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ITO EXCURSION THEORY FOR SELF-SIMILAR
MARKOV PROCESSES

By J. VUOLLE-APIALA

University of Helsinki

Let X; be an a-self-similar Markov process on (0, co) killed when hitting
0. a-self-similar extensions of X(¢) to [0, c0) are studied via It6 execusion
theory (entrance laws). We give a condition that guarantees the existence
of an extension, which either leaves 0 continuously (a.s.) or (a.s.) jumps
from 0 to (0,c0) according to the “jumping in” measure 7(dx) = dx/x?*1,
Two applications are given: the diffusion case and the “reflecting barrier
process” of S. Watanabe.

0. Introduction. The class of a-self-similar Markov processes (a-ssmp)
was introduced by Lamperti [7], who used the name semistable. Lamperti
considered a-ssmp on (0, 00) and on [0, co). The rotation-invariant self-similar
Markov processes on R%\{0} were characterized in [4] and [13].

The purpose of this paper is to study the following problem, which was stated
by Lampertiin [7]: Let (X(¢), P*) be an a-ssmp on (0, oo) which iskilled at time T
on first hitting the state 0. Characterize all the possible extensions (X@),P*) to
[0, 0o) which are a-self-similar, strong Markov and behave up to the time T') like
(X(¢), P*). Lamperti solved it in the special case where (X (), P*) is a Brownian
motion, killed at 0. He applied the well-known characterization by It6 and
McKean [5] of all the extensions of Brownian motion after ¢ = Ty and showed
that the class of those extensions which are self-similar consists of the reflecting
and absorbing Brownian motions and the extensions which immediately after
reaching 0 jump according to the measure dx/x%*!,0 < 8 < 1 (see [7], Theorem
5.2). Lamperti’s method was to study the boundary conditions, which determine
the domain of the generator of the process (in this case, the Laplace operator).

Lamperti [7] suggested that It6 excursion theory could be used in the general
case, and that is in fact our approach. We apply the results of Blumenthal [1]
and Rogers [9] and characterize the entrance laws of (X(¢), P*). We also show
a kind of zero—one law for self-similar processes [this was already known by
Lamperti [7, Theorem 5.2] in the case (X(¢), P*) is a Brownian motion on (0, 00)]:
An a-ssmp [fulfilling our condition (A), which is formulated in Section 1] either
has a jump from 0 a.s. or it leaves 0 continuously a.s. In Section 2 we prove
that if condition (A) is valid, then (X(¢),P*) can be extended to [0, c0) either
so that the extension leaves 0 continuously (or, of course, stays there forever)
or that it jumps from 0 according to the “jumping-in” measure 7(dx) = dx/x°+
(compare Theorem 5.2 in [7]). In Section 3 we consider the diffusion case and
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show that (A) is valid for an a-self-similar diffusion iff 0 is a regular boundary
point. If 0 is an exit boundary point, then it is not possible to extend (X(¢), P*)
to [0, oo) so that the extension leaves 0 continuously. We show that in this case
one can construct an a-self-similar extension which jumps from 0 according to
the jumping-in measure n(dx) = dx/%x**',0 < 8 < 1/c.

It should be remarked here that the Bessel processes form exactly the class
of L 3-self-similar diffusions on (0, c0).

Fmally, in the last section we have an example, originally due to Watanabe
[14], of a self-similar process with only right-continuous paths for which (A) is
valid. This so-called reflecting barrier process is constructed from a symmetric
stable process in the same way as the reflecting Brownian motion is constructed
from a Brownian motion. We shall see that it a.s. leaves 0 continuously (this is
a special case of the result of Rogers [10], which states that a process which is
constructed similarly from any real Lévy process a.s. leaves 0 continuously).

Comparison of Lamperti’s and our assumptions and results. Lamperti’s [7]
assumptions were slightly different from ours; he assumed the following:

The corresponding transition function (Py)is uniformly
stochastically continuous in some neighborhood of x = 0.

(%)

REMARK. This was one of the “usual” assumptions at the time when
Lamperti wrote his paper (see [7] and references therein). The problem of char-
acterizing those standard processes which fulfill (x) remains open.

Assumption (x) is used in [7, Lemma 2.1] to show that
(xx) t— ﬁtf(x), f € Cyl0,00), x € (0,0), is continuous,

which is further used to establish the continuity of x — P;f(x), f € Cyl0, 00),t >
0, where Cy[0, 00) is the class of all continuous functions on [0, co) which ap-
proach 0 as x — oo.

Now, to prove (xx), it is sufficient to assume the right-continuity and quasi-
left-continuity of the paths.

