ITÔ EXCURSION THEORY FOR SELF-SIMILAR MARKOV PROCESSES By J. Vuolle-Apiala University of Helsinki Let X_t be an α -self-similar Markov process on $(0,\infty)$ killed when hitting 0. α -self-similar extensions of X(t) to $[0,\infty)$ are studied via Itô execusion theory (entrance laws). We give a condition that guarantees the existence of an extension, which either leaves 0 continuously (a.s.) or (a.s.) jumps from 0 to $(0,\infty)$ according to the "jumping in" measure $\eta(dx)=dx/x^{\beta+1}$. Two applications are given: the diffusion case and the "reflecting barrier process" of S. Watanabe. **0. Introduction.** The class of α -self-similar Markov processes (α -ssmp) was introduced by Lamperti [7], who used the name semistable. Lamperti considered α -ssmp on $(0,\infty)$ and on $[0,\infty)$. The rotation-invariant self-similar Markov processes on $\mathbb{R}^d \setminus \{0\}$ were characterized in [4] and [13]. The purpose of this paper is to study the following problem, which was stated by Lamperti in [7]: Let $(X(t), P^x)$ be an α -ssmp on $(0, \infty)$ which is killed at time T_0 on first hitting the state 0. Characterize all the possible extensions $(\widetilde{X}(t), \widetilde{P}^x)$ to $[0, \infty)$ which are α -self-similar, strong Markov and behave up to the time T_0 like $(X(t), P^x)$. Lamperti solved it in the special case where $(X(t), P^x)$ is a Brownian motion, killed at 0. He applied the well-known characterization by Itô and McKean [5] of all the extensions of Brownian motion after $t=T_0$ and showed that the class of those extensions which are self-similar consists of the reflecting and absorbing Brownian motions and the extensions which immediately after reaching 0 jump according to the measure $dx/x^{\beta+1}$, $0<\beta<1$ (see [7], Theorem 5.2). Lamperti's method was to study the boundary conditions, which determine the domain of the generator of the process (in this case, the Laplace operator). Lamperti [7] suggested that Itô excursion theory could be used in the general case, and that is in fact our approach. We apply the results of Blumenthal [1] and Rogers [9] and characterize the entrance laws of $(X(t), P^x)$. We also show a kind of zero—one law for self-similar processes [this was already known by Lamperti [7, Theorem 5.2] in the case $(X(t), P^x)$ is a Brownian motion on $(0, \infty)$]: An α -ssmp [fulfilling our condition (A), which is formulated in Section 1] either has a jump from 0 a.s. or it leaves 0 continuously a.s. In Section 2 we prove that if condition (A) is valid, then $(X(t), P^x)$ can be extended to $[0, \infty)$ either so that the extension leaves 0 continuously (or, of course, stays there forever) or that it jumps from 0 according to the "jumping-in" measure $\eta(dx) = dx/x^{\beta+1}$ (compare Theorem 5.2 in [7]). In Section 3 we consider the diffusion case and Received December 1989; revised December 1992. AMS 1991 subject classification. 60J25. Key words and phrases. Self-similar Markov processes, entrance laws. show that (A) is valid for an α -self-similar diffusion iff 0 is a regular boundary point. If 0 is an exit boundary point, then it is not possible to extend $(X(t), P^x)$ to $[0, \infty)$ so that the extension leaves 0 continuously. We show that in this case one can construct an α -self-similar extension which jumps from 0 according to the jumping-in measure $\eta(dx) = dx/x^{\beta+1}, 0 < \beta < 1/\alpha$. It should be remarked here that the Bessel processes form exactly the class of $\frac{1}{6}$ -self-similar diffusions on $(0, \infty)$. Finally, in the last section we have an example, originally due to Watanabe [14], of a self-similar process with only right-continuous paths for which (A) is valid. This so-called reflecting barrier process is constructed from a symmetric stable process in the same way as the reflecting Brownian motion is constructed from a Brownian motion. We shall see that it a.s. leaves 0 continuously (this is a special case of the result of Rogers [10], which states that a process which is constructed similarly from any real Lévy process a.s. leaves 0 continuously). Comparison of Lamperti's and our assumptions and results. Lamperti's [7] assumptions were slightly different from ours; he assumed the following: (*) The corresponding transition function (\widetilde{P}_t) is uniformly stochastically continuous in some neighborhood of x = 0. REMARK. This was one of the "usual" assumptions at the time when Lamperti wrote his paper (see [7] and references therein). The problem of characterizing those standard processes which fulfill (*) remains open. Assumption (*) is used in [7, Lemma 2.1] to show that $$(**)$$ $t \to \widetilde{P}_t f(x), \qquad f \in C_0[0,\infty), \ x \in (0,\infty), \qquad \text{is continuous},$ which is further used to establish the continuity of $x \to \widetilde{P}_t f(x)$, $f \in C_0[0,\infty)$, t > 0, where $C_0[0,\infty)$ is the class of all continuous functions on $[0,\infty)$ which approach 0 as $x \to \infty$. Now, to prove (**), it is sufficient to assume the right-continuity and quasi-left-continuity of the paths. Another result of Lamperti [7] which depends on (*) is the result in Theorem 4.1 that the time-changed process $Y_t = \widetilde{X}_{T_t}$ is a Feller process, where T_t is the right-continuous inverse of a continuous additive functional $\int_0^t \widetilde{X}_h^{-1/\alpha}$, $t < T_0$. It seems to us that the uniform stochastic continuity in general plays an important role in the preservation of the Feller property in random time-changes (see [7]). We assume, as Lamperti also did, that (X_t) has an infinite lifetime. We do it because of simplicity, even if this assumption could be relaxed. If (\widetilde{X}_t) does not have an infinite lifetime, then $(\log \widetilde{X}_{T_t})$, $t < T_0$, is a Lévy process which has been killed according to an independent, exponentially distributed random variable (see [4] and [13], or [7]). The method we use to characterize all self-similar extensions can be applied also to the more general case, where the lifetime is allowed to be finite; then, however, one must notice an extra parameter δ , different from 0, in the resolvent $$U^{\lambda}f(0) = \frac{n_{\lambda}(f)}{\lambda n_{\lambda}(1) + \delta}$$ (see beginning of Section 1 and [9]). Lamperti's result about the connection between α -ssmp and Lévy processes is still valid in our situation, even if the assumption of infinite lifetime were relaxed (see [4], (2.2), page 153): If (X_t) is an α -ssmp on $(0,\infty)$, possibly with a finite lifetime, then $(\log X_{T_t})$ is a Lévy process on $(-\infty, +\infty)$, possibly killed according to an independent, exponentially distributed random variable, and T_t is the right-continuous inverse of an additive functional $$\int_0^t X_h^{-1/\alpha} \, dh.$$ Even the reverse is true (see [4] and [12]): Starting from any Lévy process (Z) on $(-\infty, +\infty)$ one can construct an α -ssmp (\hat{X}_t) , by defining $$\hat{X}_t = Y_{S_t}, \quad \text{where } Y_t = \exp Z_t$$ and S_t is the right-continuous inverse of a continuous additive functional $$\int_0^t Y_h^{1/\alpha} dh.$$ (Note that the quasi-left-continuity of $t \to Y_t$ (and $t \to Z_t$) is preserved in this random time-change because $\int_0^t Y_h^{1/\alpha} dh$ is a strictly increasing, continuous additive functional; see [2], page 212.) Moreover, if $Z_t = \log X_{T_t}$, then X_t is equivalent to X_t . We can conclude that all the results of Lamperti [7] which are needed in this paper are valid under our assumptions. ## 1. Preliminaries; entrance laws. DEFINITION. Let $(\widetilde{X}(t), \widetilde{P}^x)$ be a standard Markov process (see the definition in [2]) on $[0, \infty)$ with an infinite lifetime, and let $(\widetilde{P}_t)_{t\geq 0}$ and $(U^{\lambda})_{\lambda>0}$ be the corresponding transition function and resolvent. The process $(\widetilde{X}(t), \widetilde{P}^x)$ is called an α -self-similar Markov process $(\alpha$ -ssmp) on $[0, \infty), \ \alpha > 0$, if $$(1.1) \widetilde{P}_t(x, A) = \widetilde{P}_{at}(a^{\alpha}x, a^{\alpha}A),$$ or, equivalently, $$U^{\lambda}(x,A)=a^{-1}U^{\lambda/a}(a^{\alpha}x,a^{\alpha}A),\ t\geq 0, \lambda>0, a>0, x\geq 0, A\in\mathcal{B}\big[0,\infty),$$ where $\mathcal{B}[0,\infty)$ is the collection of all Borel sets on $[0,\infty)$. REMARK. We define α -self-similar Markov processes on $(0,\infty)$ similarly, except that we allow here a finite lifetime; a typical example is an α -ssmp on $[0,\infty)$ which has been killed just before hitting 0. Let T_0 be a stopping time defined by $T_0=\inf\{t>0; \widetilde{X}(t)=0\}$. As shown by Lamperti ([7], Lemma 2.5), either $T_0<\infty$ a.s. $(\widetilde{P}^x), \forall x>0$, or $T_0=\infty$ a.s. $(\widetilde{P}^x), \forall x>0$. We assume from now on that $T_0 < \infty$ a.s. $(\widetilde{P}^x), \ \forall x > 0$. Define further $$egin{aligned} \psi_{\lambda}(x) &= \widetilde{E}^x ig(\exp(-\lambda T_0) ig), \ Q_t f(x) &= \widetilde{E}^x ig\{ fig(\widetilde{X}(t) ig); t < T_0 ig\}, \ V^{\lambda} f(x) &= \int_0^{\infty} e^{-\lambda t} Q_t f(x) \, dt, \qquad \lambda > 0, t > 0, x > 0, f \in \mathcal{B}(0, \infty), \end{aligned}$$ where $\mathcal{B}(0,\infty)$ is the collection of all the Borel sets on $(0,\infty)$. Equation (1.1) is equivalent to (1.1') $$\widetilde{X}(t) \sim \widetilde{P}^x = a^{-\alpha} \widetilde{X}(at) \sim \widetilde{P}^{a^{\alpha}x}$$ where " $\sim P$ " means "finite-dimensional distributions under the measure P." Equation (1.1') implies $T_0 \sim \widetilde{P}^x = a^{-1}T_0 \sim \widetilde{P}^{a^{\alpha}x}$, and thus $$\psi_{\lambda}(x) = \psi_{\lambda/a}(a^{\alpha}x),$$ $$Q_{t}(x,A) = Q_{at}(a^{\alpha}x, a^{\alpha}A),$$ $$V^{\lambda}(x,A) = a^{-1}V^{\lambda/a}(a^{\alpha}x, a^{\alpha}A),$$ $$t > 0, a > 0, \lambda > 0, x > 0, A \in \mathcal{B}(0, \infty).$$ We consider the stopped process $$X(t)(\omega) = egin{cases} \widetilde{X}(t)(\omega), & t < T_0(\omega), \ \Delta, & t \geq T_0(\omega). \end{cases}$$ [Δ is the "graveyard" for X(t).] Blumenthal [1] studied the extension problem for standard processes which have the following additional properties: (a) If $f \in C_0(0,\infty)$, then $Q_t \in C_0(0,\infty)$ and $Q_t f \to f$ uniformly as $t \to 0[C_0(0,\infty)$ is the class of all continuous functions on $(0,\infty)$, vanishing at 0 and ∞]. (b) The mapping $x \to \psi_{\lambda}(x)$ is continuous on $(0, \infty)$, for all $\lambda > 0$, and $\psi_1(x) \to 1$ as $x \to 0$, $\psi_1(x) \to 0$ as $x \to \infty$. We will show that both properties (a) and (b) are valid in our case. From (1.3) we have $$\psi_{\lambda}(x) = \psi_{\lambda x^{1/\alpha}}(1) = \widetilde{E}^1 \Big(\exp \left(-\lambda x^{1/\alpha} T_0 \right) \Big)$$ and thus $x \to \psi_{\lambda}(x)$ is continuous on $(0, \infty)$, $$\lim_{x\to 0} \psi_{\lambda}(x) = 1 \quad \text{and} \quad \lim_{x\to \infty} \psi_{\lambda}(x) = 0.$$ Because $\widetilde{P}^1\{T_0<\infty\}=1$, we have $$\widetilde{P}^x\{T_0>t\}=\widetilde{P}^1\{x^{1/\alpha}T_0>t\}=\widetilde{P}^1\{T_0>t/x^{1/\alpha}\}\to 0\quad ext{when }x\to 0.$$ This implies that, for any bounded Borel function f, we have $$\lim_{x\to 0} Q_t f(x) = 0 \quad \text{and} \quad \lim_{x\to 0} V^{\lambda} f(x) = 0.