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LARGE DEVIATIONS FOR EMPIRICAL PROCESS OF MEAN-FIELD
INTERACTING PARTICLE SYSTEM WITH UNBOUNDED JUMPS!

By SHUI FENG
McMaster University

A large deviation system is established for the empirical processes of a
mean-field interacting particle system with unbounded jump rates under
assumptions that are satisfied by many interesting models including the
first and the second Schlégl models. The action functional obtained has a
form that is very useful for applications.

1. Introduction. In this paper we consider a finite particle system inter-
acting via the mean of the system. Such a system is usually called a particle
system with mean-field interaction and can be described in the following way.

LetE = {0,1,...},and let E®" be the N-fold Cartesian product of E for N > 1.
M (E) denotes the set of all probability measures on E. C3(E) and C,(E®V) will
denote the sets of bounded continuous functions on E and E®V, respectively.
For any u € M (E), f € Cy(E), we introduce an operator Q,,:

(1.1) Quf®) =Y qu,y (F(y) — f(2)) + [[u]| (fx + 1) - f@)),

y€EE

where (gy,,);,y c £ is the jump matrix and ||z|| denotes the first moment of u.

Let 6, denote the Dirac measure at x. Then the N-particle system mentioned
previously is a Markov process M (¢) = (™ (), ..., 2"(®)) on E®N with gener-
ator

N
(1.2) QW) =3 Q¥ v(&™),  ¢eCy(E®),
k=1

where x™ = ™, ... %) € E®, eum = (1/N)XY_, 8,00 and Q¥ is used
instead of @, when it acts on the kth variable of 1.
For a given process V() = ({M(?), ..., %\ (¢)) with generator (1.2), let

N
1
(1.3) ExM(p) = N Z 5x2m(t), t>0,
k=1

denote its empirical process. It is known that for any finite time interval, the
empirical process satisfies a law of large numbers as N — oo [4] and that the
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limiting deterministic dynamics are characterized as a weak solution of the
nonlinear master equation

d
(14) ilf%?iz = <u(t)7 Qu(t)f)» f S Ck(E)a

where Cp(E) denotes the set of continuous functions on E with compact support.

The nonlinear master equation was proposed by Nicolis and Prigogine [13] as
amean-field model of a chemical reaction with spatial diffusion. Feng and Zheng
[8] established the existence and uniqueness of the solution to the nonlinear
master equation and proved the existence of at least three equilibrium states
for the second Schlogl model.

The motivation for this paper is to investigate the long-time behavior such as
tunnelling and metastability of the N-particle system. Consider the case when
the nonlinear master equation has more than one equilibrium state. From the
law of large numbers we can see that if IV is large but finite, then the empirical
process will normally follow the path of the dynamical system (1.4) that is
attracted by one of the equilibrium states. As time goes on, the particle system
will make small fluctuations near the equilibrium states. However, because
of ergodicity, the transition from the neighborhood of one equilibrium state
to another may eventually occur via large deviations. It is the purpose of the
present paper to study the large deviations of the empirical process e, from
the dynamical system (1.4) and to find a nice representation for the action
functional.

Similar problems have been studied extensively by many authors. Freidlin
and Wentzell [9] studied the small random perturbations of finite dimensional
dynamical systems and developed a large deviation theory to investigate the
long-time behavior of such systems. An infinite dimensional generalization of
the Freidlin-Wentzell theory was obtained by Dawson and Gértner [3] for the
weakly interacting diffusions in the McKean—Vlasov limit. By identifying three
different expressions for the action functional, they got an integral form for the
action functional that is an analogue to the finite dimensional case. In [3], the
large deviation system is established by a generalized Sanov theorem for the
empirical distribution and the contraction principle, whereas a much greater
effort was made to obtain the integral form for the action functional.

Our model belongs to the setting of jump processes. Large deviations for
this type of process have been studied by several authors in various situations.
Comets [2] proved a large deviation principle of the empirical processes for the
Curie-Weiss model on the torus. Sugiura [16] studied the pure jump processes
with compact state space and established a large deviation principle for both the
empirical distributions and the empirical processes. Léonard [12] discussed the
large deviations for the empirical processes of the particle systems associated
with spatially homogeneous Boltzmann type equations. The special feature of
our model is that it is not only a pure jump Markov process with mean-field
interaction, but also with unbounded jumps. The main result of the present
paper is to establish a large deviation system for the empirical process (1.3)
and give a nice expression for the action functional.
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The present paper is a continuation of [7] in which the large deviations for
the empirical distribution

1 N
NNy = N Z 6;\:}’]")(-)
k=1

are studied. Using the “inductive topology” and the Cameron—-Martin—Girsanov
formula, it is proved that the distribution of 7w, satisfies a full large deviation
principle with rate function equal to the relative entropy. Consider the map

7T(’l7x(N)(.)) = (t — Ex(N)(t)).