Another result of Lamperti [7] which depends on (¥) is the result in Theorem
4.1 that the time-changed process Y; = X7, is a Feller process, where T is the
right-continuous inverse of a continuous additive functional fé X, Y *t< Ty It
seems to us that the uniform stochastic continuity in general plays an important
role in the preservation of the Feller property in random time-changes (see [7]).

We assume, as Lamperti also did, that (X;) has an infinite lifetime. We do it
because of simplicity, even if this assumption could be relaxed. If (X;) does not
have an infinite lifetime, then (l'ogXT, ), t < T, is a Lévy process which has been
killed according to an independent, exponentially distributed random variable
(see [4] and [13], or [7]).

The method we use to characterize all self-similar extensions can be applied
also to the more general case, where the lifetime is allowed to be finite; then,
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however, one must notice an extra parameter §, different from 0, in the resolvent

n(f)

AL(0) =
U0 = Any(1)+6

(see beginning of Section 1 and [9]).

Lamperti’s result about the connection between a-ssmp and Lévy processes
is still valid in our situation, even if the assumption of infinite lifetime were
relaxed (see [4], (2.2), page 153): If (X;) is an a-ssmp on (0, co0), possibly with
a finite lifetime, then (log X7,) is a Lévy process on (—oo, +00), possibly killed
according to an independent, exponentially distributed random variable, and
T, is the right-continuous inverse of an additive functional

t
/ XV dh.
0

Even the reverse is true (see [4] and [12]): Starting from any Lévy process (Z)
on (—o0, +00) one can construct an a-ssmp (X;), by defining

Xt =Yg, where Y; = exp Z;

and S; is the right-continuous inverse of a continuous additive functional

t
1/a
/0 Y dh.

(Note that the quasi-left-continuity of ¢ — Y; (and ¢ — Z;) is preserved in
this random time-change because fg Y,}/ “dh is a strictly increasing, continuous
additive functional; see [2], page 212.) Moreover, if Z; = log Xr,, then X; is

equivalent to Xt.
We can conclude that all the results of Lamperti [7] which are needed in this

paper are valid under our assumptions.
1. Preliminaries; entrance laws.

DEFINITION. Let (X @), P*)be a standard Markov process (see the definition
in [2]) on [0, 00) with an infinite lifetime, and let (P;);>o and (UM)y>o be the
corresponding transition function and resolvent.

The process (X(¢), P*) is called an a-self-similar Markov process (a-ssmp) on
[0,00), o > 0, if

(1.1) Py(x, A) = Py(a®x,a®A),

or, equivalently,

U*x,4A) = a~1U>*(a%,a*A), t > 0,A > 0,a > 0,x > 0,A € B0, 0),
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where B[0, c0) is the collection of all Borel sets on [0, c0).

REMARK. We define a-self-similar Markov processes on (0, co) similarly, ex-
cept that we allow here a finite lifetime; a typical example is an a-ssmp on [0 00)
which has been killed just before hitting 0.

Let T be a stopping time defined by T, = inf{t > 0; X@) = 0}. As shown
by Lamperti ([7], Lemma 2.5), either Ty < oo a.s. (13"),\7’ x> 0,or Ty = o0 a.s.
(P%), Vx > 0. N

We assume from now on that Ty < oo a.s. (P¥), Vx > 0.

Define further

Pa(x) = E*(exp(~AT))),

12 @f@=E{f&®)t<To},
VAf(x) = / eNQf(x)dt, A>0,t>0,x>0,f € B,o00),
0

where B(0, 00) is the collection of all the Borel sets on (0, 00).
Equation (1.1) is equivalent to

(1.1 X(t) ~ P* = a~°X(at) ~ P

where “~P” means “finite-dimensional distributions under the measure P.”
Equation (1.1’) implies Ty ~ P* = =T ~ P2**, and thus

PYax) = Py /0(a®x),
Q:(x,A) = Qui(a®x,a”A),
VMx,A) = a1V %a%, a%A),
t>0,a>0\>0,x>0Ac¢c B0,o).

(1.3)

We consider the stopped process

X(t)w) = {X(t)(“’)’ £ < T

A, t Z To(w).

[A is the “graveyard” for X(?).]
Blumenthal [1] studied the extension problem for standard processes which
have the following additional properties:

(a) If f € Cp(0,00), then @; € Co(0,00) and @;f — f uniformly as ¢ —
0[C((0, 00) is the class of all continuous functions on (0, co0), vanishing at 0 and
o0].
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(b) The mapping x — ¥\(x) is continuous on (0,0), for all A > 0, and
Y1(x) —» 1asx — 0, ¥1(x) — 0 as x — oo.

We will show that both properties (a) and (b) are valid in our case. From (1.3)
we have

(%) = Py p17a(1) = B (exp(—)\xl/“‘To))
and thus x — 1,(x) is continuous on (0, c0),

lin(l) Pa(x)=1 and xll.‘i‘o Palx)=0.