$$ Because $$\begin{split} \widetilde{P}^x \big\{ \widetilde{X}(t) \geq b, t < T_0 \big\} &= \widetilde{P}^1 \big\{ x \widetilde{X}(t/x^{1/\alpha}) \geq b, t < x^{1/\alpha} T_0 \big\} \\ &= \widetilde{P}^1 \big\{ \widetilde{X}(t/x^{1/\alpha}) \geq b/x, t < x^{1/\alpha} T_0 \big\} \to 1 \\ &\text{as } x \to \infty, \text{ for any } b > 0, \end{split}$$ then, for any bounded Borel function with $\lim_{x\to\infty} f(x)=0$, we have $\lim_{x\to\infty} Q_t f(x)=0$ and $\lim_{x\to\infty} V^\lambda f(x)=0$. By the same method as [4, Lemma 2.1] for rotation-invariant processes, we can prove that $x\to V^\lambda f(x)$ is continuous on $(0,\infty)$ for $f\in C_0(0,\infty)$. Thus $(Q_t)_{t\geq 0}$ and $(V^\lambda)_{\lambda>0}$ are a Feller–Dynkin semigroup and resolvent and (X(t)) is a standard process (in fact, a Feller process) so that both conditions (a) and (b) in Blumenthal's paper [1] are satisfied. It follows immediately from (1.3) that (X(t)) is an α -self-similar Markov process on $(0,\infty)$ and has the lifetime T_0 . Using the strong Markov property of $(\widetilde{X}(t), \widetilde{P}^x)$ at T_0 , we get $$U^{\lambda}f(x)=V^{\lambda}f(x)+\psi_{\lambda}(x)U^{\lambda}f(0),$$ for any bounded Borel function f on $[0,\infty)$, $f\in\mathcal{B}_b[0,\infty)$. According to the result of Rogers [9], there exist nonnegative constants γ and δ and finite measures $(n_\lambda)_{\lambda>0}$ on $(0,\infty)$ such that $$U^{\lambda}f(0) = \frac{n_{\lambda}(f) + \gamma f(0)}{\delta + \lambda n_{\lambda}(1) + \lambda \gamma} \quad \text{for all } f \in \mathcal{B}_{b}[0, \infty), \lambda > 0$$ and (1.4) $$n_{\lambda}V^{\mu} = \frac{n_{\lambda} - n_{\mu}}{\mu - \lambda} \quad \text{for all } \lambda > 0, \mu > 0, \lambda \neq \mu.$$ Further, $\widetilde{P}^0\{\widetilde{X}(t)=0\}=0 \ \forall \ t>0$ except in the absorbing case (see [7], page 220), which means $\gamma=0$. If, as we have assumed, $\widetilde{X}(t)$ has infinite lifetime a.s., we also have $\delta=0$. So we have $$U^{\lambda}f(0) = rac{n_{\lambda}(f)}{\lambda n_{\lambda}(1)}$$ for all $f \in \mathcal{B}_b[0,\infty)$ and for all $\lambda > 0$. Using α -self-similarity, we obtain $$\frac{n_{\lambda}(A)}{\lambda n_{\lambda}(1)} = a \frac{n_{\lambda a}(a^{-\alpha}A)}{\lambda a n_{\lambda a}(1)} \quad \text{for all } \lambda > 0, a > 0, A \in \mathcal{B}(0, \infty).$$ which is equivalent to $$\frac{n_{\lambda}(A)}{n_{\lambda}(1)} = \frac{n_{\lambda a}(a^{-\alpha}A)}{n_{\lambda a}(1)}.$$ This and the α -self-similarity of X(t) imply $$n_{\lambda}(V^{\mu}1) = a \int V^{\mu a} 1(x) \frac{n_{\lambda}(1)}{n_{\lambda a}(1)} n_{\lambda a}(dx).$$ Because of (1.4) we have $$\frac{n_{\lambda}(1) - n_{\mu}(1)}{\mu - \lambda} = a \frac{n_{\lambda}(1)}{n_{\lambda a}(1)} \frac{n_{\lambda a}(1) - n_{\mu a}(1)}{\mu a - \lambda a},$$ which implies $$n_{\mu}(1)n_{\lambda a}(1) = n_{\lambda}(1)n_{\mu a}(1).$$ Taking $\lambda = 1$, we obtain $$n_{\mu}(1)n_{a}(1) = n_{1}(1)n_{\mu a}(1).$$ However, this is possible only if $n_a(1)$ has a representation $n_a(1) = ka^v$, for some $k > 0, v \in R$. According to Rogers [9, Lemma 2, page 244], $n_a(1) \to 0$, when $a \to \infty$, which means v < 0. Thus we have $n_\lambda(A) = a^{-v}n_{\lambda a}(a^{-\alpha}A)$, or, equivalently, (1.5) $$n_{\lambda}(A) = a^{\nu} n_{\lambda/a}(a^{\alpha}A) \quad \text{for some } \nu < 0, \text{ for all } a > 0, \lambda > 0.$$ It was shown by Getoor and Sharpe [3] that there exists a family $(\eta_t)_{t>0}$ of entrance laws [that is, (η_t) are finite measures having the properties (i) $$\eta_t Q_s = \eta_{t+s}$$ for all $s, t > 0$; (1.6) $$(ii) \quad \int \big(1-\psi_1(x)\big) \eta_s(dx) \quad \text{remains bounded as } s \to 0]$$ such that (1.7) $$n_{\lambda}(A) = \int_{0}^{\infty} e^{-\lambda t} \eta_{t}(A) dt \quad \text{for all } \lambda > 0, A \in \mathcal{B}(0, \infty).$$ Equations (1.5) and (1.7) imply now (1.8) $$\eta_t(A) = a^{v+1} \eta_{at}(a^{\alpha} A)$$ for all $a > 0, A \in \mathcal{B}(0, \infty)$ for some $v < 0$. Blumenthal [1] showed that any entrance law (η_t) has a representation (1.9) $$\eta_t(A) = \theta_t(A) + \int Q_t(x, A) \eta(dx),$$ where (θ_t) is an entrance law with the property $\int g(x)\theta_t(dx) \to 0$ as $t \to 0$, for any $g \in C_c(0,\infty)$ [$C_c(0,\infty)$ is the class of continuous functions $(0,\infty)$ with a compact support], and η is a σ -finite measure on $(0,\infty)$ with the additional property $$\int (1-\psi_1(x))\eta(dx)<+\infty.$$ REMARK 1. There always exists a trivial extension (corresponding to the entrance law $\eta_t \equiv 0 \ \forall t > 0$), which stays at 0 after T_0 (the absorbing case). This is clearly α -self-similar and we shall ignore it in the rest of this paper. Remark 2. Representation (1.9) is easily seen to be unique. REMARK 3. The measure η is the one mentioned by Meyer [8, Theorem 6, page 189]. It corresponds to the case when the process leaves 0 by jumping while (θ_t) corresponds to the case $\widetilde{X}(t)$ leaves 0 continuously. We shall later see that, for an α -ssmp [with a further condition (A), which is formulated later], we either have $\eta \equiv 0$ or $\theta_t \equiv 0 \ \forall \ t > 0$. Let us now assume (η_t) is an entrance law for $$X(t)(\omega) = egin{cases} \widetilde{X}(t)(\omega), & t < T_0(\omega), \ \Delta, & t \geq T_0, \end{cases}$$ such that (η_t) satisfies (1.8) and that in (1.9) η is not identically zero. Now, according to Blumenthal [1], $$\lim_{t\to 0}\int g(x)\eta_t(dx)=\int g(x)\eta(dx)\quad \text{for }g\in C_c(0,\infty).