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EXACT RATES OF CONVERGENCE TO BROWNIAN LOCAL TIME

By DAVAR KHOSHNEVISAN
University of Washington

In this article we are mainly concerned with proving lower bounds on
some uniform approximation schemes for the local times of one-dimensional
Brownian motion. Consequently, this leads to many exact limit theorems
for Brownian local times. The latter results are Paul Lévy’s occupation time
approximation, the downcrossing theorem and an intrinsic construction.

1. Introduction and main results. Suppose {Z(s); s > 0} is a standard
one-dimensional Brownian motion starting at 0. Let {L?; x € R,# > 0} denote
its process of local times. In other words [see Chapter VI of Revuz and Yor
(1991)], with probability 1,

t
(1.1) / fOOLY dx = / f(Z(s))ds for all t > 0 and measurable f: R' — R™.
R! 0

That the null set in (1.1) can be chosen to be independent of the choice of f
is a consequence of Trotter’s theorem which states: (¢,x) — L¥ is almost surely
continuous (up to a modification which we shall take for granted). For the latter
theorem, see Trotter (1958). A modern account appears in Theorem VI.1.7 of
Revuz and Yor (1991). For instance, let {¥.(:); ¢ > 0} be an approximation
to the identity, that is, ¥1(x) > 0, for all x € R, le Uy(x)dx = 1 and ¥.(x) o
e 10 (xe™ ). Then, almost surely, lim, _, o fé U (Z(s) — x)ds = Lf, uniformly
over all x € R!. An important example is Lévy’s occupation time approximation
which is obtained by taking ¥ (x) ife_ll[o, «j(x). Borodin (1986) has sharpened
this by observing that

(1.2)  limsup sup [(1/e) fé Lz 1) (2(5)) ds — L]
el0 xzeR! elog (1/e)

< 2(L;‘)1/2, a.s.,

where here and throughout, L} ¢ sup, ¢ gt Lf and logx denotes the logarithm

of x in base e. The proof of (1.2) is simple: by (1.1), ¢! f(f lix x+e1(Z(s)ds =
e~! [*7¢ L¥ du. So (1.2) follows immediately from Ray’s modulus of continuity
[see Ray (1963) and McKean (1962)], namely,

Lr+e _ [*
(1.3) lim sup sup —l—t——-——tl

=2(L;)1/2, a.s.
€l0 xeR! 510g(1/5)
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1296 D. KHOSHNEVISAN

Our first theorem improves (1.2) by obtaining an exact asymptotic lower
bound as well as a better upper bound. More precisely, we have the follow-
ing result:

THEOREM 1.1. For every t > 0, with probability 1,

|6—1 fot l[x,x+€](Z(S)) ds —Lﬂ _ (EL*) 1/2
= ; .

lim sup

cl0yemrt elog(1/e) 3

REMARK 1.1.1. A little reflection shows that while the upper bound in The-
orem 1.1 is sharp, it is the lower bound that is difficult to prove. This is due to
the fact that the level sets are highly dependent. So any proof would have to
exploit this dependence structure. We shall do so by using Williams’ version of
the Ray—Knight theorem. See Section 3.

The local version of Theorem 1.1 (i.e., without the supremum) is somewhat
different. We state it as a formal theorem but omit the proof as it is similar to
the proof of Theorem 1.1.

THEOREM 1.2. For every t > 0 and x € R!, with probability 1,
e [y 1pa,nea (Z2) dr — L7 (4Lx) 172
= £)

3

lim sup
€l0 eloglog (1/e)

It is worth mentioning that the above is a genuine law of the iterated loga-
rithm in the sense that the lim inf of the left quantity in Theorem 1.2 is 0 and
hence no limit could possibly exist.

To state and motivate the next theorem, define u.(x,#) to be the total num-
ber of times before time ¢ that Z has upcrossed the interval [x,x + ¢]. It is a
well-known result of Lévy that, with probability 1, lim, _, g 2eu.(x,¢) = LY. See
Exercise XI1.2.10 of Revuz and Yor (1991). For other proofs and variants, see
also Williams (1977), Chung and Durrett (1976) and Maisonneuve (1981). Cha-
con, Le Jan, Perkins and Taylor (1981) proved that this convergence is uniform
over all x € R1. This fact is also hinted at in Williams (1979), Exercise I1.62.7. In
particular, the null set in question can be chosen to be independent of the “level
set,” x. Borodin (1986) has proven the following refinement of this development:

x€RL

(1.4) sup |2eu.(x,t) — Lf| = O <51/2 log(%)‘) a.s.,

as € | 0. In light of Theorem 1.1, the above theorem is surprising in that the
power of the logarithm has changed. Indeed, one would guess the convergence
rate to be of the order O((e log(1/¢))'/2). Theorem 1.4 below shows that this is
the case, while Theorem 1.3 provides the corresponding local version.
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THEOREM 1.3. For every t > 0 and x € R, with probability 1,
) |2euc(x,8) — Lf| 1/2
lim sup ————— .

=2(Lj)
€l0 eloglog(1/e)

REMARK 1.3.1. As is the case with the rest of the results in this paper, the
more important aspect of this theorem is the lower bound. The upper bound
has been anticipated to some degree in the existing literature. See Williams
(1979), page 91.

Theorem 1.3 (as well as all of the subsequent theorems) is proved by means
of excursion theory. However, it is interesting that we have not found truly
excursion-theoretic proofs for Theorems 1.1 and 1.2.

THEOREM 1.4. For every t > 0, with probability 1,

2(L7)""

|26u€(x t) - LY |
eloxelkl elog(1/e)

To state the final pair of theorems, let e.(x,¢) denote the total number of
times before time ¢ that Z makes excursions away from x with lifetimes greater
than e. It is well known that lim, _, o(re/2)/2e.(x,t) = L%. For example, see
Maisonneuve (1981) or Proposition VIL.2.9 of Revuz and Yor (1991). Theorem
1.1 of Perkins (1981) states that the convergence is uniform over all x € R™.
[Due to his choice of scale function, Perkins’ local time is half of ours, thus
accounting for the extra factor of 2. See (1.2) of Perkins (1981).] More recently,
Csorgé and Révész (1986) have proved the analogue of (1.4) for the process e..

Namely, as € | 0,
1/2
(%6) ec(x,t) — LY =O<<€l/4 log(%)) a.s.

Our next two theorems provide the exact rate of convergence to (1.5) and its
local version.

(1.5) sup
x€RL

THEOREM 1.5. For every t > 0 and x € RY, with probability 1,

‘ ‘ (re/2) 1/2eg(x, t)—L¥
lim sup

€10 el/4, /loglog(1/e)

Theorem 1.5 is a special case of Theorem 1 of Horvath (1990).
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THEOREM 1.6. For every t > 0, with probability 1,

1/4 1/2 7=
(Z) / (L;‘)l/2 < liminf sup [(me/2) el t) - Li|

2 €10 cert g1/, flog(1/e)

1/2 o
< lim sup sup ‘(7"5/ 2) “ec(x,t) — L¥
€l0 xeR?! el/4 log(l/e)

| < (271')1/4(.[4:)1/2,

We have not been able to identify the exact constant in Theorem 1.6 (or the
existence of a limit, for that matter.) However, the proof leads us to believe
the following.

CONJECTURE 1.7. For each t > 0, with probability 1,

lim sup l(ﬂ'&/Z) 1/2e€(x, ) — Lfl

= @mV4(L)".
cl0zert  £1/4, /log(1/e)

REMARK 1.7.1. Many of the approximation theorems for local times are
known to hold uniformly in ¢ € T, where T is an arbitrary nonrandom compact
subset of [0, c0). These include (1.2) through (1.5). Our proofs can be modified
to show that Theorems 1.4 and 1.6 hold uniformly over ¢-compacts. However,
the proof of Theorem 1.1 does not extend to handle ¢-uniform results.

Much is now known about convergence theorems for local times at a fixed
level. An umbrella method of doing this for Markov processes appears in Frist-
edt and Taylor (1983). Various uniform approximation theorems are also known
for some Lévy processes. See Barlow, Perkins and Taylor (1986a, b) and the ref-
erences therein. A host of strong limit theorems related to Brownian local time
can be found in Knight (1981).

In Section 2 we demonstrate some modulus of continuity results for “smoo-
thed” Brownian motion. These results will then be used in Section 3 to prove
Theorem 1.1. Sections 4 through 7 contain proofs for Theorems 1.3 through
1.6, respectively.