Because P1{T, < oo} = 1, we have
P*{Ty >t} = P*{x"/°T, > t} = P*{T, > t/x"/*} - 0 whenx — 0.
This implies that, for any bounded Borel function f, we have
lE%Qtf(x) =0 and ,ICI_I.% VA (x) = 0.

Because
PH{X(®) 2 b,t < To} = P {aX(t/s¥/*) > b, <x/°To)

= PM{X(t/x"*) > b/x,t <xY/*To} — 1
as x — oo, for any b > 0,

then, for any bounded Borel function with lim,_,, f(x) = 0, we have lim,_,,
Q:f(x) = 0 and lim,_, V*f(x) = 0. By the same method as [4, Lemma 2.1]
for rotation-invariant processes, we can prove that x — V*f(x) is continuous on
(0, 00) for f € Cy(0, 00). Thus (Q;)s>0 and (V*),5¢ are a Feller-Dynkin semigroup
and resolvent and (X(2)) is a standard process (in fact, a Feller process) so that
both conditions (a) and (b) in Blumenthal’s paper [1] are satisfied. It follows
immediately from (1.3) that (X(¢)) is an a-self-similar Markov process on (0, o)
and has the lifetime T,. o

Using the strong Markov property of (X(¢), P*) at T, we get

UM (x) = VA (x) + a(x)U(0),

for any bounded Borel function f on [0, 00), f € By [0, 00). According to the result
of Rogers [9], there exist nonnegative constants and 6 and finite measures
(nx)a>0 on (0, co0) such that

na(f) +v£(0)

AL(Q) = TN E YY)
Uf(o)_5+)\n>\(1)+)«y

for all f € B,[0,00),A >0

and

(1.4) B n,\V“=1'\-;}’i forall A > 0,4 > 0, \ # .
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Further, P°{X(t) 0} =0V ¢ > Oexceptinthe absorbmg case (see [7], page 220),
which means v = 0. If, as we have assumed, X(¢) has infinite lifetime a.s., we
also have § = 0. So we have

nx(f)
An (1)

Using a-self-similarity, we obtain

nA(A) _ an)\a(a_aA)
Ana(1) T dany(1)

which is equivalent to

UM(0) = for all f € By[0,00) and for all A > 0.

forall A > 0,a > 0, A € B(0,0).

nAA) _ nala=®A)
@) nx@

This and the a-self-similarity of X(z) imply

na(1)

(VA1) = a / Vel s

na(dx).

Because of (1.4) we have

nx(1) —n,(1) _ a na(1) nae(1) — ne(1)
p—X T nx(l)  pe-—)a

)

which implies

nu(Dnya(1) = nx(Dn (1)
Taking A = 1, we obtain

1, (Dng(1) = ny(Dn,,.(1).

However, this is possible only if n,(1) has a representation ny(1) = ka’, for some
E > 0,v € R. According to Rogers [9, Lemma 2, page 244], n,(1) — 0, whena —
00, which means v < 0. Thus we have n)(4) = a™’n,(@~*A), or, equivalently,

(1.5) nx(A) =a’ny (a*A) for somev <0, foralla > 0,1 > 0.

It was shown by Getoor and Sharpe [3] that there exists a family (7)o of
entrance laws [that is, (7;) are finite measures having the properties

@) 7:Qs = Me+s for all s,¢ > 0;

(1.6)
(ii) / (1 — ¥1(x))in(dx) remains bounded ass — 0]

such that

.7 na(A) = / e~Mn,(A)dt forall A > 0, A € B0, 00).
0
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Equations (1.5) and (1.7) imply now
(1.8) n:A) = a**11,(a®A) for all @ > 0, A € B(0, 00) for some v < 0.

Blumenthal [1] showed that any entrance law (7);) has a representation
(1.9) 1) = 80+ [ Qi A,

where (¢;) is an entrance law with the property [ g(x)6;(dx) — 0 ast — 0, for any
g € C.(0,00) [C.(0, 00) is the class of continuous functions (0, co) with a compact
support], and 7 is a o-finite measure on (0, co) with the additional property

/ (1 — () n(dz) < +oo.

REMARK 1. There always exists a trivial extension (corresponding to the
entrance law n; = 0 V¢ > 0), which stays at 0 after T (the absorbing case). This
is clearly a-self-similar and we shall ignore it in the rest of this paper.

REMARK 2. Representation (1.9) is easily seen to be unique.

REMARK 3. The measure 7 is the one mentioned by Meyer [8, Theorem 6,
page 189]. It corresponds to the case when the process leaves 0 by jumping
while (;) corresponds to the case X(¢) leaves 0 continuously. We shall later see
that, for an a-ssmp [with a further condition (A), which is formulated later], we
either have n=0o0r 6; =0Vt > 0.