$$ Equation (1.8) implies $$\begin{split} \lim_{t\to 0} \int g(x) \, \eta_t(dx) &= a^{v+1} \lim_{t\to 0} \int g(x) \eta_{at} \big(d(a^\alpha x)\big) \\ &= a^{v+1} \lim_{t\to 0} \int g(a^{-\alpha} x) \, \eta_t(dx) \\ &= a^{v+1} \int g(a^{-\alpha} x) \, \eta \left(dx\right) \\ &= a^{v+1} \int g(x) \, \eta \left(d(a^\alpha x)\right). \end{split}$$ This means $\eta(dx) = a^{v+1} \eta(d(a^{\alpha}x))$. According to the well-known result for Haar measures on $(0, \infty)$, we obtain $$\eta(dx) = \frac{m}{x^{\beta+1}} dx$$ for some $m > 0, \beta = \frac{v+1}{\alpha} \left(v < 0 \text{ iff } \beta < \frac{1}{\alpha} \right)$. We shall now make an assumption, which we will keep in force the rest of this section. - (A) There exists a constant k > 0 such that the following hold: - (a) the limit $\lim_{x\to 0} [E(1-e^{-T_0})/x^k]$ exists and is strictly positive; - (b) the limit $\lim_{x\to 0} [V^{\lambda}f(x)/x^k]$ exists for all $f\in C_0(0,\infty)$ and is strictly positive for some such f; $(V^{\lambda})_{\lambda>0}$ is the resolvent corresponding to (X(t)). REMARK. It will be shown in the last section that (A) is valid if X(t) has continuous paths and 0 is a regular boundary point. Also, in the case of a symmetric stable process killed when hitting the negative half-axis, (A) holds (see Section 4). LEMMA 1.1. Let us assume (A). The Laplace transform, $(n_{\lambda})_{\lambda>0}$, of an entrance law $(\eta_t)_{t>0}$ has a unique representation $$(1.10) n_{\lambda}(f) = p \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} + m \int_0^{\infty} V^{\lambda} f(x) \frac{dx}{x^{\beta+1}}$$ $$for some \ p \ge 0, m \ge 0, \beta < 1/\alpha$$ $(p, m \text{ and } \beta \text{ are independent of } \lambda) \text{ and for all } f \in C_0(0, \infty).$ PROOF. Let $f \in C_0(0, \infty)$. Define $$g(x) = \frac{V^{\lambda}f(x)}{1 - \psi_1(x)}, \quad x > 0, \quad g(0) = \lim_{x \to 0} \frac{V^{\lambda}f(x)}{1 - \psi_1(x)}.$$ [The existence of this limit is a consequence of (A).] Now $g \in C_b[0,\infty)$ [where $C_b[0,\infty)$ is the class of all bounded, continuous real functions on $[0,\infty)$]. The measures $$k_t(dx) = (1 - \psi_1(x))\eta_t(dx)$$ remain bounded, when $t\to 0$, and so we have a weak limit k [if necessary, we can take a subsequence of (k_t)] such that $$\lim_{t \to 0} \int g(x) (1 - \psi_1(x)) \eta_t(dx) = k(0)g(0) + \int_0^\infty g(x)k(dx)$$ $$= k(0) \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} + \int_0^\infty \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} k(dx).$$ Now also $$\begin{split} \lim_{t \to 0} \int g(x) \big(1 - \psi_1(x) \big) \eta_t(dx) &= \lim_{t \to 0} \int V^{\lambda} f(x) \eta_t(dx) \\ &= \lim_{t \to 0} \int \eta_t(dx) \bigg\{ \int_0^{\infty} e^{-\lambda s} Q_s f(x) ds \bigg\} \\ &= \lim_{t \to 0} \int_0^{\infty} e^{-\lambda s} \eta_{s+t}(f) ds \\ &= \int_0^{\infty} e^{-\lambda s} \eta_s(f) ds = n_{\lambda}(f), \end{split}$$ which follows from (1.6). Thus we have proved $$n_{\lambda}(f) = k(0) \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} + \int_0^{\infty} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} k(dx).$$ Writing $k\{0\} = p$ and $k(dx)/[1 - \psi_1(x)] = \eta(dx)$, we obtain $$n_{\lambda}(f) = p \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} + \int_0^{\infty} V^{\lambda} f(x) \eta(dx) \quad \text{for all } f \in C_0(0, \infty).$$ Obviously the measure η is the same as that in (1.9), which gives (1.10). The uniqueness of the Laplace transform and the uniqueness of the representation (1.9) together imply that (1.10) is uniquely determined. \Box We will use Lemma 1.1 to obtain a kind of 0–1 law for α -ssmp. THEOREM 1.2. Let $(\widetilde{X}_t, \widetilde{P}^x)$ be an α -ssmp on $[0, \infty)$, with X(t) defined by $$X(t) = egin{cases} \widetilde{X}(t), & t < T_0, \ \Delta, & t \geq T_0. \end{cases}$$ Let $(V^{\lambda})_{\lambda>0}$ be the resolvent corresponding to (X(t)) and let (A) be valid. Then in the representation (1.10) either p=0 or m=0. REMARK. Theorem 1.2 says that an α -ssmp has precisely two possible ways to leave 0: Either (when p=0) it jumps, immediately after hitting 0, into $(0,\infty)$ a.s. (\widetilde{P}^x) or (when m=0) it leaves 0 continuously a.s. (\widetilde{P}^x) . Compare with Remark 3. PROOF OF THEOREM 1.2. Assume p > 0 and m > 0. According to Lemma 1.1, (1.10) is valid. The α -self-similarity implies $$\int V^{\lambda}f(x)\frac{dx}{x^{\beta+1}}=a^{\alpha\beta-1}\int V^{\lambda/a}(f\circ a^{-\alpha})(x)\frac{dx}{x^{\beta+1}}.$$ Uniqueness of (1.10) implies that, to have (1.5) fulfilled, we must have $$\lim_{x\to 0} \frac{V^{\lambda}f(x)}{1-\psi_1(x)} = a^{\alpha\beta-1}\lim_{x\to 0} \frac{V^{\lambda/a}(f\circ a^{-\alpha})(x)}{1-\psi_1(x)} \quad \text{and} \quad \alpha\beta < 1.$$ Assumption (A) gives $$\begin{split} \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} &= \frac{\lim_{x \to 0} V^{\lambda} f(x) / x^k}{\lim_{x \to 0} \left(1 - \psi_1(x)\right) / x^k} \\ &= \frac{\lim_{x \to 0} \left[\left(a^{\alpha k} / a\right) V^{\lambda / a} (f \circ a^{-\alpha}) (a^{\alpha} x)\right] / (a^{\alpha} x)^k}{\lim_{x \to 0} \left(1 - \psi_1(x)\right) / x^k} \\ &= a^{\alpha k - 1} \frac{\lim_{x \to 0} V^{\lambda / a} (f \circ a^{-\alpha}) (x) / x^k}{\lim_{x \to 0} \left(1 - \psi_1(x)\right) / x^k} \\ &= a^{\alpha k - 1} \lim_{x \to 0} \frac{V^{\lambda / a} (f \circ a^{-\alpha}) (x)}{1 - \psi_1(x)}, \end{split}$$ and so we must have $\beta = k$. According to (A), $\lim_{x\to 0} [(1-\psi_1(x))/x^{\beta}]$ exists and is greater than 0. Expression (1.6) (ii) implies $$\int_0^\infty \left(1 - \psi_1(x)\right) \frac{dx}{x^{\beta+1}} < \infty$$ and thus also $$\int_0^\delta \left(1-\psi_1(x)\right) \frac{dx}{x^{\beta+1}} < \infty \quad \forall \ \delta > 0.$$ Because $\lim_{x\to 0}[(1-\psi_1(x))/x^{\beta}]>0$ there exist $\varepsilon>0$ and $\delta>0$ such that $(1-\psi_1(x))/x^{\beta}\geq \varepsilon$, for all $x\in (0,\delta)$. However, then $$\int_0^\delta \left(1-\psi_1(x)\right) \frac{dx}{x^{\beta+1}} \ge \int_0^\delta \frac{\varepsilon}{x} dx = +\infty,$$ and we get a contradiction. Thus we have shown that in (1.10) either p = 0 or m = 0. \square REMARK. Different $p \neq 0$ (or $m \neq 0$) correspond to the same extension. We shall now on write p = 1 (m = 1) if p(m) is not equal to 0. 