Finally, some notation is in order here. Throughout, we shall think of Z as
the coordinate functions in the space of continuous functions on the positive
half-line, €([0, 00)). This means that Z(#)(w) u w(t) for all w € €([0, c0)). Define
T, ¥ inf{s: Z(s) = x} and let (%) be the shifts on the paths of Z. In other words,
9:(Z)(s) = Z(t + s). More generally, if A = A(Z(r); a < r < b) is a measurable
functional of Z,9;(A) = A(Z(r); t +a < r < t+b). Constants will be denoted by
C;, and, for the sake of rigor, their dependence on any other variable will be
explicitly stated. ‘
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2. Modulus results for Brownian processes. Throughout this section,
{Z(#); ¢ > 0} denotes a one-dimensional Brownian motion, and {8,(2); ¢ > 0}

is a Bessel process of dimension o > 0. In other words, (3,) is a nonnegative
diffusion with infinitesimal generator given by the following:

_ l 7 a-1 /
Lao(f)x) = 2f () + o f'(x)
for all twice continuously differentiable functions, f: (0, 00) — R! which satisfy
lim0 e*~2(f(e) - f(0)) = 0.

We next recall Lévy’s modulus of continuity for the processes (4,) and (Z),
respectively,

: ,ﬂa(t + h) - ﬂa(t), _
(2.1a) }11{1% tsg}l‘_‘) ) =v2 as,
(2.1b) lim sup 12t +h) —Z@)| _ V2 as.,
RlO0ser e(h)

where (¢) o Vt(1Vvlog(1/t)) for ¢ > 0, and T C [0, 00) is any (nonrandom)
compact set. The proof of (2.1) with lim sup instead of the limit can be found,
for example, within the results of Revuz and Yor (1991), Chapter XI. Minor
adjustments to the proof establish the existence of the limit; see, for example,
Csorg6 and Révész (1981).

Of particular interest to us is that, as 4 | 0,

t+h t+h

ht Z(s)ds — Z(t)‘ <suph~! |Z(s) — Z(2)| ds

t teT t

< V2p(h)(1 + o(l.)) a.s.,

with a similar estimate holding for (3,). The goal of this section is to prove the
exact version of (2.1c) for the processes (Z),(8,) and (62) (the latter process
will be of use in the next section on local times). More precisely, we have the
following.

su.
(2.1c) ¢ eIT)

THEOREM 2.1.
(a) Fix any x € R! and any compact T C [0, c0). Then, given Z(0) = x,

lim su |h—l t”hZ(s)ds _Z(t), = \/g
m0ser o(h) 3

(b) Fixa > 2,x € R and co:ﬁ'pact T C (0, 00). Then, given [3,(0) = x,

lim su |h—-1 ftt+hlga(s)ds—,3a(t)| _ \/g
Wl0ren oh) “V3
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(¢) Forall a > 2, x € R and all compact T C [0, 00), given $,(0) = x,

. Rt [F** 52(s)ds — B2(2)| _\/g
Wl0ren () ~Vs

sup B.(t) a.s.
teT

REMARK 2.1.1. (i) Itis clear from part (a) of Theorem 2.1 that the estimate
in (2.1c) is not sharp.

(ii) With extra effort, one can improve part (b) to all compacts T' C [0, co).
However, as this extension is unnecessary for our purposes, we shall not present
a proof here.

(iii) One can extend this theorem to the a-dimensional Bessel processes with
a < 2, by adapting the proof of part (b) using a localization argument.

(iv) Theorem 2.1 (as well as the corresponding Theorems 1.1 and 1.2) has
recently been extended by Marcus and Rosen (1993) to a class of symmetric
(nearly stable) Lévy processes using a striking isomorphism theorem of Dynkin
(1984).

There is also a local version of Theorem 2.1. To this end, let us define

oK \/h(l vloglog (1/h))
for all & > 0. The local version of Theorem 2.1 is as follows:

THEOREM 2.2. (a) Fix t > 0 and x € RY. Then, given Z(0) = x,

lim su [p~ t”"Z(r)dr—Z(t)]_\/? a.s
thp Y(h) Vs T

(b) Forall a > 2,t > 0and x € R, given 3,(0) = x,

. =1 1R B2(r)dr — BR1)] \/§
lllillS(l)lp o) = §ﬂa(t) a.s.

The remainder of this section contains a proof of Theorem 2.1. This is pat-
terned after Lévy’s proof of the uniform modulus of continuity of Brownian
motion mixed togther with some interpolation ideas. We omit the proof of The-
orem 2.2 since it contains no new ideas.

PROOF OF THEOREM 2.1(a). Without loss of generality, suppose T = [0, 1]
and x = 0; the necessary modifications in the general case are easy to make.
For any & and ¢ > 0, define

t+h t+h
1) ¥ nt / Z(s)ds — Z(#) = h™* / (Z(s) — Z(®)) ds.
t t



ASYMPTOTICS FOR LOCAL TIMES 1301

Therefore, I(h;t) is a Gaussian random variable with mean 0 and variance
given by

t+h ps
E(Ih;T))* = 2h~2 / / E((2(6) - 2)) (Zw) - Z()) ) du ds
tt+h ts h
=2h-2/ /(u—t)duds:—.
t e 3

In particular, by elementary facts about Gaussian distributions,

xlim x2 loglP(|I(h; )| > x\/g) = _%_

Moreover, since the distribution of A~1/2I(h;t) is independent of & and ¢, the
limit is uniform over all 4 and ¢ > 0. In particular, fixing # > 0 and € € (0, 1), it
follows that there exist finite positive constants, C1(6,¢) < Cy(,¢), such that,
for all t,h > 0,

(2.2) C1(6, )R+ < ]P’(ll(h;t)] > p(h)y/ %) < Cy(8, )R~ 9,

Now a Borel-Cantelli argument is in order. Indeed, by (2.2), for any fixed p > 1,

P('I(p‘n’ kp_")] > SO(P_n) /_23_0) > C1(9, E.)p—m9(1+e)

forall0 < k < [p"] and all n > 1. Since {I(p™",kp™); 0 < k < [p"]} is an
independent sequence, for all n large enough,

P( max [1(5™", ko™")| < oo™y %) < (1= C1(8,£)p™01+9)
k< Ip"] 3
< exp(—%cl(e, e)p_"e(l”)*"),

which sums if 0 < 8 < (1 + €)~!. Therefore, by the Borel-Cantelli lemma,

-n. -n
lim inf max ™" ko~ > 26 a.s.
n—oo k<l p(p™) 3

for all § € (0,(1+¢)~1). Since € > 0 and 0 < (1 +¢)~! are arbitrary, letting e | 0
and 6 1 1 along a countable sequence, it follows that

liminf  sup L™ 0] > \/g ‘a.s.

n—o0 gcicip-n PP

Now for each A > 0 there exists a unique integer, Ny, such that p~ M +1 <
h < p~ N, Writing
t+h
;) = (1) " (p~ M+ D) 4+ Ao / (Z(s) — Z(1)) dis,
t4p=Nh+D
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it follows that

liminf sup [(R; )]
R10 o<i<1-n $(h)

(M )|
o(h)

t+h
_limsup sup (hp(h) " / \2(s) — Z(¢)| ds
<1-h ¢

+p~Wp+D

2 . h — o~ WNe+D |Z(s) _ Z(t)|
> ‘3/2\/i—11m su su ( p >
=P 3 R10O P ogs,tpgl h w(p= M)

ls =t < p~

2
> P—3/2 3~ \/5(/) -1)

by (2.1b). In the above, we have used the elementary inequality

eh) < p(p™) = (1+0(1) /(=N + )

as h | 0. Since p > 1 is arbitrary, the lower bound follows by taking p 1 1 along
a countable sequence; that is, we have

. Ihs2)| \ﬁ
llinllonfostsgfl)_h s =V3 a.s.