Let us now assume (7;) is an entrance law for

XOw),  t<Tow),

XX = { A, £> Ty,

such that (7,) satisfies (1.8) and that in (1.9) 5 is not identically zero. Now,
according to Blumenthal [1],

lim / g(x)ni(dx) = / g(n(dx) forg € Co(0,00).
Equation (1.8) implies
tim [ g nu(d) = a** fim [ ()
= a**lim / ga—x) n(dx)
e / ga—x)n (dx)

=q'*! / g(x)n (d(a*x)).
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This means 7 (dx) = a**! n(d(a®x)). According to the well-known result for Haar
measures on (0, co), we obtain

n(dx)=x—’:+—1dx for some m > 0,8 = v+l

. 1
<U<Olff,6<a-).

We shall now make an assumption, which we will keep in force the rest of
this section.

(A) There exists a constant £ > 0 such that the following hold:
(a) the limit lim,_,o[E(1 — e~T0)/x*] exists and is strictly positive;

(b) the limit lim,_,o[V*f(x)/x*] exists for all f € C(0, c0) and is strictly pos-
itive for some such f; (V})s is the resolvent corresponding to (X(¢)).

REMARK. It will be shown in the last section that (A) is valid if X(#) has
continuous paths and 0 is a regular boundary point. Also, in the case of a
symmetric stable process killed when hitting the negative half-axis, (A) holds
(see Section 4).

LEMMA 1.1. Let us assume (A). The Laplace transform, (ny)xo, of an en-
trance law (n:);>0 has a unique representation

VAf(x)

VD [T v
o " /0 VA

for somep >0,m >0,6< 1/a

n(f) =plim
(1.10)

(p,m and B are independent of A) and for all f € Cy(0, o).

ProoOF. Letf € Cy(0,0) . Define

_ V) L V()
glx) = T o) x>0, g(0)= 9161_1)13 T4

[The existence of this limit is a consequence of (A).] Now g € Cp[0, 00) [where
Cp[0,00) is the class of all bounded, continuous real functions on [0, c0)].
The measures

ki(dx) = (1 — 1(x))ni(dx)

remain bounded, when ¢ — 0, and so we have a weak limit % [if necessary, we
can take a subsequence of (k,)] such that

lim / (0)(1 — () ma(dx) = R0)g(0) + /0 g(0)k(dx)

Ko\ (o] A
— K(0)lim VA (x) VAf(x)

M@t fy Tow@
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Now also

tim [ gG)(1 - 1)) = lim [ VAot

- lim / nt<dx>{ /0 e‘*stf(x)ds}'

oo
=lim [ e *n..(f)ds
t—0 Jo

- /0 e~ ny(f)ds = nx(f),

which follows from (1.6).
Thus we have proved

LWV [P VY@
n,\(f) = k(O)chl—IrI(l) m + A m

Writing 2{0} = p and k(dx)/[1 — ¢1(x)] = (dx), we obtain

k(dx).

VAf(x)
1 —1(x)
Obviously the measure 7 is the same as that in (1.9), which gives (1.10). The

uniqueness of the Laplace transform and the uniqueness of the representation
(1.9) together imply that (1.10) is uniquely determined. O

nx(f)=p limo + /oo V> f(x)n(dx) for all f € Co(0, 00).
x— 0

We will use Lemma 1.1 to obtain a kind of 0-1 law for a-ssmp.

THEOREM 1.2. Let (Xt, P*)be an a-ssmp on [0, 00), with X(t) defined by

X(t) - {X(t), t< TO)

A, t>To.
Let (VM50 be the resolvent corresponding to (X(¢)) and let (A) be valid. Then
in the representation (1.10) either p =0orm = 0.

REMARK. Theorem 1.2 says that an a-ssmp has precisely two possible ways
to leave 0: Either (when p = 0) it jumps, immediately after hitting 0, into (0, c0)
a.s. (P*) or (when m = 0) it leaves 0 continuously a.s. (P*). Compare with
Remark 3.

: PROOF OF THEOREM 1.2. Assume p > 0 and m > 0. According to Lemma
1.1, (1.10) is valid. The a-self-similarity implies

d : dx
/VAf(x) X =aaﬂ-—1 /V)‘/a(foa—a)(x)xﬁﬂ'

xﬂ+1
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Uniqueness of (1.10) implies that, to have (1.5) fulfilled, we must have
VM@ _ ap-1qyy VYA 00N x)

S s b i G ond @<l
Assumption (A) gives
lim VAM(x) lim, oV f(x)/x*

20 1 — 1(x) lim, ,o(1 — ¥1(x)) /x*
hmx_,o [(a* Ja)VMe(f 0 a=*)a%x)] /(@*x)
lim, o (1 — ¥1(x)) /x*
s 1lim,_oVVa(f 0 a=)(x)/x*
Tim, (1 — ta() /o

1. VM(foam)x)
_ yoak-1
= im =

and so we must have 5 =&.
According to (A), lim,_,o[(1 — 91(x))/x"] exists and is greater than 0. Expres-
sion (1.6) (ii) implies

o d.
/0 (1 — wl(x))ﬁ% < 00

and thus also
6 dx
/0 (l—wl(x))x—ﬁ'_,_—l<00 vVé>0.

