, ¢ = (c(n),c(n + 1),..., c(n +s — 1),¢(n)),n € Z.

Letc = (c(n),c(n + 1),...,c(n +s — 1),c(n)) be a directed (class-) circuit with
distinct points c(n),...,c(n +s — 1). Then ¢ = (c¢(n),c(n + 1),...,c(n +s — 1)) is
called a directed class-cycle (or, for short, a cycle) associated with the circuit c.

Let P = (p;j,i,j € S), and let ¢ be the irreducible matrix and the Markov
process mentioned at the beginning of this section. Then, according to [5], on
each trajectory w of £ infinitely many cycles successively occur. For example,
if the values (£,(w)), >0 of £ are (1,4,2,3,2,6,7,6,1,...), then the sequence of
cycles occurring on this trajectory is given by (2,3),(6,7),(4,2,6,1), ....

This allows us to define a new Markov chain y = (y,(w)),>0 Whose value at
time n is the track of the remaining states in sequence, after discarding the
cycles formed up to n along (§,(w)),>0 [see [4] and [7]).

In Table 1 we give the trajectories (¢,(w)), and (y,(w)), as well as the cycles
occurring along (£,(w))y.

Note that a cyclec = (iy,...,I,) of wis closed by the edge (i, i;) which appears
on w either one time after ¢ or many times before, as (1, 4) in the cycle (4,2, 6, 1)
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TABLE 1

n 0 1 2 3 4
&n(w) 1 4 2 3 2
Ynlw) (11 (1,4] (1,4,2] [1,4,2,3] [1,4,2]
Cycles © (2,3

n 5 6 7 8
&n(w) 6 7 6 1
yn(w) [1,4,2,6] [1,4,2,6,7] [1,4,2,6] [1]
Cycles 6,7 (4,2,6,1)

above, where the time-unit is the jump time of (¢,(w)) (see [5] for more details).
Let w be an arbitrary trajectory of ¢, and let ¢ be a directed cycle appearing
in w.
Associate with ¢ the number w.,(w) of occurrences of ¢ up to time n on
w. Then

n
wc,n(w) = Z l{cycle & occurs}(w)~

m=1
Let
3) on(w; i, j) = (1/n)eard{m < n: &u_1W) =1, &nw) =j}.
Following [5] we may write
(3" on(w; i, ) =(1/n) Y wealwhel, ) +enlw; i,5)/n,
ée Chw)

where C,(w) is the set of all the directed cycles occurring until time n along the
sample path (&,(w)),

. ~_ [1, if (i, ))is an edge of c,
JeE, ) = {0, otherwise,

and

en(w; 7, J) = 14,(w),
with ‘
‘ A;; = Aji(n) = {the last occurrence of (i, j) does not

happen together with the occurrence

of a cycle of C,(w)}.
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Then Theorem 3 of [5] asserts that, for any initial distribution p of &, the se-
quence (Cp(w), we,n(w)/n) of sample weighted cycles associated with the chain ¢
converges almost surely to a class (Coo, ws), that is,

Co = lim C,(w), P,-a.s.
( 4) nT»oo
We = nlilgo (wepw)/n),  Ppas.

That w, is well defined follows from [7].
Consider Cy = {Cy,...,cn}. If we let n — oo in (3’), Theorem 5 of [5] asserts
that each irreducible matrix P has the following representation:

N
(5) mpi =Y wede,G, ),
k=1

where, according to (4) and the definition of w, ,, the cycle weights w, are
uniquely determined with the probabilistic interpretation of being the mean
number of occurrences of the cycle ¢ along almost all the sample paths of .
The latter is in good agreement with the unicity of m; p;; as a limit of 0,,(w; i, /)
defined by (3).

DEFINITION. The collection § = (w,, ¢ € Co,) defined by (4) is called a proba-
bilistic cycle distribution associated to P, while equation (5) is called a canonical
decomposition of P.

We point out that the probabilistic cycle distribution has an exact expression
in terms of P and its powers by equations
We = Ty Piyig ** * Pig_qis Pigiy
x N(ia,is | i)0NGs,is | i1,19)- - - Nlis, Bs | in, - - -, G5-1),

(6)
where ¢ = (iy,...,is) and where

N(ikaik | ila v aik—l)

=D Prléa=ip, &u # in,.sipor, forl<m<n|é=ip)

n=0
is the taboo Green function (see [4] and [5] for more details).
2.2. In this subsection we recall part of Alpern’s algorithm for rotational

representation that we shall need in our further investigations. Alpern starts
from the decomposition

m _
(7 mpy=» wsC*G,j), i,j€S,
k=1
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where ¢;, are ordered sequences (iy,...,1s,11) of distinct elements i;,...,i; €S,
which together with the positive numbers w;, are nonunique solutions to alge-
braic equations, while the matrix C* = (C*(i, j), i, j € S) is associated with each
¢; and has entries defined as

Ber o s~1 if (G, j) e {(il,ig),...,(is,il)},
®) ¢, = {0, otherwise.