The proof of the upper bound uses an entropy argument together with the
upper estimate in (2.2). To this end, fix p > 1 and define

T, d=fT,L(9, g,p) = {t > 0: t = jp~ "1~ n? for some integer 0 < j < p"1 ~n=2}.
Notice that #T', < C3(,e)n"2p"1~ 9 for some finite positive constant C3(6, ¢).
Therefore, by (2.2),
2
]P’(max I(p~";t)| > (p(p_")\/—e) < Cy(8, 4T, p~ 01—
te€Tn 3
< C5(6,6)Cs(0,€)n72,

which sums in n. So, by the Borel-Cantelli lemma, for each p > 1, ¢ € (0,1)
and all § > O,

. L8| [26
. —_— <y —=.
= meena ey <V
Now
(2.4)  sup [[(p™"8)| <max|l(p™;t)|+ sup [I(p™";t)—I(p";fn®))],
0<t<1 teTy 0<t<1
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where f,,(¢) is the point in T, nearest to ¢ (with some convention about breaking
ties). We note that

sup [t — fu®)| = p~"00 ~En2,
teT,

Therefore, by (2.1b),

sup [I(p™™6)—I(p™"; fu))| <2 sup |Z(t) - Z(fo(®))]
0<t<1 0<t<2

— 93/2 (1 + 0(1)) \/p—ne(l —ep2 10g(pn9(1 - en=-2)
— 23/2(1 + 0(1)) (9(1 _ 5)10g,0) 1/Zp—nO(l - s)/2n3/2
= o(p(p™)

if @ > (1 — e)~L. Therefore, for all § > (1 —¢)~1, by (2.3) and (2.4), almost surely,

n—oo 0<t<1 90(,0_”) - 3

Since § > (1 — ¢)~1 and ¢ € (0, 1) are arbitrary, we have

(2.5) limsup sup MS\/% a.s.

nooo 0<t<1 ®(p™™)

It remains to show that the behavior of the lim sup in question is the same
along any subsequence. To this end, fix p > 1 as above. For each 2 > 0 (small),
there exists a unique integer, Nj, > 1, such tht p~ ™+ < b < p=r, Proceeding
as in the proof of the lower bound,

t+h
Ith;t)= B~ / (2(s) - 2(t)) ds
t

t+p~MhtD t+h
=h~! / (Z(s) — Z(t)) ds + b~ / (Z(s) — 2() ds
t —(Nh+1)
t+h
— (pN“lh)_lI(p(N“l);t) +h-1 / (Z(s) _ Z(t)) ds
t+p—(Nh+1)

Therefore, by (2.1b), as 2 | 0 (and hence N}, T c0), the followmg holds uniformly
in0<t<1:

;)| < [I(p~ M+ Dst) | +p(p—1)  sup  |Z(s) — Z(2)|
« ls—t] < p~N
0<s,t<1

< \/g(l +0(1)) (oM D)+ v/2p(p — 1)(1 +0(1)) p(p~Nr).
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Note that as & | 0, @(h) > o(p~®*D) = (1 + 0(1))p~2p(p~N#). This implies
that, for all p > 1,

. I(h;t)| \/E
limsup su [ <A/ 2 +V2032(p - 1).
hloopogtgll)—h ph)y — V3 PR

Since p > 1 is arbitrary, the proof of Theorem 2.1(a) is complete upon taking
p | 1 along a countable sequence. O

PROOF OF THEOREM 2.1(b). Fix a > 2. Without loss of much generality, sup-
pose that T' = [, 1] for some e > 0. Forany E C RL, let ¢(E) denote the collection
of all continuous functions from E into R!. As usual, we endow &(E) with the
compact open topology. An application of Girsanov’s theorem [see Revuz and
Yor (1991), page 419, exercise (1.22)] reveals that for any s,x > 0 and for all
measurable A C &([0, s]),

(2.6)  P(m(Ba) €A | fal0) =x) =2~ @~ V2E(D,14 (m(X)) | Z(0) = x),
where Ty £ inf{s: Z(s) = 0},
D, ¥ Z(s ATy~ 172 exp( - %(a 1) -3) / " Z2()-? dr),
0

and for any s > 0 and f € €(E), 7s(f) denotes the element of ([0, s]) given by
()P S ) forall 0 <r<s.
Taking A° to be the collection of all elements, f, of €([0, 1]) which satisfy:
lim sup L t”hf(r)dr—f(t)[ = \/g,

RlOg<t<1-h ¢(h)

part (b) follows for x > 0 as a consequence of (2.6). It is therefore enough to
prove part (b) when x = 0.
By the Markov property and the case x > 0 proved above, for any 0 <e < 1,

lim su p? tt+h Ba(r)dr — Ba(®)] = \/g
M0 <rztnh o) 3

This proves part (b). O

PROOF OF THEOREM 2.1(c). Fix o > 2. Suppose, without loss of much gen-
erality, that T' = [0, 1] and x = 0. Define )

af t+h
J(hst) & h-1 / B(r)dr,
t

- t+h
Fh;t) €1 / (Balr) — Bal®)) dr.
t
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Then, for all ¢ € [0,1] and all & > 0,

|J(h;t) — B2))|
w(h)

where, by (2.1a), as h | 0,

|J(h; 2)|

= 28,(t) D)

+R(h;t),

_1 pt+h _ 2
sup |R(h;t)| < sup R 777 Balr) — Bo®))* dr
0<t<1-h 0<t<1-h w(h)
<2(1+o0(1))ph) >0 as.

It is therefore enough to prove:

2.7 lim sup ﬂ(,‘(t)lJ(h;t)| =\/g sup fa(t),

hl0o<t<i-h e(h) 0<t<1

almost surely. Suppose, instead, that we could prove that for any ¢ > 0, with
probability 1,

2.8) lim  sup ﬂa(t)lJ(h;tN:\/g sup Sald).

RlOc<t<1-h w(h) e<t<1

It is not hard to see that (2.8) implies (2.7). Indeed, (2.8) would imply that, for
all e > 0,

. |J(h; 2)] 2
lim inf () ——— >1/= su L(t) a.s.,
no ogf’gﬁ)_hﬂ © p(h) 3e§t§1ﬂ -

which proves the lower bound in (2.7) by taking ¢ — 0 along a countable se-
quence. [Recall that ¢ — (,(¢) is almost surely continuous.] To see the upper
bound in (2.7), note that

|T(h; 8|
e(h)

(s 2) p (

sup + sup )ﬁa(t)

0<t<e e<t<Ll-h

0< tsgll)- h Pa®) w(h)

Therefore, by (2.8),

. ;0| . |T(h; 2)] \/E
limsu su () ——— < limsup su () +141/= su ()
lhlopostsli)—hﬁ @(h) hlopogtgeﬁ @(h) 3e§t21ﬁ

2
<V2 sup Bu®)+1/5 sup Lalt),
- o<t<e Bo<i<t

by (2.1a). Since the left-hand side of the above inequalities is independent of
e and ¢ > 0 is arbitrary, (2.7) follows by sample path continuity of ¢ — SB.(?).
Hence it is sufficient to prove (2.8) for all ¢ > 0. ‘
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Recall that the compact set mentioned in part (b) is an arbitrary compact
subset of [¢, 1]. As a result, by part (b) of Theorem 2.1, with probability 1,

lim su ;)] = \/g for all rational a,b: e <a <b <1.

hl0g<i<p p(h)

By a condensation argument, this implies that the (random) set, ’I’, defined by
Jho)| 2 }

= df .

= <t<1: =4/ =
T {&‘_t_l}LlfI(l) ) 3
has a dense trace on [g, 1], with probability 1. (In other words, Tn le,1] = [¢, 1],
a.s.) Evidently, with probability 1,

)Mmm
o(h)

liminf sup ﬁ,,t(t)lJ(h;tO)|

< liminf 3, (¢
hi0 c<t<i-h w(h) A0 Palty

2
= \/;/Ba (tO)

for all ¢y TN [e,1]. Here we have only used the definition of T. Therefore, by
the (a.s.) density of T'N [¢, 1] in [¢, 1] and the (a.s.) path continuity for ¢t — (3,(2),
the lower bound in (2.8) holds. The upper bound in (2.8) is even simpler, for

limsup sup ﬂa(t)'J(h;t)' <limsup sup S.(¢) sup 7 )
hl0 e<t<1 w(h) hi0 e<t<1 cct<1 oh)

2
2 e 0
e<t<Ll1

by part (b). This completes the proof of (2.8) and hence part (c) of Theorem
2.1. O

3. Proof of Theorem 1.1. Let us enlarge the probability space so that
it includes an exponential random variable, A, which is independent of Z and

whose mean is 2. Define,
df

m% inf Z¢) and ME sup Z0).
0<r<a 0<r<a

Let xo > 0 be fixed. Moreover, suppose we have enlarged the probability space
even further so that it includes independent Bessel processes, (4, 84 and 3;, with
dimensions 4, 4 and 2, respectively. The point is that these processes are totally
independent of Z and )\ as well as each other, except that they are conditioned
to satisfy

© Ba(0) = B4(0) =0,
Ba(1) = Ba(1 — &™),

54 (e'?‘x" - e'2M) = ,Bg(ez"").
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Then, according to Ray’s description of L, [see It6 and McKean (1965) and
Williams (1974)], one can construct a version of L) (which we shall continue to
write as L), with the following realization:

0, if x<morx>M,
al) Ee 22 (e — ), ifm <x<0,

(3.1) 2% =

b(x) ife"zxﬂg (e*), if 0<x <xo,

c(x) ge%ﬁf(e‘%‘ —e™ M) ifxg<x <M,

conditioned on the event {Z(0) = x(}. (We note here that our speed measure
is half of that of Itd and McKean and hence their 4L} is replaced by our 2L} .)
Applying Theorem 2.1(c) to this version of L), we see that for any compact set
T C R!, conditioned on Z(0) = x¢ > 0,

e~ [77€2L% dx — 2L

lim su
cl0yep (e)
8
=\/jmax{ sup a'/?(z), sup bY2%(z), sup 01/2(2)}
3 m<z<0 0<z<xg x<z<M

1/2
= \/—lg(supL’f\) .
3 xeT

By considering —Z( - ) instead, since P(Z()\) = 0) = 0, we see from (1.3) that for
all compact T' C R, almost surely,

e My rea(Z0)dr— L] (4 Yz
lim su l 0 “kxtel Al = (— su Lx) .
EleGIT)' 90(5) xe?’ A

Therefore,

IP(lim sup [e7 ) Linx 0 (Z)) dr - L | = (il sup L’f\) for all n > 1) =1.