Because lim,_[(1 — ¥1(x))/x®] > 0 there exist ¢ > 0 and § > 0 such that
(1 — ¢1(x))/xP > ¢, for all x € (0, ).
However, then

é dx >
/()(1—%(@)3732/0 ® dx = +oo,

and we get a contradiction.
Thus we have shown that in (1.10) eitherp =0orm = 0. O

REMARK. Different p # 0 (or m # 0) correspond to the same extension. We
shall now on write p = 1(m = 1) if p(m) is not equal to 0.

. The existence of an a-self-similar extension. We shall assume (A)
throughout this section. Let (X(t), P*) be, as in Section 1, an a-ssmp on (0, c0)
killed at T, Ty < oo a.s (p*). It was shown by Blumenthal [1] that, correspond-
ing to any entrance law (r,), there exists a standard process (X®), P*)on [0, 00)
such that

P*{X(®) € A; t < To} = P*{X(t) e A} for all A € B(0,00).
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It is evident from the representation

UM(0) = /\—"’1% A> 0, f € Byl0, o),

that, to any entrance law (7;) fulfilling (1.8), there corresponds an a-self-similar
extension. In this section we shall study the existence of such (7;).
First let n be a measure on (0, co) such that

dx 1
n(dx) = poers for some g < =
Then, if we define
nA) = / Q:(x, A)n(dx), t>0,A € B0, ),

the property (1.6)(i) and the property (1.8) are obviously valid. So we only have
to check (1.6)(ii). It is valid iff

(2.1) / (1 — ¢ (x))n(dx) < +oo.

We show that (A) implies (2.1). Let § > 0. Now [;°(1 — ¢1(x)) dx/x5*! is easily

‘seen to be finite iff 5 > 0. Because lim,_,o[(1 — 1(x))/x*] exists and is strictly
positive, (1 — 1;(x))/x* must be bounded (away from 0 and +o0o) on (0, §). Thus

/5 1— (%) dx
0

ok xPk+L

is finite iff 3 < k. However, we also have 8 < 1/« and thus (2.1) holds iff
B € (0,min{1/a,k}).
So we have proved the following.

THEOREM 2.1. Let (X(¢2), P*) be an a-ssmp on (0, 0o) which has been killed at
0, and let (A) be valid. Then the totality of a-self-similar extensions which leave 0
by jumping are those corresponding to the jumping-in measures 1(dx) = dx/x"*1,
where 3 € (0,min{1l/a,k}) and k is the strictly positive constant mentioned
in (A).

REMARK. In Theorem 2.1 it indeed suffices to assume that only the latter
limit, lim,_,o[(1 — ¥1(x))/x*], exists (in fact, 0 < limsup,_,,[(1 — ¥;1(x))/**] < 00
is sufficient; see the end of Section 3).

wLet us now consider the case when X(t) leaves 0 continuously, that is,
m = 0. Define

. ,
(2.2) na(f) = lim V@ foras 0, f € Cy(0, ).

2—0 1 — ()
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Easy calculations show that
N L N ”“f for A\, u > 0, # u, f € Co(0, 00).

According to the Riesz representation theorem, there exists a uniquely de-
termined, finite Borel measure n) on (0,00) such that (2.2) is valid for all
f € Co(0, 0). It is easily seen that also

naVHf = “ ""f for all f € B(0, co).

Because

VA f(x) _ lim,_,o (V*f(x)) /x*
—01—1(x)  lim,_,o(1 — ¢y1(x))/x*
[this is a consequence of (A)], condition (1.5) is fulfilled.

According to the result of Getoor and Sharpe [3], there exists an entrance law
(n;) such that

ny(f) = l V f € Co(0,00)

ny(A) = / e Mn A)dt forall A > 0, A € B(0, ).
0

Equation (1.8), which ensures the self-similarity of the extension, is obviously
equivalent to (1.5).
We have a theorem.

THEOREM 2.2. Let (X(t),P*) be an a-ssmp on (0, ), which has been killed
at 0, and let (A) be valid. Then there is precisely one a-self-similar extension

(X(t) P*) of (X(t),P*) on [0,00) such that X(t) leaves 0 continuously. In that
case, if (V})xso is the resolvent corresponding to (X(¢), P¥),

V)
01— 1(x)

is the Laplace transform of the entrance law (6;). In addition (6;) has the property,
0f) =0 ast—0,f e C.0,00).

n(f) = lim for f € Co(0, 0),

REMARK 1. In Theorem 2.2 it is essential that both limits in (A) [(a) and (b)]
exist and are strictly positive.