2. The existence of an α -self-similar extension. We shall assume (A) throughout this section. Let $(X(t), P^x)$ be, as in Section 1, an α -ssmp on $(0, \infty)$ killed at $T_0, T_0 < \infty$ a.s (p^x) . It was shown by Blumenthal [1] that, corresponding to any entrance law (η_t) , there exists a standard process $(\widetilde{X}(t), \widetilde{P}^x)$ on $[0, \infty)$ such that $$\widetilde{P}^x \big\{ \widetilde{X}(t) \in A; \ t < T_0 \big\} = P^x \big\{ X(t) \in A \big\} \quad \text{for all } A \in \mathcal{B}(0, \infty).$$ It is evident from the representation $$U^{\lambda}f(0) = \frac{n_{\lambda}(f)}{\lambda n_{\lambda}(1)}, \qquad \lambda > 0, f \in \mathcal{B}_{b}[0, \infty),$$ that, to any entrance law (η_t) fulfilling (1.8), there corresponds an α -self-similar extension. In this section we shall study the existence of such (η_t) . First let η be a measure on $(0, \infty)$ such that $$\eta(dx) = \frac{dx}{x^{\beta+1}}$$ for some $\beta < \frac{1}{\alpha}$. Then, if we define $$\eta_t(A) = \int Q_t(x, A) \eta(dx), \qquad t > 0, A \in \mathcal{B}(0, \infty),$$ the property (1.6)(i) and the property (1.8) are obviously valid. So we only have to check (1.6)(ii). It is valid iff (2.1) $$\int (1-\psi_1(x))\eta(dx) < +\infty.$$ We show that (A) implies (2.1). Let $\delta > 0$. Now $\int_{\delta}^{\infty} (1 - \psi_1(x)) dx/x^{\beta+1}$ is easily seen to be finite iff $\beta > 0$. Because $\lim_{x\to 0} [(1 - \psi(x))/x^k]$ exists and is strictly positive, $(1 - \psi_1(x))/x^k$ must be bounded (away from 0 and $+\infty$) on $(0, \delta)$. Thus $$\int_0^\delta \frac{1 - \psi_1(x)}{x^k} \frac{dx}{x^{\beta - k + 1}}$$ is finite iff $\beta < k$. However, we also have $\beta < 1/\alpha$ and thus (2.1) holds iff $\beta \in (0, \min\{1/\alpha, k\})$. So we have proved the following. THEOREM 2.1. Let $(X(t), P^x)$ be an α -ssmp on $(0, \infty)$ which has been killed at 0, and let (A) be valid. Then the totality of α -self-similar extensions which leave 0 by jumping are those corresponding to the jumping-in measures $\eta(dx) = dx/x^{\beta+1}$, where $\beta \in (0, \min\{1/\alpha, k\})$ and k is the strictly positive constant mentioned in (A). REMARK. In Theorem 2.1 it indeed suffices to assume that only the latter limit, $\lim_{x\to 0}[(1-\psi_1(x))/x^k]$, exists (in fact, $0 \le \limsup_{x\to 0}[(1-\psi_1(x))/x^k] < \infty$ is sufficient; see the end of Section 3). Let us now consider the case when $\widetilde{X}(t)$ leaves 0 continuously, that is, m = 0. Define (2.2) $$n_{\lambda}(f) = \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} \quad \text{for } \lambda > 0, f \in C_0(0, \infty).$$ Easy calculations show that $$n_{\lambda}V^{\mu}f= rac{n_{\lambda}-n_{\mu}}{\mu-\lambda}f\quad ext{for }\lambda,\mu>0,\lambda eq\mu,f\in C_{0}(0,\infty).$$ According to the Riesz representation theorem, there exists a uniquely determined, finite Borel measure n_{λ} on $(0, \infty)$ such that (2.2) is valid for all $f \in C_0(0, \infty)$. It is easily seen that also $$n_{\lambda}V^{\mu}f= rac{n_{\lambda}-n_{\mu}}{\mu-\lambda}f \quad ext{ for all } f\in \mathcal{B}(0,\infty).$$ **Because** $$n_{\lambda}(f) = \lim_{x \to 0} \frac{V^{\lambda}f(x)}{1 - \psi_1(x)} = \frac{\lim_{x \to 0} \left(V^{\lambda}f(x)\right)/x^k}{\lim_{x \to 0} \left(1 - \psi_1(x)\right)/x^k} \quad \forall \, f \in C_0(0, \infty)$$ [this is a consequence of (A)], condition (1.5) is fulfilled. According to the result of Getoor and Sharpe [3], there exists an entrance law (η_t) such that $$n_{\lambda}(A) = \int_{0}^{\infty} e^{-\lambda t} \eta_{t}(A) dt \quad \text{for all } \lambda > 0, A \in \mathcal{B}(0, \infty).$$ Equation (1.8), which ensures the self-similarity of the extension, is obviously equivalent to (1.5). We have a theorem. THEOREM 2.2. Let $(X(t), P^x)$ be an α -ssmp on $(0, \infty)$, which has been killed at 0, and let (A) be valid. Then there is precisely one α -self-similar extension $(\widetilde{X}(t), \widetilde{P}^x)$ of $(X(t), P^x)$ on $[0, \infty)$ such that $\widetilde{X}(t)$ leaves 0 continuously. In that case, if $(V^\lambda)_{\lambda>0}$ is the resolvent corresponding to $(X(t), P^x)$, $$n_{\lambda}(f) = \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)}$$ for $f \in C_0(0, \infty)$, is the Laplace transform of the entrance law (θ_t) . In addition (θ_t) has the property, $$\theta_t(f) \to 0$$ as $t \to 0, f \in C_c(0, \infty)$. REMARK 1. In Theorem 2.2 it is essential that both limits in (A) [(a) and (b)] exist and are strictly positive. REMARK 2. The fact that $n_{\lambda}(f) = \int_0^{\infty} e^{-\lambda t} \theta_t(f) dt$ such that $\theta_t(f) \to 0$, when $t \to 0, f \in C_c(0, \infty)$, is a consequence of the uniqueness of (1.9) and (1.10). REMARK 3. Theorem 2.2 shows that in the diffusion case, if 0 is an exit boundary point, (A) does not hold because otherwise it would be possible for the process to leave 0 continuously. **3.** The diffusion case. In this section we shall study the validity of (A) in the case when X(t) is a diffusion, that is, all the paths are continuous. Let $(X(t), P^x)$ be an α -self-similar diffusion on $(0, \infty)$, killed at $T_0, T_0 < \infty$ a.s., and let $h(x) = x^{\nu/\alpha}$ be the scale function for $(X(t), P^x), \nu > 0$. Then h(x) is excessive and we can define the h-transform $(\widehat{X}(t), \widehat{P}^x)$ such that $$\widehat{Q}_t f(x) = \frac{1}{h(x)} Q_t [h(x)f(x)], \quad f \in \mathcal{B}(0, \infty),$$ where \widehat{Q}_t is the transition function of $(\widehat{X}(t),\widehat{P}^x)$. According to [13, Theorem 3], $(\widehat{X}(t), \widehat{P}^x)$ is an α -self-similar diffusion on $(0, \infty)$ [in fact, a weak dual to $(X(t), P^x)$ with respect to the measure $x^{1/\alpha-1}dx$] with a scale function $s(x) = x^{-\nu/\alpha}$. For $(\widehat{X}(t), \widehat{P}^x)$ we have $\widehat{T}_0 = +\infty$ a.s. (\widehat{T}_0) is the first hitting time of 0), $\lim_{x\to 0} \widehat{X}(t) = +\infty$ a.s. and s(x) is excessive. Now let $f \in C_b([0,\infty))$. Then we have $$\frac{Q_t f(x)}{h(x)} = \widehat{Q}_t \left[\frac{f(x)}{h(x)} \right] = \widehat{Q}_t \left[S(x) f(x) \right].