510|x|§n ‘,0(5) x| <n

Taking n = n(w) ifM(w) V (—=m(w)), it follows from (3.1) that

A

sup L% = sup / Lg, x4+ (Z(r) dr.= 0,
x| >n x| >n JO

almost surely. Therefore, P(A(A))-= 1, where for all £ > 0,

—1rt _Tx 1/2
A0 ¥ Lo tim sup [ o Liera (ZOXW) dr Lt(“’)l=<fL;“(w)> .
cl0,cpt w(e) 3
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By independence,

1=PAWN) = / b P(A®))P(X € dt)
0

1 oo

-1 / P(A®)e /2 dt.

2 Jo

Let uz > 0 be any positive real number. By considering u) instead of ), the above
analysis together with Brownian scaling shows that, for all u > 0,

_ i *© —t/(2u)
1= /0 P(A(®))e dt.

Therefore, by the inversion theorem for Laplace transforms, P(A(z)) = 1 for all
¢t > 0. This concludes the proof of Theorem 1.1. O

4. Proof of Theorem 1.3. By Brownian scaling, it suffices to consider only
the case ¢ = 1. Furthermore, since, for all ¢ > 0,

Lf=u(x,t)=0 on {t <T,},

by considering the Brownian motion {Jr (Z)#); t > 0}, it suffices to prove the
theorem when x = 0.

For every w > 0, define Q,(---) to be a nice version of the regular condi-
tional probability, P( - - | LI = w). In light of the above discussion, it is evidently
sufficient to prove that, for all w > 0,

. |2e1.(0,1) — w|

4.1) IIIZILS(}IP e

=2w?,  Qu-as.,

where (h) 4 \/h(1Vloglog(1/h)), as in Section 3.
Define the inverse local times by

(4.2a) 7 Linf{s > 0: L7 = ¢},
(4.2b) () 0.

Also define the excursion process, {¢*(-); s > 0} of (Z) from x as follows:
Z(ti_+r), f0O<r<tf-7r,
ex(r) g x, ifr=0,

otherwise,

)

_where § is the “coffin state.” The reader will note that {e*(-); s > 0} is a stochas-
tic process whose state space is U, U {6}, where

v, ¥ {f € €([0,00)): £(0) = x and f(u) = x for all u > R, for some Rg}.
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The o-field on U, is the one inherited from &([0, c0)). For any ¢ > 0 and all

measurable A C U,, define N¥(A) a Ys<tlalef). We note that Nf(A) is at
most a countable sum and hence well defined. Define the corresponding It6

measure, n*, by n*(4) g EN7(A). It is not hard to see that {N}(A); ¢ > 0}
is a Poisson process with intensity n*(A), if the latter is finite. In this case,
{N?¥(A) — n*(A)t; t > 0} is a mean-zero martingale and hence a monotone class
argument implies the following “exit system formula” for all ¢ > 0:

t
EY Y6)f(ed) =E / Y©n? (LY,
s<t 0
for all bounded (say) predictable processes, (Y), and all bounded measurable

functions, f: U,U, U {6} — R, such that f(§) = 0. Here, as is customary, n*(f) o
fU,u ) f(e)n*(de). One can write a similar equation for excursions from any

other x # 0. Moreover, by the exit system formula, under Q,, NZ(A) is a Poisson
random variable with mean n%(A)w.
Fix w > 0 throughout and define

A(e)if {f e Uy sup f(r)> 5}.

0<r<R}

Since |u(0,1) — NgO(A(e))| < 1, it is sufficient [by (4.1) and the preceding dis-
1

cussion] to prove that

P-a.s.

. |2eNg (Ale) — w| o 1/2
(4.3) hrzlls(}lp o) =2w*,

It is (4.3) that we shall prove; but first, we next need two technical lemmas.

LEMMA 4.1. Suppose {X(a); o > 0} is an R}-valued stochastic process sat-
isfying the following for every oo > 0:

(a) EX(c) gfu(a) < 00;

(b) VarX(a) € 02(a) < oo;
(c) Forall t > 0, Eexp(itX(a)) = (f))*, where f is a characteristic function
(independent of ).

Then, uniformly over x = o(a*/®),

)
P(|X(a) — ple)] > xo(a)) = \/—gx—l exp(%) (1+0(1)).

ProoF. This lemma is a trivial modification of a large deviations theorem
of Cramér. See theorem 8.1.1. of Ibragimov and Linnik (1971) for Petrov’s re-
finement of this result. O )



1310 D. KHOSHNEVISAN
LEMMA 4.2. Fixw > 0and 6 > 0. Then,as ¢ | 0,
2/m
1/2
<2010g10g(1/e)) <log(1/s)>

]P’([ZeN,?, (Ae)) — w| > 2vVowy(e)) = 5 (1+0(1)).

Proor. Fix6 > 0andletX(¢e) ing(A(s)). Then, by the discussion preceding
Lemma 4.1, {X(¢); € > 0} satisfies the assumptions of Lemma 4.1 with u(e) =
o2(e) = n°A(e)), which is equal to (2¢)~! by Proposition XII.3.6 of Revuz and
Yor (1991). Hence, by Lemma 4.1, uniformly over all x = o(¢~1/12),

]P’(|N3J (A(®)) — (w/2¢)| = \/W(Z?)x) = \/gx‘l exp(%ﬁ) (1+0(1))

as ¢ | 0. The lemma follows upon letting x & /28 loglog(1/e). O

Now we can complete the proof of (4.3) and hence Theorem 1.3. As in the proof
of the law of the iterated logarithm for Brownian motion, the proof consists of
establishing an upper bound as well as a lower bound. We shall start by proving
the former.

Fix p € (0,1) and let p(n) ifp". Then, by Lemma 4.2, for any 6 > 0,
]P’<l2p(n)Ng (A(p(n))) - w‘ > 2\/0_ww(p(n))>
= (Orlogn)~1/2 <n log<%>> (1+0(1))

as n — oo. Therefore, by the Borel-Cantelli lemma, for all § > 1,

200 NS (A(pm)) - w]
lim sup
n— oo ¥(p(n))
Taking 6 | 1 along a countable sequence, it follows that

<2V6w a.s.

‘2p(n)N3, <A(p(n))) - w’
(4.4) lim sup
n— oo '!/J (P(n))
Now, for every ¢ € (0, 1), there exists an integer N, such that p(N. + 1) <
e < p(N.). By sample path continuity, every time Z upcrosses [0, ], it has also

upcrossed [0, o( N, + 1)]. Therefore, NO(A(e)) < NO(A(p(N, + 1))). Likewise,
NO(A(e)) > N2(A(p(N,))). Hence, by (4.4) and some arithmetic,

. IZENS,(A(E)) —w| w
lll’?ls(;lp ) < 2\/; a.s.

<2yw as.
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Since p € (0,1) is arbitrary, we can take p 1 1 along a countable sequence to
arrive at the desired upper bound in (4.3):

Jim sup |2e N3 (A(e)) — w]

€l0 P(e) ,

Next we prove the lower bound, thus completing the proof of Theorem 1.3.

Throughout the rest of this proof, let us redefine p(n) by p(n) & ", The key
lemma is the following.

<2v/w as.

LEMMA 4.3. With probability 1,

lim sup 'p(n DN, (A(p(n M 1))) - p(mN,, (A(P(n))) ’
n— oo »(pn)

=\/E,

Assuming the truth of this lemma for the time being, (4.3) and hence Theorem
1.3 follow from the following inequalities:

|25N,9,(A(€)) - w|

linells(?p o)
‘ |zp(n)N3, (A(p<n))) - w'
4.6) Z Himsup- o)
'p(n +1)NY (A(p(n + 1))) - w‘

> 2v/w — 2lim sup )

=2/w.
In proving (4.6), we have used Lemma 4.3 together with the proven upper bound
in (4.3) as well as the fact that ¥ (p(n + 1))/4(p(n)) = (en)~/2(1 + 0o(1)) — 0,
asn — oo.