REMARK 2. The fact that n\(f) = [;° e"6,(f)d¢ such that 6;(f) — 0, when
t — 0, f € C.(0,00), is a consequénce of the uniqueness of (1.9) and (1.10).

REMARK 3. Theorem 2.2 shows that in the diffusion case, if 0 is an exit
boundary point, (A) does not hold because otherwise it would be possible for
the process to leave 0 continuously.
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3. The diffusion case. In this section we shall study the validity of (A)
in the case when X(¢) is a diffusion, that is, all the paths are continuous. Let
(X(#),P*) be an a-self-similar diffusion on (0, c0), killed at T, Ty < oo a.s., and
let A(x) = x*/“ be the scale function for (X(¢), P*),» > 0. Then A(x) is excessive
and we can define the A-transform ()?(t),ﬁ") such that :

Qftx) = Q) f € BO,00),
where @t is the transition function of (}’f(t),ﬁ").

According to [13, Theorem 3], ()? @), 13") is an a-self-similar diffusion on (0, co)
[in fact, a weak dual to (X(z), P*) with respect to the measure x/*~1dx] with a
scale function s(x) = x~*/*, For (}?(t),ﬁ’“) we have f‘o = +00 a.s. (f‘o is the first
hitting time of 0), limx_,o}?(t) = +00 a.s. and s(x) is excessive.

Now let f € Cy([0, 00)). Then we have

Qf(x) ~[fx)] _
Ii(x) =Q [h(x)] = Q: [S(x)f (x)].

As was remarked by Lamperti [7], X(¢) can always be started at 0, such that
it leaves 0 immediately and never returns, and the extended process is an

a-self-similar diffusion on [0, 00). Let @t(O, -) be the transition function at 0
corresponding to this extension. We will show that

lim & [s(x)f ()] = lim E* [s(X()f (X(®) |

(3.1) #=0 SN -
= B [s(X®)f (X(®) | = Q[s(0)f(0)],

for f € Cy([0, 00)).
The continuity of the paths and the strong Markov property imply

E*[sX®)f (X)) = B [s(Rt + T)f (Rt + T) |,

where 7‘,‘ is the first hitting time to {x} for X(#). Because s and f are continuous
on (0, 00), we have

lim E* [s(R0)f (X(®))| = lim E° [s (X (¢ + T)f (X (¢ + T) |
= B [s(X®)f (X(®)].
Now E*s(X(¢t)) is excessive on T0, 00). This and the boundedness of f imply that

E=[sRW)f (X()| = B[s(Xt + T)f (Rt + T)]
< supf(y)Eos(X(t)).
y
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We shall now consider E%s(X(#)). The a-self-similarity of X(t) implies
E'Os()?(t)) = t‘”Eos(}?(l)),
which shows that either EOs(X()) < +00 V't > 0 or E%(X(¢)) = +00 V ¢ > 0. Let

us suppose E%s(X(#)) = +o0 V ¢ > 0. Then also Els(X@®); X@t) <rl=+o0 V7 >
0, V¢ > 0; that is,

/ s(y)@t(O,dy) =+00 Vr>0,Vt>0.
0

Integration with respect to ¢ gives for s(y)f/' (0, dy) = +00. Because of the a-self-
similarity,

U(0,dy) = (O d@®y)) Va>0.

Because lim;_, X(#)w) = +00 a.s. (13"), V x > 0, there must be A € B(0, o0) such
that 0 < U(0, A) < oo. Well-known results about Haar measure give

17(0, dy) = MyY*"'dy for some M > 0.

This means

r r
M/ s(y)y/etdy = M/ yA=/e=1dy = 400,
0 0

which is false when v < 1. Thus E%(X(¢)) < +oo V¢ > 0 when v < 1.
Now, according to the theorem of dominated convergence, we obtain

A ~
i ~27” = i P o)
(3.2) =lim | e VE*[s(X(t) fR®)]at
x— 0

- / " e [[@)r&e)]de.
0
For the right-hand side of (3.2) we have
/ " oM [s(X(®)f (X®)|de < supf(Es(X(1) / Te M dr,
0 y 0

It.is well known that f(;x’ e~ dt is finite if v € (0, 1) and infinite if v > 1.
Taking f = 1 and ) = 1, we get

(3.3) lim 1= ¥1® _ BO[@) "] /0 T ettvdr,

x—0 V/Ol
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The quantity E°[(X(1))~*/¢] is strictly positive. It is easily seen that
EO[X@) "] 2 E°[(X@) ™% X@®) < r] 2 r/2P{X () < r} for all £ > 0.