$$ As was remarked by Lamperti [7], $\widehat{X}(t)$ can always be started at 0, such that it leaves 0 immediately and never returns, and the extended process is an α -self-similar diffusion on $[0,\infty)$. Let $\widehat{Q}_t(0,\cdot)$ be the transition function at 0 corresponding to this extension. We will show that (3.1) $$\lim_{x \to 0} \widehat{Q}_{t} \left[s(x) f(x) \right] = \lim_{x \to 0} \widehat{E}^{x} \left[s\left(\widehat{X}(t)\right) f\left(\widehat{X}(t)\right) \right] \\ = \widehat{E}^{0} \left[s\left(\widehat{X}(t)\right) f\left(\widehat{X}(t)\right) \right] = \widehat{Q}_{t} \left[s(0) f(0) \right],$$ for $f \in C_b([0,\infty))$. The continuity of the paths and the strong Markov property imply $$\widehat{E}^x \left[s \big(\widehat{X}(t) \big) f \big(\widehat{X}(t) \big) \right] = \widehat{E}^0 \left[s \big(\widehat{X}(t + \widehat{T}_x) \big) f \big(\widehat{X}(t + \widehat{T}_x) \big) \right],$$ where \widehat{T}_x is the first hitting time to $\{x\}$ for $\widehat{X}(t)$. Because s and f are continuous on $(0,\infty)$, we have $$\lim_{x \to 0} \widehat{E}^{x} \left[s(\widehat{X}(t)) f(\widehat{X}(t)) \right] = \lim_{x \to 0} \widehat{E}^{0} \left[s(\widehat{X}(t + \widehat{T}_{x})) f(\widehat{X}(t + \widehat{T}_{x})) \right]$$ $$= \widehat{E}^{0} \left[s(\widehat{X}(t)) f(\widehat{X}(t)) \right].$$ Now $\widehat{E}^x s(\widehat{X}(t))$ is excessive on $[0,\infty)$. This and the boundedness of f imply that $$\widehat{E}^{x}\left[s(\widehat{X}(t))f(\widehat{X}(t))\right] = \widehat{E}^{0}\left[s(\widehat{X}(t+\widehat{T}_{x}))f(\widehat{X}(t+\widehat{T}_{x}))\right] \\ \leq \sup_{y} f(y)\widehat{E}^{0}s(\widehat{X}(t)).$$ We shall now consider $\widehat{E}^0s(\widehat{X}(t))$. The lpha-self-similarity of $\widehat{X}(t)$ implies $$\widehat{E}^0 s(\widehat{X}(t)) = t^{-\nu} \widehat{E}^0 s(\widehat{X}(1)),$$ which shows that either $\widehat{E}^0s(\widehat{X}(t)) < +\infty \ \forall \ t > 0$ or $\widehat{E}^0s(\widehat{X}(t)) = +\infty \ \forall \ t > 0$. Let us suppose $\widehat{E}^0s(\widehat{X}(t)) = +\infty \ \forall \ t > 0$. Then also $\widehat{E}^0[s(\widehat{X}(t));\widehat{X}(t) \leq r] = +\infty \ \forall \ r > 0$, $\forall \ t > 0$; that is, $$\int_0^r s(y)\widehat{Q}_t(0,dy) = +\infty \quad \forall \ r > 0, \forall \ t > 0.$$ Integration with respect to t gives $\int_0^r s(y)\widehat{U}(0,dy) = +\infty$. Because of the α -self-similarity, $$\widehat{U}(0,dy) = \frac{1}{a}\widehat{U}(0,d(a^{\alpha}y)) \quad \forall \ a > 0.$$ Because $\lim_{t\to\infty} \widehat{X}(t)(\omega) = +\infty$ a.s. (\widehat{P}^x) , $\forall x \geq 0$, there must be $A \in \mathcal{B}(0,\infty)$ such that $0 < \widehat{U}(0,A) < \infty$. Well-known results about Haar measure give $$\widehat{U}(0, dy) = My^{1/\alpha - 1} dy$$ for some $M > 0$. This means $$M \int_0^r s(y) y^{1/\alpha - 1} dy = M \int_0^r y^{(1-\nu)/\alpha - 1} dy = +\infty,$$ which is false when $\nu < 1$. Thus $\widehat{E}^0 s(\widehat{X}(t)) < +\infty \ \forall \ t > 0$ when $\nu < 1$. Now, according to the theorem of dominated convergence, we obtain (3.2) $$\lim_{x \to 0} \frac{V^{\lambda} f(x)}{x^{\nu/\alpha}} = \lim_{x \to 0} \widehat{V}^{\lambda} \left[s(x) f(x) \right]$$ $$= \lim_{x \to 0} \int_{0}^{\infty} e^{-\lambda t} \widehat{E}^{x} \left[s(\widehat{X}(t)) f(\widehat{X}(t)) \right] dt$$ $$= \int_{0}^{\infty} e^{-\lambda t} \widehat{E}^{0} \left[s(\widehat{X}(t)) f(\widehat{X}(t)) \right] dt.$$ For the right-hand side of (3.2) we have $$\int_0^\infty e^{-\lambda t} \widehat{E}^0 \Big[s \big(\widehat{X}(t) \big) f \big(\widehat{X}(t) \big) \Big] dt \leq \sup_y f(y) \widehat{E}^0 s \big(\widehat{X}(1) \big) \int_0^\infty e^{-\lambda t} t^{-\nu} \ dt.$$ It is well known that $\int_0^\infty e^{-\lambda t} t^{-\nu} dt$ is finite if $\nu \in (0,1)$ and infinite if $\nu \geq 1$. Taking $f \equiv 1$ and $\lambda = 1$, we get (3.3) $$\lim_{x\to 0} \frac{1-\psi_1(x)}{x^{\nu/\alpha}} = \widehat{E}^0\left[\left(\widehat{X}(1)\right)^{-\nu/\alpha}\right] \int_0^\infty e^{-t}t^{-\nu}\,dt.$$ The quantity $E^0[(X(1))^{-\nu/\alpha}]$ is strictly positive. It is easily seen that $$\widehat{E}^0\Big[\big(\widehat{X}(t)\big)^{-\nu/\alpha}\Big] \geq \widehat{E}^0\Big[(\widehat{X}(t)\big)^{-\nu/\alpha}; \ \widehat{X}(t) \leq r\Big] \geq r^{-\nu/\alpha}\widehat{P}^0\big\{\widehat{X}(t) \leq r\big\} \ \text{for all} \ t>0.$$ Because of the continuity of the paths, $\widehat{P}^0\{\widehat{X}(t) \leq r\} \to 1$, when $t \to 0$, and thus there exists $t_0 > 0$ such that $\widehat{P}^0\{\widehat{X}(t_0) \leq r\} > 0$. So we have $$\widehat{E}^0\Big[\big(\widehat{X}(1)\big)^{-\nu/\alpha}\Big]=t_0^{\nu}\,\widehat{E}^0\Big[\big(\widehat{X}(t_0)\big)^{-\nu/\alpha}\Big]>0.$$ Thus we have shown that the right-hand side of (3.3) is strictly positive and finite if $0 < \nu < 1$. The right-hand side of (3.2) is strictly positive for some $f \in C_c(0,\infty)$. Obviously, $f \in C_c(0,\infty)$ iff $g = fs \in C_c(0,\infty)$ and so it is enough to prove that there exists $g \in C_c(0,\infty)$, g > 0, such that $$\int_0^\infty e^{-\lambda t} \widehat E^0 gig(\widehat X(t)ig)\,dt>0.