PrROOF OF LEMMA 4.3. Recallthat p(n) = n=" and w > 0 is fixed. To simplify

the notation, let us define N(n) u NO(A(p(n))) and 1, o ¥(p(n)). From the exit
system formula, it follows that, conditioned on { N(n) = k},

k
Na+D=) Aj,,
j=1
where {A; ,; j > 1} are i.i.d. geometric random variables with distribution
given by

p(;z+1)>j_1(p(n+1)) o
1- Cifj=1,2,...,
P(Ay, = J) = ( p(n) EORY A

0, . otherwise.
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Therefore, in particular,

_ pln)
(4.62) EA1n= 2025

_ (p(n) = pln + 1)) p(n)
(4.6b) VarA, , = D)

Let Zj,n « Aj, — EA; ,. For § > 0, define

(4.72) Eyn) ¥ {w: lp(n + DN (n + 11/)) ~ PN ﬁ}

(4.7b) Em) & {k e Z!: |2kp(n) — w| > wm)-lmg_n}.

Since N(n) is Poisson with mean w(2p(n))~!, Lemma 4.2 implies that, as n — oo,

P(N) ¢ Bm)) = 1/ -(ogn)™2n"2(1+0(1)

=o(n72).

(4.7¢)

Therefore,

P(E¢(n)) = > P(Eo(n) | N(n) = k)P(N(n) = k)

k=0
k
A 0 n —
=2 “’( 2 Ain ?pﬁﬁ>)P<N<n>=k>+o<n 2),
kg ERn) i=1

Now fix 6 € (1,+/2). Next we will prove that, uniformly over all £ ¢ E(n),

k Wi
(4.8) ]P’( 2 > p(n+1)) N

Indeed, by (4.6b), for all & & E(n),
k
__wpln)
Var(Z;Aj,n> = 52D (1 +o0(an)),

where a, S n="~/2(log n)!/2. Therefore,

(log n)~ 1/2,-6* (1+0(1)).

n

(|58 2 255 ) =r(shal 2 0yB0 ey )
=1
_]P’(|Sknl>0\/—m)

=4/ ;rz—@(logn)'lﬂn'("2 (1+0(1)),
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proving (4.8). In the above, we have applied Lemma 4.1 to the normalized sum
-1/2

k
a (Var zzi,n> S B
i=1 i=1

As aresult, (4.7c) and (4.9) together imply the following:

(4.9) P(E¢(n)) = e(logn) V2p=0* (1 4 0(D)).

\/_
In particular, picking 6 € (1,/2), we see that ¥, P(Es(n)) < oo, and hence by
the Borel-Cantelli lemma—Iletting # | 1 along a countable sequence—it follows
that, with probability 1,

lim sup lon + 1)N(n + 1) — p(n) N(n)|

n— oo 'wn

<Vw,

which proves the upper half of Lemma 4.3.
For the lower half, fix any 6 € (0, 1). Then, by (4.9),

(4.10) > "P(Es(n) = oo.
n=1

By the strong Markov property (or by using the exit system formula), condi-
tioned on N(n + m), E¢(n + m) and E4(n) are independent. Therefore,

]P’(Eg(n +m)N Eg(n))

=Y P(E¢(n+m)|N(n +m)=k)

(4.11) k=0
x P(E¢(n) | N(n +m) = k)P(N(n +m) = k)

= Z (---)+o((n+m)_2),

kg E(n+m)

by (4.7¢). By (4.8), however, uniformly over all & ¢ E(n + m),

P(Ep(n +m) |N(n +m) = k) = — (log(n +m)) ""2(n + m)=% (1 + o(1)).

\/— 0
Therefore, by (4.11), (4.9) and (4.7c)

P(Es(n +m) N Eg(n)) = — (log(n + m)) " *(n + m)~%

\/‘0
x P(E¢(n); N(n+m) ¢ E(n +m)) (1 +0(1))
= (1+0(1))P(Eg(n + m))P(Es(n)).

Hence, by Kochen and Stone (1964), (4.10) and (4.12) imply that P(Ey(n),i.0.) =
1. Taking 6 T 1 along a countable sequence, we arrive at the lower bound in
Lemma 4.3. This completes the proof. O

(4.12)
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5. Proof of Theorem 1.4. Let )\ be an exponential holding time—indepen-
dent of the process Z—such that EXA = 1. We shall start with some technical
lemmas.

LEMMA 5.1. Forall x € R, P(T, < \) = exp ( — V2[x|).

ProoF. Since P(Ty = 0) = 1, it suffices to prove the lemma for x > 0. By the
independence of T, and A,

PO\ > Ty) = /oo P\ > a)P(Ty € da) = Eexp(—T,).
0

Now, from Itd’s formula [see Theorem IV.3.3 of Revuz and Yor (1991)],
{exp(x/EZ(t AT) —Te At); t > 0}

is a positive bounded martingale. Therefore, by the Doob optional stopping
theorem, E exp(—T%) = exp(—v/2x). The result follows. O

LEMMA 5.2. Forall x € RY,

(L5 > a) = exp(~V2(lt| + a) ) 1o,00(@) + (1 - exp(~V2}]) ) 1oy ).

Proor. We first write
(5.1) P(L% > a) = E(1(0, WTOP(LE > a | sth)).

However, on {w: Ty(w) < Mw)}: A = T, + ¥7,()), almost surely (the notation be-
ing obvious). Since ¢ — L is an additive functional, it follows that on {w: Ty(w) <
AMw)}: LK = L’}x +9r,(L35 _p)= 7, (L%). Therefore, ifa > 0, by (5.1),

(5.2) P(L% > a) = P(Tx < MP(LS > a).
It remains to compute P(LY > a). First off, for any a,b > 0,
P(L} > a+b) =P(7(b) < A, L} >a+b),
where 7(-) is the inverse local time at 0 as defined in (4.2b). But, by inde-
pendence, on {w: T7(b)w) < A}: A = 7(b) + ¥,4)(\), almost surely. Therefore, on

{T(b) < /\}I LO = Lg(b) + ﬂr(b)(Lg) =b+ ﬁr(b)(L?\). Since Z(T(b)) = 0, a.s., we see
from the strong Markov property-that

P(LY > a+5) =P(r(b) < X, 0.5 (L3) > a) = P(r(b) S N)P(L] > a)
=P(L} > b)P(LY >a).
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Evidently, P(L$ = co) = 0. From this fact, it follows that L} has an exponential
distribution. To compute its mean, we recall that, by Tanaka’s formula [see
Theorem VI.1.2 of Revuz and Yor (1991)],

A
1ZO)] = / sgn(Z(s) dZ(s) + LS.
0

Since the stochastic integral in question has mean 0,
ELY = E|Z(\\)| = @Eﬁ =271/2,

Therefore, P(L > a) = exp(—v2a)1(y o)(@). If x#0 and a > 0, by (5.2) and
Lemma 5.1,

P(L >a) = exp(—\/ﬁ(a + ]x])).

Ifa=0,PL5=0=PT, >N =1- exp(—v/2|x|). This completes the proof of
the lemma. O

LEMMA 5.3. Let 6 > 0 be fixed. Then,as ¢ | 0,

]P’(|2€u€(x,/\) — LE| > 20(e)y /012, T, < )\)
-1/2

= (Gﬂ-log(%)) ePexp(—V2lx[) (1 +0(1)),

where the o(1) term is independent of x € R

Proor. Using the excursion theory notation [cf. the paragraph following
(4.2)], let us define

(5.3) A% | {fe U,: sup f(r)2x+e}.

reR! 0<r<RgL

(One can alternatively take the union over the rationals to avoid measurability
problems.) As noted earlier, almost surely, sup, ¢ g |Nf§ (A(e)) — ulx, V)| < 1.
Therefore, by increasing § a little bit, we see that it suffices to prove the
lemma with in (A(e)) replacing u.(x, ). Since in (A(e)) = ﬂTx(Nx’; (A(¢e))) and
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L% = 9r,(L%), an application of the strong Markov property shows that
P(|2eN3, (A()) - L] 2 20(e)/OL5, Tx <))

= P(T, < WP(|26Ng, (A©) — L3 > 20(e)y/0LY )

= o~ VEl / " P(|26V5 (AG) - w] > 20(e)Vi0 ) B(LS € do)
0

0log(1/e) oo
- e—\/§|x| </ +/ )
0 0 log(1/¢e)

P(|26N3 (A®) — w| > 2p(e)Vi0h ) vEe~ P duw
(by Lemma 5.2)

0 log(1/e)
if\/ie—\/ﬁm/ [p(...)e-ﬁwdw + R(x, €),
0

(by Lemma 5.1)

where R(x,e) > 0 for all x € R! and ¢ > 0 and satisfies

(5.4) sup R(x,e) < V2 exp(—v2w) dw = V.
x€R? 0 log(1/e)