Because of the continuity of tlle paths, ﬁo{)?(t) <r}—1,whent — 0, and thus
there exists to > 0 such that P%{X(ty) < r} > 0. So we have

EO[(R(w)™*] = 5 B°[(Rato)) %] > 0,

Thus we have shown that the right-hand side of (8.3) is strictly positive and
finite if 0 < v < 1.

The right-hand side of (3.2) is strictly positive for some f € C.(0, 0c). Obvi-
ously, f € C.(0,00) iff g = fs € C.(0,00) and so it is enough to prove that there
exists g € C.(0,00), g > 0, such that

o0
/ e NEOg(R(@) dt > 0.
0
This is valid if E‘Og( X(t)) > m, for some m > 0, for all ¢ in some time interval.

It is easily seen that there exist g € C.(0,0), g >0 End to € (0,00) such
that E%(X(¢)) > 0. As proved by Lamperti [7], ¢ — E%(X(¢)) is continuous on
(AO, ool and thus there exists some interval [a, b], which includes %, such that
E%(X(t)) > m for all ¢ € [a, b], for some m > 0.

Thus we have shown that (A) is valid for an a-self-similar diffusion with
E=v/a, v e (0,1),if h(x) = x*/ is a scale function.

REMARK. The existence of a completely reflecting extension (X(¢), P*) with
continuous paths was remarked by Lamperti [7]. It was shown by It6 and
McKean [6] that if (X(¢),P*) is any diffusion on [0, 00) such that 0 is a reg-
ular boundary point with the boundary condition of instantaneous reflection,
and if A(x) is a scale function with A(0) = 0 and A(+00) = +00, then

lim £-( — e
o S 7 0%

where n(dl) is the Lévy measure for the inverse of the local time at 0 and
(X(@), P*)is (X(®),P*) killed at Ty. For more about this see It6 and McKean [6,
pages 214-216]. Another proof, which uses the idea of A-transform of (X(z), P*),
can be found in Salminen [11].

According to [7], an a-self-similar diffusion on (0, c0) is governed by the
generator '

= /wu —e Mndl) V>0,
0

1 50 9,d 1-1/a @ 2
L—2ax dx2+yx I 0c“>0,u€eR.

Our case Ty < +0o a.s. corresponds to ¢ and u such that p < Jo?. The scale

function & is h(x) = x1~2#/°", This means v/a = 1-2u/0? and, because v € (0, 1),
we have 0 < 1 — 2u/02 < 1/a, which gives 3(1 — 1/a)o? < p < 302
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Thus we have the following theorem.

THEOREM 3.1. Let (X(¢), P*) be an a-self-similar diffusion on (0, c0), killed
at Ty , with a generator

150 10ad 1 1ad 1
L=—o—2x‘/°‘——+,ux‘/°‘£, 02>0,,u€Rsuchthat,u<§¢72.

Then condition (A) is valid iff (1 — 1/a)o? < p < 102 , that is, 0 is a regular
boundary point. In that case X(t) can be extended to be an o-self-similar standard

process on [0,00) either such that it leaves O continuously a.s. (P*) or that it
jumps into (0, 00) according to the jumping-in measure

dx . 2u 1
n(dx) = ey B € (O,mm{l—?,a})

If 0 is an exit boundary point for X(¢), that is, u < %(1 —1/a)o?,itis not possible
to extend X(¢) to [0,00) such that the extension has everywhere continuous
paths (except the absorbing case). Consequently (see Theorem 2.2), (A) fails in
this case. It is, however, possible to find an a-self-similar extension X(¢) with a
jumping-in measure

1
n(dx) = ﬂﬂ, B e (0, Z)‘

We have a proposition.
PROPOSITION 3.2. Let (X(¢),P*) be as in Theorem 3.1, except that 0 is an exit
boundary point, that is, p < %(1 — 1/a)o?. Then X(t) can be extended to be an a-

self-similar standard process on [0, 00) such that it, immediately after reaching
0, jumps into (0, 00) according to the jumping-in measure

dx
n(dx) = g B €(0,1/a).