If 7 were continuous in the appropriate space, as it is in the diffusion case,
then the large deviation property for the empirical processes would follow di-
rectly from the contraction principle. Unfortunately, this is not true. Even so,
it is still possible to get the large deviation principle by using Lemma 2.1.4 of
[5] and some continuous exponential approximations of the map 7. However,
in order to get a nicer expression for the action functional, we choose to use a
direct proof that is a combination of the techniques used in [2], [7] and [16].

An outline of the development of the article is as follows. Some notation and
preliminary results are given in Section 2. The main result is given in Section
3. Finally, in section 4 we prove the main result through three subsections:
subsection 4.1 deals with the lower bound, subsection 4.2 gives the proof of the
compactness of the level sets and the upper bound is obtained in subsection 4.3.

2. Notation and preliminary. Let E = {0,1,...} be equipped with the
discrete topology, let p be the discrete metric, let E®N be the N-fold Cartesian
product of E for N > 1 and let M;(E) be the set of all probability measures
on E with the usual weak topology. For any T > 0, D([0, T, E) denotes the
space of functions from [0, 7] to E that are right continuous and have left limits
at each ¢ € (0,7] and are left continuous at T, furnished with the Skorohod
topology. The restriction to [0, T'] of the processes in the sequel will have a left
continuity modification at time T'. It is well known that D([0, T, E) is a Polish
space in which the Borel o-algebra coincides with F = o{x(¢): 0 < ¢ < T}, the
smallest o-algebra generated by {x(¢): 0 < ¢ < T}, where x(¢) = x(t,w) = w(?)
for all £ > 0 and w € D([0,T],E) (cf. [6]). Similarly, we can introduce spaces
D([0,T1, E®N) and D([0, T, M1(E)). Cy(E) is the set of all bounded continuous
functions on E and C(E) is the set of all continuous functions on E with compact
support. (Note: In fact all functions on E are continuous.) C;(E®V) and CR(E®N)
are defined similarly. For any f € Cy(E), 1 € M;(E), we will use (u,f) to denote
the integration of f with respect to u. For any subset A of E, I, will be used to
denote the indicator function of set A.

Let ¢ be a function on E defined by ¢(x) = 1 +xloglog(x +38). For each m > 1,
let Dp, = {pu(-) € D(0,T], My(E)); supy<,<r{ut),p) < m} be equipped with
the subspace topology of D([0, T], M1(E)). Doo = U,, > 1 Dm is equipped with the
“inductive topology.” By definition, a set V is'open in D, if and only if VN D,,
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is open in D,, for each m > 1. It is known that a function is continuous on D,
if and only if it is sequentially continuous.

Let MTW(E) = {u € M1(E); (u,) < m} with the subspace topology of M1(E).
Then it is not hard to see that D,, = D([0, T1, MT*(E)). Let r denote the metric on
M/(E) defined by r(u,v) = £3° (27" |u(n) —v(n)|, Vu, v € M1(E). It is well known
that metric r induces the vague topology on M;(E) and the vague topology coin-
cides with the weak topology on M7 (E) for any m > 1. Hence the two topologies
will induce the same “inductive topology” on Dy.. For any u(-), v(-) € D, let
ror(u(-), v(-)) = supg < ; « 7 (@), v(¢)). Then rop induces the uniform convergence
topology on D,. From the definition of r and the right continuity, we can prove
that for any fixed vo(-) € Doo, F(u(-)) = rop(u(-), vo(+)) is measurable with respect
to the Borel o-algebra of space D, with the “inductive topology.” This fact will
be used in proving the upper bound.