$$ This is valid if $\widehat{E}^0g(\widehat{X}(t)) \geq m$, for some m > 0, for all t in some time interval. It is easily seen that there exist $g \in C_c(0,\infty)$, g > 0 and $t_0 \in (0,\infty)$ such that $\widehat{E}^0g(\widehat{X}(t_0)) > 0$. As proved by Lamperti [7], $t \to \widehat{E}^0g(\widehat{X}(t))$ is continuous on $(0,\infty)$ and thus there exists some interval [a,b], which includes t_0 , such that $\widehat{E}^0g(\widehat{X}(t)) \geq m$ for all $t \in [a,b]$, for some m > 0. Thus we have shown that (A) is valid for an α -self-similar diffusion with $k = \nu/\alpha$, $\nu \in (0, 1)$, if $h(x) = x^{\nu/\alpha}$ is a scale function. REMARK. The existence of a completely reflecting extension $(\widetilde{X}(t),\widetilde{P}^x)$ with continuous paths was remarked by Lamperti [7]. It was shown by Itô and McKean [6] that if $(\widetilde{X}(t),\widetilde{P}^x)$ is any diffusion on $[0,\infty)$ such that 0 is a regular boundary point with the boundary condition of instantaneous reflection, and if h(x) is a scale function with h(0) = 0 and $h(+\infty) = +\infty$, then $$\lim_{x\to 0}\frac{E^x(1-e^{-\lambda T_0})}{h(x)}=\int_0^\infty (1-e^{-\lambda l})n(dl)\quad\forall\;\lambda>0,$$ where n(dl) is the Lévy measure for the inverse of the local time at 0 and $(X(t), P^x)$ is $(\widetilde{X}(t), \widetilde{P}^x)$ killed at T_0 . For more about this see Itô and McKean [6, pages 214–216]. Another proof, which uses the idea of h-transform of $(X(t), P^x)$, can be found in Salminen [11]. According to [7], an α -self-similar diffusion on $(0,\infty)$ is governed by the generator $$L = \frac{1}{2}\sigma^2 x^{2-1/\alpha} \frac{d^2}{dx^2} + \mu x^{1-1/\alpha} \frac{d}{dx}, \qquad \sigma^2 > 0, \ \mu \in R.$$ Our case $T_0<+\infty$ a.s. corresponds to σ and μ such that $\mu<\frac{1}{2}\sigma^2$. The scale function h is $h(x)=x^{1-2\mu/\sigma^2}$. This means $\nu/\alpha=1-2\mu/\sigma^2$ and, because $\nu\in(0,1)$, we have $0<1-2\mu/\sigma^2<1/\alpha$, which gives $\frac{1}{2}(1-1/\alpha)\sigma^2<\mu<\frac{1}{2}\sigma^2$. Thus we have the following theorem. THEOREM 3.1. Let $(X(t), P^x)$ be an α -self-similar diffusion on $(0, \infty)$, killed at T_0 , with a generator $$L=\frac{1}{2}\sigma^2x^{2-1/\alpha}\frac{d^2}{dx^2}+\mu x^{1-1/\alpha}\frac{d}{dx}, \qquad \sigma^2>0, \ \mu\in R \ such \ that \ \mu<\frac{1}{2}\sigma^2.$$ Then condition (A) is valid iff $\frac{1}{2}(1-1/\alpha)\sigma^2 < \mu < \frac{1}{2}\sigma^2$, that is, 0 is a regular boundary point. In that case X(t) can be extended to be an α -self-similar standard process on $[0,\infty)$ either such that it leaves 0 continuously a.s. (P^x) or that it jumps into $(0,\infty)$ according to the jumping-in measure $$\eta(dx) = \frac{dx}{x^{\beta+1}}, \qquad \beta \in \left(0, \min\left\{1 - \frac{2\mu}{\sigma^2}, \frac{1}{\alpha}\right\}\right).$$ If 0 is an exit boundary point for X(t), that is, $\mu \leq \frac{1}{2}(1-1/\alpha)\sigma^2$, it is not possible to extend X(t) to $[0,\infty)$ such that the extension has everywhere continuous paths (except the absorbing case). Consequently (see Theorem 2.2), (A) fails in this case. It is, however, possible to find an α -self-similar extension $\widetilde{X}(t)$ with a jumping-in measure $$\eta(dx) = \frac{dx}{x^{\beta+1}}, \qquad \beta \in \left(0, \frac{1}{\alpha}\right).$$ We have a proposition. PROPOSITION 3.2. Let $(X(t), P^x)$ be as in Theorem 3.1, except that 0 is an exit boundary point, that is, $\mu \leq \frac{1}{2}(1-1/\alpha)\sigma^2$. Then X(t) can be extended to be an α -self-similar standard process on $[0, \infty)$ such that it, immediately after reaching 0, jumps into $(0, \infty)$ according to the jumping-in measure $$\eta(dx) = \frac{dx}{x^{\beta+1}}, \qquad \beta \in (0, 1/\alpha).$$ PROOF. We only have to show that $\int_0^\infty (1-\psi_1(x))\eta(dx) < +\infty$. It is obvious that for any α -ssmp on $(0,\infty)$ we have (3.4) $$T_0(\omega) = \int_0^\infty (Y(t)(\omega))^{1/\alpha} dt,$$ where $Y(t)(\omega) = X_{T(t)}(\omega)$, $T(t)(\omega)$ is the inverse of an additive functional $$A(t)(\omega) = \int_0^t \left(X(h)(\omega) \right)^{-1/\alpha} dh.$$ See more about this time change in [4], [7] and [12]. According to the proof of Theorem 5.1 in [7], we have $Y(t)(\omega) = \exp\{\sigma B(t)(\omega) + \log x + (\mu - \frac{1}{2}\sigma^2)t\}$, where B(t) is a standard Brownian motion, starting at 0, on $(-\infty, +\infty)$. Let us first assume $\mu < \frac{1}{2}(1 - 1/\alpha)\sigma^2$. It is well known that $$\exp\{cB(t)(\omega)-\frac{1}{2}c^2t\}$$ is a Q^0 -martingale for all $c>0$, where Q^0 is the Wiener measure. This implies $$Q^0\big[\exp\{cB(t)-\tfrac{1}{2}c^2t\}\big]=1\quad\forall\,c>0,$$ and thus $$\begin{split} E^1 T_0 &= E^1 \bigg\{ \int_0^\infty \big(Y(t) \big)^{1/\alpha} \, dt \bigg\} = Q^0 \bigg\{ \int_0^\infty \exp \frac{1}{\alpha} \bigg[\sigma B(t) - \frac{1}{2} \sigma^2 t + \mu t \bigg] \, dt \bigg\} \\ &= \int_0^\infty \exp \frac{1}{\alpha} \bigg[\mu t - \frac{1}{2} \sigma^2 t + \frac{1}{2} \frac{\sigma^2}{\alpha} t \bigg] Q^0 \bigg[\exp \bigg(\frac{1}{\alpha} \sigma B(t) - \frac{1}{2} \frac{\sigma^2}{\alpha^2} t \bigg) \bigg] dt \\ &= \int_0^\infty \exp \bigg[\frac{t}{\alpha} \bigg(\mu - \frac{1}{2} \bigg(1 - \frac{1}{\alpha} \bigg) \sigma^2 \bigg) \bigg] dt < +\infty \quad \text{iff } \mu < \frac{1}{2} \bigg(1 - \frac{1}{\alpha} \bigg) \sigma^2. \end{split}$$ Now. $$\begin{split} \lim_{x \to 0} \frac{E^{x} \left(1 - \exp(-T_{0})\right)}{x^{1/\alpha}} &= \lim_{x \to 0} \frac{E^{1} \left(1 - \exp(x^{-1/\alpha}T_{0})\right)}{x^{1/\alpha}} \\ &= \lim_{x \to 0} \frac{E^{1} \left(1 - \exp(-xT_{0})\right)}{x} \\ &= -\frac{d}{dx} \left[E^{1} \left(\exp(-xT_{0})\right)\right]_{x=0} = E^{1}T_{0} < +\infty, \end{split}$$ and thus $$\int_0^\infty \left(1-\psi_1(x)\right) \frac{dx}{x^{\beta+1}} < +\infty \quad \text{when } \beta \in \left(0, \frac{1}{\alpha}\right).