On the other hand, as pointed out in Section 4, N(A(¢)) is a Poisson random
variable with mean w/2¢. Therefore, proceeding as in Lemma 4.2, by Lemma
4.1, uniformly over all w € (0,6 log(1/¢)),

-1/2
IP(|26N3, (A@®) — w| > 2¢(e)V w0) = (Qn log(-:-) ) e (1+0(D)
as ¢ | 0. This and (5.4) together completes the proof of the lemma. O

We are now ready to prove the upper bound in Theorem 1.5. Fix R, 7,6 > 0
and define

KR Y {s eRlisee"(Z'n [—R,R])},

G(x;0,¢) ¢ {w: |26t (x, N(w) — L5 (w)| > 2¢(e)y /0L (w) }

It is clear that, for all € € (0,1/10), #K(e,n,R) < C4(n,R)e~", where C4(n,R)
is a positive finite constant. Lemma 5.3 guarantees the existence of a positive
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finite constant C5(6, 7, R), such that, for all £ € (0,1/10),

1?( U G(x;O,e)ﬂ{Tx<)\}>

x€K(e,n,R)
< #K(e,n,R) max R)]P’(G(x; 0,e)N{T: < A})

K(e,m,
1/2

< Cx(8, n,R)(log(%)) gl

Fix p € (0,1), » > 1 and 6 > 7. Replacing ¢ by p(n) o p" in the above, it
follows that

3 11»( U  Gx6,0n)n{T: < A})
1

n= x €K(p(n),n,R)

oo
< C¢(0,m,R, p) Z P8~ M(logn)~? < 0o
n=1
for some positive finite constant C¢(9, 7, R, p). However, on the set {T), > A},
e.(x,\) =L = Ofor alle > 0, the null set being independent of x € R1. Moreover,
it is trivial that, for all w, sup, ¢ g(c, , r) L5 (W) < L(w). Therefore, by the Borel-
Cantelli lemma, the following holds with probability 1:

1/2
2 ,A) — L%
(5.5)  limsup sup |20 (2, 2) — L5 | <2|6sup L% | .
n—oo xeKip(n),nR) p(pn)) xER!

Let x € [-R,R]. By f,(x) we shall mean the element of K(p(n),n, R) which is
the closest to x. To make this choice unique, we shall require that f,(x) < x.
We further point out that sup, . (_g g ¥ — fa(x)| = p"™. By (1.3), the uniform
modulus of continuity of x — L% implies that, with probability 1,

sup L5 - 59| = O(y/Ix — ful@)|log | — fu(o)] 1)
x€l[—-R,
(5.6) = 0(p"/?\/logn)

= O(w(p(n)))

as n — oo. On the other hand, since K(¢, p(n),R) C K(¢,p(n +1),R) and ¢t — Z(¢)
is continuous (a.s.),

U p(n) (fn(x)y )\) < Upn + 1)(x7 A) < Up(n+1) (fn (x'+ p(n)n), /\) .
The above, together with (5.5) and (5.6), implies that, almost surely,

_Ix
limsup sup |20 g, ) — L] <2(6L3)"”.
n—oo xel-R,R] ©(p(n))
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We recall that n,R > 0, § > n and p € (0,1) were arbitrary. Arguing as in the
previous section, it follows that
1/2

2 A) =LA
(5.7) lim sup sup [2eue(x, V) — L3

<2(L}
£l0 xeR! ()0(6) - (A)

By scaling, the above still holds if ) is an exponential holding time with mean u,
for any u > 0. Therefore, by considering inverse Laplace transforms, as in the
end of Section 3, the upper bound follows; that is, (5.7) holds with A replaced
by any fixed ¢ > 0.

To conclude, we next provide a proof for the lower bound corresponding to
(5.7). Throughout, fix M > 1 and for all x € R! and € > 0 define

Alx,e) u {f eU,: sup f(r)elx+ex +Me)}.
0<r<Rr

Thus the excursions in A(x, €) are exactly those which have upcrossed [x, x + ]

but not [x,x + Me). Let N(x,e) denote the corresponding counting measure to

Alx, €), that is,

N(x,¢e) gN"ji (Alx, ).
For all x € R! and all €, 0 > 0, define
Gl 6,6) € {w: 26N, ) ~ (1 - MY L{w)] < 20(0/6(1 - M-)I5@)]}.
Note that:

(R1) When M is large, the collection G is approximately the same as the
complement of G where the latter was defined earlier in this section.

(R2) For eachx € R! and ¢,6 > 0, on the set {T} < A}, G(x;6,¢) = 97,(Glx; 6,
€)), almost surely.

(R3) Fix w > 0. Then, given {L% = w}, we have T, < ), almost surely, since
the support of ¢ — L} is with probability 1 equal to {s: Z(s) = x}.

(R4) Fix w > 0 and x > Me. Then, given {L§ = w}, N(x,¢) is independent
of LY and N(0, ¢). This is a consequence of the exit system formula and
the fact that A(x, ) NA(0,¢) = @.

Next we state and prove two lemmas which shall be of use in the proof of the
lower bound.

LEMMA 5.4. Fix w,x > 0. Then there exists an i.i.d. sequence of random
variables, {61, 6s, ...}, which are exponentially distributed with mean 2x and an
independent random variable, N, such that N — 1 is Poisson with mean w/2x
and that, given {L% = w},

N N+1

0
D G<LI< Y4,
Jj=0 Jj=0

almost surely.
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ProOOF. Let Uy, 0 and iteratively define

U2j+l (éf U2] +"-9U2J-(Tx)7 J > 07
df ;
U2j=U2j—1+19U2j_1(T0)’ JZ]-

Then the U;’s are the upcrossing times of the interval [0, x]. Since the support
of the increasing function ¢ — L is almost surely the set {s: Z(s) = 0},

N
Z U21+1 ) + (LO LU2N+1)

[[1=~
'Mz i

o

6 (LO _LU2N+1)

Jj=

where N & max{j: Usj,1 < A}. Note that N — 1is the number of downcrossings -
of [0,x] before time A. Therefore, by the exit system formula, given {L = w},
N — 1is Poisson with mean w/2x. Moreover, given {L% = w},

N+1

25 <Ly < Z&,,

and the é;’s are i.i.d. exponential and are independent of N. It remains to com-
pute the mean of §;. By Tanaka’s formula [Theorem VI.1.2 of Revuz and Yor
(1991)],

t
Z(t)+ = / 1(0’ 00) (Z(s)) dZ(S) + %L?
0

The above and Doob’s optional sampling theorem together imply that E§; =
ELY, = 2x. The lemma follows. O

LEMMA 5.5. With the notation of Lemma 5.4, for all ¢ € (0,(2x)~1),

N+1 €
]Eexp({ Z 6) =(1-2x¢)73 exp(—m>

j=0

The proof of Lemma 5.5 is omltted as it only involves basic calculations with
gamma distributions.

We are ready to proceed w1th the proof of the lower bound. Fix for now
e € (0,M~1), some x € [Me,1] and an arbitrary 8 € (0,1). For typographical
ease, we shall suppress the 8 and ¢ in the definition of G that is, we write Gx)
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for G(x; 6, ). We first estimate P(G(0) N G(x) N {Ty < A}). Indeed,
P(G(0) N G(x) N {T, < A})
-2 / P(G(0)N G) | L} = w)exp(—v2(x + w)) dw (by Lemma 5.2)
0

=2~V /oo P(Glx) | L% = w)P(G(0) | L} = w) exp(—v2w)dw [by (R4)]
0

€ 2log(1/e) )
A )
0 e 2log(1/¢)

P(G() | L§ = w)P(G(0) | L = w) exp(—v/2w)dw

€ 2log(1/e) o
([ )
0 5 2log(1/¢)

P(G(0) | LY = w)P(G(0) | L% = w) exp(—v/2w) dw.