Noting that ¢; is an element of the class-circuit ¢; as defined in the previous
subsection, we have

9) Jck=Ck+...+Ck,

where C* is repeated s times.

Define f; with ¢ =1/M, where M =n!, and let (A;, £ = 1,...,m) be any
partition of A = [0,1/M) such that the relative distribution (A(A;)/\(A),
k=1,...,m)is given by (wg,, . ..,ws,). Define Ay, = f/~1(A;) and U, = -1 Are
fork=1,...,mand £=1,...,M. Define the sets

(10) Si={JAk, i=1,...n,
where the label (%, £) in the union is defined as follows:

(i) £ is the index of a chosen representative c; of a class-
circuit which passes i and which occurs in the decomposi-

11) tion (7);
(ii) ¢ denotes all the points identical to i of the M/p(c;) repeti-
tions of the cycle ¢;, associated to the c; chosen in part (i).

Then 8 = (S;, i = 1,...,n) is a partition of [0, 1). Accordingly, the Lebesgue
measure of Az, is given by

(12) AMAre) = (1/Mwg, .
Finally,

A(Sin £f71S)) = mipys
and then (1/n!, 8) is a rotational representation of P.

2.3. Let us recall that we defined a cycle ¢ = (i4,...,is),s > 1, as an equi-
valence class whose elements are all the cyclic permutations of (i1, . .., i), that
is, ¢ = {(1,...,1s), (g, . - ,Isy21),. .., (s L1, . - . ,Es—1)}. Then choosing a represen-
tative of a cycle ¢ amounts to a choice of a starting point for c.

We are now prepared to prove the main result of this section.

THEOREM 1. Given n > 2, for each ordéring providing all the possible cycles
in S ={1,...,n} and for each choice of the representatives of these cycles there
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exists a map P from the space of n x n irreducible stochastic matrices P into n-
partitions 8§ = {S;, i = 1,...,n} of [0,1) such that the rotational representation
process (f;,{S;}) with t = 1/n! and {S;} = ®(P) has the same transition proba-
bilities and the same distribution of cycles as the probabilistic cycle distribution
of the Markov process on P. .

If the measures of the component sets of S; converge, then the sequence of
partitions converges in the metric d defined as

(13) d(8,8) =Y XS; +8},

where + denotes symmetric difference.

Proor. We first appeal to Theorem 5 of [5], according to which any irre-
ducible stochastic matrix P admits a canonical decomposition given by equa-
tion (5). Replacing the function J,, by C* according to (9), we may write the
canonical decomposition (5) in the following way:

N

(14) TiDij = Z (P(ck)wa,,)Ck(i,j), i,j=1,...,n.
k=1

In order to assign P to an n-partition {S;, i = 1,...,n} of a rotational repre-
sentation we shall apply Alpern’s approach to the decomposition (14) instead
of (7). Before this, we must locate the starting points of all the cycles, which
are originally indexed as c;, ¢s, .. .. Accordingly, the first N cycles are those oc-
curring in the canonical decomposition (14). The choice of an ordering for the
cycles and of their starting points is unimportant for (14), but is essential for
the uniqueness of the partition {S;} that we have to find.

Specifically, we apply Alpern’s algorithm with labeling (11), according to
which there exists a rotational representation process (f;, {S;}), where ¢t = 1/n!
and the partition {S; = |J Ak, i = 1,...,n} of [0,1) is given by (10) and (11)
such that the distribution (\(4;)/MA), £ =1,...,N) with A = [0, 1/n!) matches
the probability cycle distribution (p(cg)ws,, £ = 1,...,N). From (12) and (14)
we have

(15) MAre) = (1/M)p(ciIwe, .

Hence the uniqueness of the probabilistic cycle weights we, given by (4) im-
plies that of the measures of the A;,. In turn, for a fixed ordering of the cycles in
S and for a choice of the cycle-representatives, the measures of the A;, uniquely
determine the partition {S;} above.