$$ If $\mu = \frac{1}{2}(1 - 1/\alpha)\sigma^2$, 0 is still an exit boundary point, but $E^1T_0 = +\infty$. In this case, $$\begin{split} T_0(\omega) &= \int_0^\infty \exp\frac{1}{\alpha} \left[\sigma B(t)(\omega) + \left(\mu - \frac{1}{2}\sigma^2\right) t \right] dt \\ &\leq \int_0^\infty \exp\frac{1}{\alpha} \left[\sigma B(t)(\omega) + \left(\mu' - \frac{1}{2}\sigma^2\right) t \right] dt = T_0^{\mu',\,\sigma^2}(\omega), \end{split}$$ where T_0^{μ',σ^2} is the first hitting time of 0 for an lpha-self-similar diffusion $(\acute{X}(t),\acute{P}^x)$ with generator $$\frac{1}{2}\sigma^2 x^{2-1/\alpha} \frac{d^2}{dx^2} + \mu' x^{1-1/\alpha} \frac{d}{dx}, \quad \frac{1}{2} \bigg(1 - \frac{1}{\alpha} \bigg) \sigma^2 < \mu' < \frac{1}{2} \sigma^2.$$ This implies $$rac{E^x \Big(1 - \expig[-T_0(\omega)ig]\Big)}{x^k} \leq rac{igE^x \Big(1 - \expig[-T_0^{\mu',\sigma^2}(\omega)ig]\Big)}{x^k} \quad orall \ k > 0.$$ When $x \to 0$, the limit of the right-hand side, as we have seen, exists and is finite for $k = 1 - 2\mu'/\sigma^2$. Because this is true for all $\mu' \in (\frac{1}{2}(1 - 1/\alpha)\sigma^2, \frac{1}{2}\sigma^2)$, we also have $$\limsup_{x\to 0}\frac{E^x(1-e^{-T_0})}{x^k}\leq +\infty\quad \text{for all } k=1-\frac{2\mu'}{\sigma^2},\ \mu'\in\left(\frac{1}{2}\bigg(1-\frac{1}{\alpha}\bigg)\sigma^2,\frac{1}{2}\sigma^2\right),$$ that is, $k \in (0, 1/\alpha)$. However, that gives $\int_0^\infty (1 - \psi_1(x)) dx/x^{\beta+1} < +\infty$, for all $\beta \in (0, 1/\alpha)$. \square **4.** An example of Watanabe. In [14] Watanabe studied an example of a self-similar Markov process on $(0, \infty)$ with only right-continuous paths with left limits. Assume X(t) is a symmetric α -stable process, $\alpha \in (0, 2)$, starting from the positive real axis. Let $T = \inf\{t > 0; X(t) \le 0\}$. Define a new process by setting $$\widetilde{X}(t) = \begin{cases} X(t), & t < T, \\ X(t) - \inf_{T \leq s \leq t} X(s), & t \geq T. \end{cases}$$ Obviously $\widetilde{X}(t)$ is a $1/\alpha$ -ssmp on $[0,\infty)$. Watanabe calls $\widetilde{X}(t)$ a reflecting barrier process. When $\alpha=2$, (4.1) becomes the reflecting Brownian motion (see also the introduction in Blumenthal [1]). Now $T = \widetilde{T}_0 = \inf\{t > 0; \ \widetilde{X}(t) = 0\}$. Define further $$Y(t) = \left\{ egin{aligned} \widetilde{X}(t), & & t < \widetilde{T}_0, \ \Delta, & & t \geq \widetilde{T}_0. \end{aligned} ight.$$ All the conditions in Blumenthal's paper [1] are satisfied for Y(t) and Y(t) is a $1/\alpha$ -ssmp on $(0, \infty)$. Watanabe's computations in [14] show that (A) is valid with $k = \alpha/2$. PROPOSITION 4.1. The process $\widetilde{X}(t)$ leaves 0 continuously a.s., that is, $$\widetilde{n}_{\lambda}(f) = \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)} \quad \forall f \in C_0(0, \infty),$$ where \widetilde{n}_{λ} is the Laplace transform of the entrance law corresponding to $\widetilde{X}(t)$. PROOF. According to Watanabe [14, page 190], if $(\widetilde{U}^{\lambda})_{\lambda>0}$ is a resolvent of $\widetilde{X}(t)$, then we have $$\begin{split} \widetilde{U}^{\lambda}f(x) &= V^{\lambda}f(x) + \frac{\psi_{\lambda}(x)}{\lim_{\varepsilon \to 0} \left[\left(1 - \psi_{\lambda}(\varepsilon) \right) / \varepsilon^{\alpha/2} \right]} \lim_{\varepsilon \to 0} \frac{V^{\lambda}f(\varepsilon)}{\varepsilon^{\alpha/2}} \\ &= V^{\lambda}f(x) + \psi_{\lambda}(x) \lim_{\varepsilon \to 0} \frac{V^{\lambda}f(\varepsilon)}{1 - \psi_{\lambda}(\varepsilon)}, \quad \forall \ f \in C_{0}(0, \infty), \end{split}$$ where $(V^{\lambda})_{\lambda>0}$ is a resolvent of Y(t). Calculations based on (1.5), the proof of Theorem 1.2, assumption (A) and the fact that $\widetilde{U}^{\lambda}f(0)=\widetilde{n}_{\lambda}(f)/[\lambda\widetilde{n}_{\lambda}(1)]$ show that this is equivalent to $$\widetilde{n}_{\lambda}(f) = \lim_{x \to 0} \frac{V^{\lambda} f(x)}{1 - \psi_1(x)}.$$ REMARK 1. Rogers [10] has shown that $\widetilde{X}(t)$, constructed similarly from any real Lévy process, a.s. leaves 0 continuously. Proposition 4.1 is a special case of his result. REMARK 2. Theorem 2.1 gives those $1/\alpha$ -self-similar extensions that jump into $(0, \infty)$ immediately after hitting 0. **Acknowledgment.** The author wants to express his gratitude to the referee, whose criticism and suggestions considerably improved this paper. ## REFERENCES - [1] Blumenthal, R. M. (1983). On construction of Markov processes. Z. Wahrsch. Verw. Gebiete 63 433-444. - [2] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory. Academic, New York. - [3] GETOOR, R. K. and SHARPE, M. J. (1973). Last exit times and additive functionals. Ann. Probab. 1 550-569. - [4] GRAVERSEN, S. E. and VUOLLE-APIALA, J. (1986). α-self-similar Markov processes. Probab. Theory Related Fields 71 149–158. - [5] ITÔ, K. and McKean, H. P. (1963). Brownian motion on a half line. Illinois J. Math. 7 181– 231. - [6] ITÔ, K. and McKean, H. P., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin. - [7] LAMPERTI, J. (1972). Semi-stable Markov processes I. Z. Wahrsch. Verw. Gebiete 22 205-225. - [8] MEYER, P. A. (1971). Processus de Poisson pontuels; d'apres K. Itô. Seminaire de Probabilitiés V. Lecture Notes in Math 191177-190. Springer, Berlin. - [9] ROGERS, L. C. G. (1983). Itô excursion theory via resolvents. Z. Wahrsch. Verw. Gebiete 63 237–255. - [10] ROGERS, L. C. G. (1984). A new identity for real Lévy processes. Ann. Inst. H. Poincare Probab. Statist. 20 21-34. - [11] SALMINEN, P. (1984). Brownian excursions revisited. In Seminar on Stochastic Processes 1983 161–187. Birkhäuser, Boston. - [12] VUOLLE-APIALA, J. (1989). Time changes of self-similar Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 25 581-587. - [13] VUOLLE-APIALA, J. and GRAVERSEN, S. E. (1986). Duality theory for self-similar processes. Ann. Inst. H. Poincaré Probab. Statist. 22 323–332. - [14] WATANABE, S. (1962). On stable processes with boundary conditions. J. Math. Soc. Japan 14 170–198. DEPARTMENT OF MATHEMATICS P.O. Box 4 (HALLITUSKATU 15) SF-00014 UNIVERSITY OF HELSINKI FINLAND