The last statement follows from the strong Markov property and (R2). Thus it
suffices to estimate separately the following terms:

(5.82) Ei(e)¥v2 / 611»(6(0) | LY = w)P(G(0) | L = w) exp(—v2w) dw,
0

2log(l/e) -
(5.8b) Eq(e) Ev2 / P(G(0) | LY = w)P(G(0) | L% = w) exp(—v2w)dw,

580 B ¥va [ P(G(0) | LY = w)P(G(0) | L’ = w) exp(—v2w) dw.

2log(1/¢)
Estimating E; and Ej is easy. Indeed,
(5.9a) E1(e) < V2,
oo
(5.9b) Es(e) < V2 exp(—v2w)dw = e2V% < ¢,

2log(1/e)
We shall next estimate the terms in E,. First, we note that

P(G(0) | LY = w) = IP(|25N3, (A€0,) —w| < 2¢(e)4 /(1 - M-)w )

and N (A(0, ¢)) is Poisson with mean n®(A(0, €)) = n%(A(e)) — n®(A(Me)) = (w /2€)
(1 — M~1), where A(e) is given by (5.3). Therefore, as in Lemma 4.2,

- -1/2
(5.10) P(GO)| L] =w) =1 - (¢mlog(1/e)) " ¢’(1+o(D),

uniformly over all w € (0,21log(1/¢)). To estimate the other terms in E5(¢), we
note that, for all w € (0,21og(1/¢)) and all x > Me,

P(G(0) | L} = w) = / - 1?5(6(0), LY € dz | L = w)
0

= /00 P(G(0) | LY =2)P(L} € dz|L% = w),
0
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since, by the exit system formula, G(0) is independent of L%, conditioned on
LY. Hence

P(G(0) | L% = w) =

4log(1/¢e) 0o . .
(5.11) </ +/ )IP(G(O) | LY =2)P(LY € dz | L} = w)
0 4log(1/e)

¥E4(a, w) + Es(e, w).
By Lemma 5.4, for all ¢ € (0,(2x)"1),

N+1 1
Es(e,w) < IP’( > g > 4log(g)>

Jj=0

<a1- 2x£)_3exp<1_w—gx£ - 4§log<—i~>>.

Pick ¢ ¥ (2%)-1(1 - \/w /41log(1/¢)). We get the following estimate for Ej:

Es(e,w) < (il‘)guf_l/a))s/z exp(—2—1x (ﬁ- 4log<§)>2>.

Since 8 € (0, 1), uniformly over all x € [Me, 1],

3/2
su Es(e,w) < | 4e~ 1lo exp(—(2xe)~?!
(5.12) engZIl?)g(l/e) ° ( e ) o )

< Cr(M)e
for some finite positive constant C;(M). Furthermore, as in Lemma 4.2, uni-
formly over all z € (0,4 log(1/¢)),

-1/2

(G(O) |L=2)=1- (07r10g<%)> e (1+0(1)),

where the o(1) term is independent of x > Me. Hence, uniformly over all w and
all x > Me,

-1/2

Eye,w) <1- (0,7r log<%>> e (1+0(1))

< exp<-08(9,M) log™ /2 (%)ﬁ)



1322 D. KHOSHNEVISAN

for some finite positive constant Cg(6, M). Therefore, by (5.11) and (5.12),

P(G(0) | L} = w) < exp(—Cg(Q, M)log™'/? <§>59) +Cry(M)e

< Co(6,M) exp(—Cg(O,M)log_l/z (§>50>

uniformly over all x € [Me, 1] and every w € [Me,2log(1/¢)]. Here Co(0, M) is
some finite poositive constant. Therefore, by (5.8b) and (5.10), there exist finite
positive constants C1¢(6, M) and C11(8, M) such that

sup Ey(e) < C1o(6, M) exp(—Cg(O,M) log=Y/2 (1)59>
x € [Me, 1] £

x (1 - (07r log<%>) _1/250(1 + o(1))>

< C19(6, M) exp(—zcu(a,M) log~1/2 e)e")

Hence, from (5.9), it follows that, for some finite constant C12(6, M),
P(G(0) N Gx) N {T, < \})

(5.13) 1

< C12(6, M) exp(—ZCu(B,M) log~Y/? (—€->59).

By induction, the proof of (5.13) shows the existence of positive finite constants,
Ci3 = C13(8, M) and Cy4 = C14(6, M) , such that, for any integer v € [2,(Me)™1]
and all x1,xo,...,x, € [Me, 1], which satisfy x; > x; _ 1 + Me,
~ ~ ~ —12( 1\
P(G(0)N G(x1)N - N Gle,) N {Ty, < A}) < Cravexp| —Crylog = Jve

< Cizexp(—Crave?).

We shall let x; ¥ iMe, j=0,...,[(Me)1. It follows that v = [(Me)~] in the
above. Moreover,

P(G(x; 8,¢) N {T; < A} for all x € [0,1])
(5.14) <P(GO)NGGy) N -+ N Glx,) N {Tx < A})
< C13(6, M) exp(~C14(0, MM (]’ ~1).

With no essential changes, the proof of (5.14) can be extended to show that,
for all real-valued a < b, there exist positive finite constants C15(6,M,a,b) and
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C16(0,M,a,b) such that
]P’(é(x; 8,e) N {T < A} for all x € [a, b])
< C16(6,M,a,b)exp(—C15(6,M,a,b)[e]’ ~1).

Fix p € (0,1) and define p(n) ¥ p". Since we had fixed 8 € (0, 1), it follows at
once that, for all a < b,

ZIP( %30, p(n)) N {Ty < A} for all x € [a, b])

The Borel-Cantelli lemma and a sample path argument together show that

_ _M-1\71x
limint sup 22N (o) = (1= MTDIF] o (1 - M-1)Lx.
n—oo el ¢ (p(n)) a<w<b

Letting 6 1 1 along a countable sequence, since @ < b is arbitrary and x — L3
is continuous,

imi |20()N (x, pn)) — (1 — M~1)LY)] - -
l};n_l.gf sup 0 ( p(n)) > ZMTAJ—I) .

z€R!

However, as pointed out earlier,
% (A(pm) ) = N (x, pm) + N (A(Mpin) )
and |u(x, ) — NI’f,i (A(g))] < 1. Therefore,

|2p(n)up(n)(x’ A) - Lﬁl

lim inf
"o em (o)
_ _ -1\rx
> liminf sup [2000N (x, p) — (1 = M) L5
R0 et ¢ (p(n))
|2000N, (A(Mp(n) ) - ML
— lim sup sup 2
n—oo xcR! ¢ (p(n))

>2,/L3(V1-M-1 - VM-Y).

The last inequality holds because of the (already proven) upper bound, (5.7).
Since M > 1is arbitrary, letting M 1 co along a countable sequence, we see that

lim inf sup |2p(n)up(n)(x, A) — L)\|
n—00 Rl S0('0(’1))

L;.

By a monotonicity argument and taking inverse Laplace transforms as in the
previous section, the lower bound follows. O
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6. Proof of Theorem 1.5. As in the proof of Theorem 1.3, we can reduce
the problem to the case where x = 0 and ¢ = 1. Moreover, much as in the
derivation of (4.1), one can argue that it is sufficient to show that, for allw > 0,

) |(me/2) " e.(0,1) — w|
(6.1) hr?ls(:lp o)

1/2
=2mY4wl/? as.,

where x(e) S /4, /TV loglog(1/¢). Therefore, from now on we shall hold fixed
aw > 0.

Recall the process of excursions from 0, {el; s > 0}, and the associated
counting process, {N?(A); t > 0}, for measurable A C U, U {6}. Define

A ¥ {feUyu{6}: R > ).

We recall that R{) was the lifetime of the excursion, £, from 0. Since Q,,-almost
surely,

INw (A(S)) _ee(oy l)l <1

(where Q, is defined in Section 4), by (6.1) it suffices to show that P-almost
surely,

limsup |75/ No(AE) - ]

- (2m)V4wl/2.
€10 K(e)

However, by the exit system formula, N?(A(¢)) is a Poisson random variable with
mean n%A(e)) = (2/7¢)/2w. The calculation of the latter excursion law can be
found, for example, in Proposition XII.2.8 of Revuz and Yor (1991). Therefore,
arguing as in the proof of Lemma 4.2, for all 4 > 0,

re\ Y2
IP’( (?) N, (A@) —w\ > (27r)1/4(w9)1/2n(e))

(6.2)
— \/2/17;2 0(1 +o(1))
(2010g10g(1/e) (log(l/e))

as e | 0. Define for alle > 0 and 4 > 0,

Soe) ¥ {w: |(re)/2NG (Ale)) (w) — w]| > (27r)1/4(c9w)1/2n(6)}.

First, we will prove the upper bound for the lim sup. Fix p € (0,1) and § > 1
and define p(n) & p". Then, by (6.2),

D P(Se(n)) < C17(6) Y (logn)™/2n~ < oo

n=1 n=1
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for some finite constant C17(8). Therefore, by the Borel-Cantelli lemma (and
letting 6 1 1), it follows that

tim sup L2/ NG (o) — ]

< (9 4w/2
n— 00 K (p(n)) < @y w

almost surely. However, as € | 0, there are integers, N, for which p(N. + 1) <
e < p(N.). Since A(p(N,)) C A(e) C A(p(N, + 1)), it follows that

N3 (A(pN.)) < NY(AE) < N (A(pVe + D).
Hence, using some arithmetic,

Jim sup |(we/2) Y2N0 (AGe)) - 2| < @mA (E )1/2
€10 K(e) - P ’

almost surely. Letting p T 1 along a countable sequence, we arrive at the desired
upper bound.