Accordingly, for any fixed n > 2 there exists a map ® assigning to eachn x n
irreducible stochastic matrix P a partition 8§ = {S;, i = 1,...,n} of [0,1) such
that the rotational representation process (f;, {S;}) with ¢ = 1/n! has the same
transition probabilities and the same distribution of cycles as the probabilistic
cycle distribution of the Markov process on P.
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Finally, if we endow the space of all partitions of [0, 1) with the metric d given
by (13), then the covergence in metric d of a sequence of partitions follows from
the very definition of S;, i=1,...,n. O

3. Rotational representation of transition matrix functions. The
approach to rotational representations of stochastic matrices presented in the
previous section inspires investigation of certain generalizations. It is the gen-
eralization of the Cohen—Alpern theorem for the semigroups of matrices that
we prove in this section.

Letn>1,S={1,...,n} and P = (P(h), h > 0) be an honest standard tran-
sition probability function, that is, P(h) = (p;j(h), i, j € S)is a stochastic matrix
for all 2 > 0 satisfying the Kolmogorov—Chapman equations P(h)P(s) = P(h +s)
for all h,s >0, and p;j(h) — é;, as h — 0%, for all i,j € S, where § denotes
Kronecker’s symbol. Assume that there exists an invariant probability distri-
bution 7 = (;, i € S), thatis, n; >0, i€ S, and 7’P(h)=m, h > 0.

When such an eigenvector exists we call P a recurrent transition matrix
function.

As we know, the previous hypotheses imply the existence of a probabil-
ity space (Q,F,P) and of an S-state continuous parameter Markov process
€ = (&,,h > 0) with the standard transition matrix function P above. Assume
¢ is irreducible. Assign to each h the discrete skeleton chain = = (§;1,n > 0)
with parameter scale k. Then =, is an aperiodic, irreducible Markov chain with
transition matrix P(h).

We now prove the Cohen—Alpern theorem for the transition matrix function
P above.

THEOREM 2. A standard transition matrix function P = (P(h), h > 0) is
recurrent if and only if for each h > 0 there exists a rotational representation
(t, 8(h)) for P(h), that is,

(16) pih) = A(S;nf7XSP)/NSi), i, j€S, k>0,

where t=1/n! and 8(h) = (S;(h),i = 1,...,n) is a partition of [0,1) with
X(S;(h)) = m; for all h.

Moreover, there exists a map ® defined by Theorem 1which, for any irreducible
standard transition matrix function (P(h), h > 0), assigns to each P(h), h > 0
an n-partition 8(h) = (S;(h), i = 1,...,n) of [0,1) such that for all h the S;(h)
have the same labels for their component intervals, i = 1,...,n.

ProoF. Applying Theorem 9 of [6], there exists a-class (C, ws(h)) of weighted
cycles such that we have the following canonical decomposition;

an mpih) = > wehM(i, J),

ecC
where (ws(h), ¢ € @)is the probabilistic cycle distribution of the discrete skeleton
=, on P(h). Then the statement of the theorem follows from the course of the
proof of Theorem 1 applied to each stochastic matrix P(h), h > 0.
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That for each i the sets S;(h),h > 0, have the same labels for their compo-
nent intervals A;,(h) results from the very definition (11) and from the same
Theorem 9 of [6], according to which the cycles in the canonical representation
(17) do not depend on h. (The latter expresses in fact, as proved in [6], the
well known theorem of Lévy, Austin and Ornstein concerning the positivity of
transition probabilities p;(h),h > 0,i, j € S.) The proof is complete. O

We call (16) a rotational representation of the transition matrix function P
and denote it by (¢, 8(-)). The partition 8(h), h > 0, is said to be of type L(h) if the
number of components A.,(h) of S;(h) is less than or equal to L(h),i = 1,...,n.

Let b(n) be the least integer such that every n x n recurrent transition matrix
function has a rotational representation of type b, that is, all the correspond-
ing discrete-skeleton transition matrices P(h),h > 0, have a rotational repre-
sentation (¢, S(h)), where the type of 8(h) is equal to b. We have the following
theorem.

THEOREM 3.

(i) If (t,8(-)) is a rotational representation of a transition matrix function P,
then the type L(h) of the partition S(h) is independent of h.
(ii) There exist positive constants o and f such that exp(an!/?) < b(n) <

exp(fn).

Proor. (i) Foranyi=1,...,n we have S;(h) = |J Age(h), where the union is
taken over all the pairs (%, £) such that the ¢-th vertex of the cycle ¢}, occurring
in the canonical decomposition (17) is exactly the element i. Applying Theo-
rem 2, the number of component intervals A;,(h) defining the set S;(k) is time
invariant, i = 1,...,n, and in turn this happens for L(k) as well.

(ii) The bounds for b(n) follow from Theorem 2 of Alpern [1]. O

Acknowledgments. I am grateful to the Editor and to the referee for
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the paper.
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