Proor. We only have to show that f0°°(1 — P1(x))n(dx) < +oo. It is obvious
that for any a-ssmp on (0, co) we have

(3.4) To(w) = /0 (Y)Y dt

wl;ere Y (@) w) = Xpp(w), T()w) is the inverse of an additive functional

t .
Alt)w) = /0 (XR)w))™* dh.
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See more about this time change in [4], [7] and [12]. According to the proof of
Theorem 5.1 in [7], we have Y(t)w) = exp{oB()w) + log x + (u — %az)t}, where
B(t) is a standard Brownian motion, starting at 0, on (—oo, +00).
Let us first assume p < 2(1 — 1/a)o?. It is well known that
exp{cB(t)w) — 1c?¢} is a Q°-martingale for all ¢ > 0,
where Q° is the Wiener measure. This implies

Q°[exp{cB(®) - Lc?t}] =1 Vc >0,

and thus

E'T, = El{ /Oo (Y(t))l/a dt} = QO{ /oo exp 1 [aB(t) - 1¢72t+,ut] dt}
0 0 a 2
B /°° exp |ut - 3%t + 1o, Q° |exp( ~oB(®) - 1)) e
0 a2 2 a a 202

= * i _.]_'. __1 2 . 1 _l 2
—/0 expla<,u 2<1 a)a)}dt<+oo 1ﬂ'u<2<1 a)a,

Now,
x _ _ 1 _ -1/
Jim E*(1 (ixp( Ty)) _ lim E'(1 — exp(x~1/2Ty))
x—0 x1/e x—0 x1/e
_lim E'(1 — exp(—xT)))
x—0 X
A [El(exp(—xT ))] =E'T, < +00
dx 0 x=0 0 ’
and thus

/0 (1- ¢1(x))3—%f; < +00 whenfge (07 %)

If p = 2(1 — 1/a)o?,0 is still an exit boundary point, but E'Ty = +co. In
this case,

To(w) = /oo exp 1 [UB(t)(w) + (u - la2> t] dt
0 o 2
b 1 ’ 1 2 ’ 62
< / exp — |oB(t)(w) + (,u — =0 >t dt =T 7 (w),
0 o 2

where T(’)‘/’"2 is the first hitting time of 0 for an a-self-similar diffusion X @), P
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with generator

1 90109 | 1104 1 1\ o, 1,
2ax dx2+ux I’ 2 l—a of < u <§a.

This implies

E* (1 —exp| - To(w)]) B E~ (1 —exp|— T(’)‘I’az(w)D

VE>O0.

" o

When x — 0, the limit of the right-hand side, as we have seen, exists and is
finite for £ = 1 — 244’ /02. Because this is true for all 4’ € (3(1 — 1/a)0?, 152), we
also have

) E*(1 —eTo) 2u' 1 1\ , 1,
_— < = —_— — _ —_—— —
hl':‘ls(l)lp - <+oo forallk=1 3 b € 5 1 a)a 59 |

that is, £ € (0,1/a). However, that gives [;°(1 — ¢1(x))dx/xP*! < +oo, for all
B€(0,1/a). O

4. An example of Watanabe. In [14] Watanabe studied an example of a
self-similar Markov process on (0, co) with only right-continuous paths with left
limits. Assume X(¢) is a symmetric a-stable process, a € (0, 2), starting from the
positive real axis. Let T = inf{¢ > 0; X(¢) < 0}. Define a new process by setting

(4.1) X(@®) = X(@) — inf X(s), t>T.
T<s<t

Obviously X(¢) is a 1/a-ssmp on [0, co). Watanabe calls X(¢) a reflecting barrier
process. When a = 2, (4.1) becomes the reflecting Brownian motion (see also
the introduction in Blumenthal [1]).

Now T =Ty = inf{¢ > 0; X(¢) = 0}. Define further

X@), t<T,,
Y(t)={ @) ~0
A, t> T

All the conditions in Blumenthal’s paper [1] are satisfied for Y(¢) and Y(¢) is
a 1/a-ssmp on (0, 0o). Watanabe’s computations in [14] show that (A) is valid

with & = /2.

. PROPOSITION 4.1. The process X(2) leaves 0 continuously a.s., that is,

A
in(F) = lim L

) Vf € Co(0,00),

where 1y, is the Laplace transform of the entrance law corresponding to X(@®).
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_ ProOF. According to Watanabe [14, page 190], if (ff")bo is a resolvent of
X(t), then we have

- A
T (x) = VAf(x) + ¥alz) lim ¥ f/(j)
lim,_,q [(1 _ 1/,)\(5))/501/2] e—0 €%
. VM
_vA
= Vf(x) + ¥ (x) ll—l»ltl) FETNEE V f € Cy(0,00),

where (V)¢ is a resolvent of Y(¢). Calculations based on (1.5), the proof of
Theorem 1.2, assumption (A) and the fact that Uf(0) = n\(f)/[\25(1)] show
that this is equivalent to

A
A(f) = lim — 2

=0 1 — y(x) =

REMARK 1. Rogers [10] has shown that X (), constructed similarly from any

real Lévy process, a.s. leaves 0 continuously. Proposition 4.1 is a special case of
his result.

REMARK 2. Theorem 2.1 gives those 1/a-self-similar extensions that jump
into (0, co) immediately after hitting 0.
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