For the proof of the lower bound, define p(n) & - and let
Bn+1) LA (pn + 1)\A(p(n),
Ny €N (B(n)).
Let us note that N(n) = N2 (A(p(n + 1))) — N3(A(p(n))). Since {B(n); n > 0} is a

disjoint sequence of sets in Uy U {6}, by the exit system formula, {N(n); n > 0}
are independent Poisson random variables with mean

n? (A(p(n +1)) \A(p(n))) =n° (A(p(n + 1))) —n° (A(p(n)))
= (lp(_n2+_1)> _l/zw(l + O(n_1/2)> .
Let

§9(n) (;f {w:

1/2
(ED(—n;-—l)) N(n)w) — wl > 2m)Y 4w 2k (p(n + 1))},
where 6 € (0,1). Then, arguing as in (6.2),

P(Se(n)) = (r6logn)™2n=? (1 +0(1)).

Therefore, since 6 € (0, 1), Z}nIP’(gg(n)) = co. By the independence half of the
Borel-Cantelli lemma, P(Sp(n), i.0.) = 1. In other words, letting 6 T 1 along a
countable sequence, :

> (2n
llmsup ( ( ])) - = ( ) w )
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almost surely. Therefore,

limsup |(75/2) Vo () —w|
€lo k()
|(me/2)"*N3 (A(ptn + 1)) - w]

>1i ;
- lr?l—»sogp k(p(n + 1))

2)"" N3 (A(p(n + 1)) - w|
1/4,.1/2 _ 1: ‘(m/ w
2 (2m " w h,frisolip k(p(n + 1))

= @m)Y4wl2,

by the upper bound half (which we have already proven) together with the
fact that x(p(n)) = s(p(n + 1))en)~Y4(1 + 0(1)) = o(x(p(n + 1))), as n — oo. This
completes the proof. O

7. Proof of Theorem 1.6. Theorem 1.6 is proved much like Theorem 1.4.
Therefore, for the sake of brevity, we shall point out the differences in proofs.
As in Section 5, we start with the proof of the upper bound. The first result is
the analogue of Lemma 5.3.

> 2k(e) /6L, Ty < /\>

LEMMA 7.1. Let 6 > 0, be fixed. Then,as ¢ | 0,
~1/2

re\?
P (;) e(x,\) — L}

= (0#10{3{(%)) %= V2 (1 4 0(1)),
where the o(1) term is independent of x € RL.

Proor. We proceed almost exactly as in the proof of Lemma 5.3 with some
minor adjustments. Let

(7.1) D&Y |J {f eUxR[>¢}).

xeR!

Following the argument in Lemma 5.3,

re\ Y2
P( REACCR

2
0logl/e) /] 1/2

= 2e"‘/§|x|/ IP’< (%6) Ng(D(e)) —wl > (27r)1/4n(6)\/%>
0

x e~V du + R(x, ),

> (2m)4 k()1 /OL%, T < A
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where R(x,¢) > 0 for all x € R! and ¢ > 0; moreover,

(7.2) sup R(x,e) < gv20,
x€R?

From Section 6, N{(D(¢)) is a Poisson random variable with mean (2/ we)l/ 2
Therefore, as in Lemma 5.3,
1/2

1/2
p( (3) m@o) —w\ > (zn)l/‘*n(e)x/%)
= <9wlog<§)) e?(1+0(1)),

2
uniformly over all w € (0,81og(1/¢)). The lemma follows from (7.2). O

Fix R, 7,0 > 0 and define, as in Section 5,
Ken R ¥ {s eRL:see"(Z'n [—R,R])},

1/2
(E> ea(x,/\)(w)—L’f\(w)lZ(27r)1/4n(6) 9L§(w)}.

Vix; 0,¢) o {w: 3

Then, exactly as in Section 5 (using Lemma 7.1 instead of Lemma 5.3),
-1/2

]P( U Vix;6,R)N{T, < )\}) < Cq5(0, n,R)(log(l)) gl

x€K(e,n,R)

Fix p € (0,1), n > 1 and 6 > 7. Replace ¢ by p(n) ifp" to see that
e

n
Therefore, as in the argument leading to (5.5),

/2
. | (mp()/2) e 6, V) — I3 | va [y
(7.3) limsu su < (2m)Y/4, /6L,

noo % (:‘K(p(nl)), 0,R) k(p(n)) g

V(x;0, p(n)) N {T, < )\}) < 0o

x € K(p(n),n,R)

Temporarily fix some ¢ € (0,1/2). By the modulus of continuity of ¢ — Z(¢) [see
(2.1b)], a sample path argument reveals that, uniformly over all x ¢ R! and
telo,1],s

ec,(x — 6,t) Neg(x +6,t) < e.(x,t) < e, (x — 6,8) Ve (x+6,2),

where g ¥t 8%, €1 o 8¢, and € > 6§ > 0 are small. Arguing as in the proof
of (5.7), we are led to the following:

1/2
. ne/2) ' Tec(x, N) — LX -
(7.4) lnzlls(}lpxsélgl ( ) Ea i = @mV4, /L3,
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which is the desired upper bound. To get the lower bound, the ideas are again

similar to those appearing in Section 5. Fix M > 1, x € R, § € (0,1/2) and
e € (0,M~1). Define

D(x,¢) o {f €U, R >cand sup |f(r)| §x+(Me)1/2}.
0<r<RL

Also define

Wx,e) & {f e U, sup |f(r) 2x+(Me)1/2}-
0<r<R]

Let N be the countmg process associated with D(x, e) that is, N(x 5) = fo

(D(x,€)). Define n(e) € (1e/2)Y/2n%(D(0,¢)) and 7i(e) = (ne/2)/2[n°(D(0, €)) —
n%(D(0, ¢))]. Based on the above definitions, we define

1/2 _
(%) N(x elw) — n(e)L} (w)' < (27")1/4,%(8) On(e)LE (w)}

The event 13(x; 0, ¢) is this section’s analogue of E}(x; 0, ¢) of Section 5. The fol-
lowing lemma estimates n(e).

ﬁ(x; 8,¢) o {w:

LEMMA 7.2. Forall e € (0,M~1),

o) € [o, (%)m],
ne) € [ ( )1/2, J

PRrOOF. Recall the definition of D(¢) from (7.1). Then, for all w € R! and
e >0,

Ny (D()) > N{(D(0,8)) > N§ (D(e)) — Ny, (W(0,e).

Letting w = 1 and taking expectations,

TE 1/2 E 1/2
(?> n®(D(e)) > nle)-> (?> [nO(D(e))—nO(W(O,e))].

The lemma follows since, from Section 6, n°(D(¢)) = (2/7¢)'/2 and, from Section 5
and the exit system formula, n®(W(0,¢)) = (Me)~1/2, O
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Letx; & jMe)/2 forj=0,...,0 ¥ [(Me)-1/2). Writing D(x) for D(x)(ax; 6, ),
as in Section 5, we obtain

P(D(0) N Dx1) -+~ N D) N {Ts, < )

10\ -2
< Cpoe~1/2 exp(—C2Oz/ (log(;)) 50)

< Cg exp(—Coge? ~1/2)

for some positive finite constants, C; = ¥ Ci6,M),j=19,...,22.Fixp € (0,1) and

define p(m) = p’” for m > 1. By Lemma 7.2 and the Borel—Cantelh arguments
of Section 5, since 6 € (0,1/2) is arbitrary,

|(7r,0(m)/2) (x p(m)) — n(p(m)) L’)‘\| N (1) 1/4 oL

(7.5) liminf sup 9

m—00 L eRrl (p(m))
where [y a (1 - (2/M,)'/?). On the other hand, let us define
N(x,e) £ N, (DE\D(x,€)) = N, (Do) — Nz, ).

Then, as in (7.3), we see that, for all §, > 1,

'(wp(m)/2) 1/212\7'(x, p(m)) — 7 (p(m)) L%
lim sup sup

m—o0o  x€K(p(m), 8, c0) k(p(m))

2
(7.6) < (@emtt (m) foL

= 2%/45=1/Ap-1/2, fooLs.

Since ﬁ(x, €)+ N’(x, ¢) differs from e.(x, \) by at most 1, (7.5) and (7.6) together
yield the following:

.. |(7rp(m)/2) ep(m)(x A) — L| 1/4 "
lmintsop By 2 ()

where ay = ay(8y) = ﬂl/ 2 _ 2(0o/Mm)Y2. But M > 1 is arbitrary. There-
fore, we can let M T oo along a countable sequence. Since limy;_, o, By = 1,
limy _, o oy = 1as well. Hence the desired lower bound follows from the mon-
tonicity argument of the previous sections. O
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