Let @ = (qx,y)x,y c £ be a totally stable conservative @-matrix satisfying:

(2.1 xigg{Qx,x+l} > O;

(2.2) 3A >0, such that g,y =0 for |x —y| > A;
3IX > O such that Vx € E,

(2.3) S qey(y - <Ax+D, Y gay(9(y) — p®) < Ap);
y€E y€EE

30 <c < oo, suchthatVx, y e E, y > x,

0o
(2.4) Z(Qy,y+z - Qx,x+z)z +2 Z [(Qy,x—z - Qx,2x—y—z) Vo
2 #0 z=1

+(Qx,y+z _Qy,2y—x+z)vo]z <cly —x);
vi>0,3X0)>0,>

supmax{ Z qx,y(exp(y —x) — 1) + (e — 1)z,
x€EE yEE

(2.5) > ey (exp(<p(y) — px)) — 1)

y€EE

+(exp(plx+ 1) — o) - 1)1} < ().

REMARK. All these conditions are satisfied by many models including the
first and the second Schlégl models. For more detail refer to [7], [8] and [15].

Forx,x',y € E, u € M,(E), define

Qux+1+%, fory=x+1,

(2.6) Qx,x',y) = { Qx5 fory #x,y #x+1,
0, -otherwise,
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2.7 Qu(x,y) = /EQ(x,x',y)u(dx').
Then we can rewrite (1.1) and (1.2) as

Quf@) = /E Qule, dy)(f&) — f&),

N
AVHE) =3 [ Qe (5, dy) A0 (),
i=17E

where
AV ) = (VL N aY)
—w(x(lN),...,xEI_V{,xEN),foi,...,x](VN)).
For every u € M1(E), u(-) € D([0, T1, M(E)) satisfying
. gglg)T(ﬁ(t), p) <00,  (u,p) < oo,

let Py.), , be the unique solution to the time-inhomogeneous martingale problem
for @) with initial distribution u.
For eachw e Dand A C E, let

(2.8) N, A;w) = #{s: w(s) € A, w(s) # w(s—), s < t},
~ ¢
(2.9) N, A;w)=N(t, A;w) — / Qs (w(s),A) ds,
0

where Q)(w(s), A) = ¥y caQue)(w(s),y). Then we have the following lemma
(cf. [7]).

LEMMA 2.1. For every finite subset A of E,
(2.10) NG, A; wisa Py, u-martingale.

For every x,x',y € E,y #x,u,v € M1(E), let

’ _ Qx,x',y) V) — Q.(x,y)
(2.11) qu(x,x',y) = Q) q,(x;y) = Q.59
and
Qp(xa xl,x) = QZ(x, x)=0.

For any integer N > 1, let PV ) be the unique solution to the martingale prob-

lem for Q" with initial distribution u®". Let PLI(V ; , be the N-fold independent

product of Py, ,. For every x™(-).€ D([0, T], E®V), define

1 N
ExNy(y = N I; (5xiN)(.).
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Let V() = PNV o ey, () and PG () = P o 2k, (). Obviously,

P00, P, L) € My (D(10, 71, My(E)) )

i), u

In fact, they are both concentrated on the space D.
Then we have the following theorem (cf. [4]).

THEOREM 2.2 (Cameron-Martin-Girsanov). P4  and PV are mutually
absolutely continuous and

dPY oy (N) (. ()
where

N
HP (M) = Z/[o . {logq;‘((sbf‘;‘"(xﬁN)(s—); ) }N(ds,dy; M)
i=17/0,

N T
-3 / {lexwell — B} ds
i=1Y0

(2.13)

dl 1 () )
= log — as—) (7 (s=), " (s—);
Z;/[O,TJXE{ gNqu( )(z ' y)}

N T N (N)
<N (ds,dys 50 - 3 [ { (W) : ||n<s>||} ds.
i=170

The following lemma was proved in [7] and will be frequently used in the
sequel.

LEMMA 2.3. Let u € M1(E) satisfy
2.14) n= /E exp (o)) u(dz) < co.

Assume conditions (2.1)-(2.5) are satisfied. Then for any r > 0, there exists an
Ry > 0 such that for all R > Ry and N > 1, we have

(2.15) PV {D\Dr} < exp(—Nr).

REMARK. Using exactly the same argument, we can show that (2.15) still

(N) (N)
holds when P, is replaced by () ,.
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3. The main result. Let X be a Hausdorff topological space and let
{Py}n>1 be a sequence of probability measures on X. {ay} is a sequence of
positive numbers tending to co. S(-) is a function defined on X with values
in [0, oo].

DEFINITION 3.1. (X, Py,ay) is said to be a large deviation system with
action functional S(.) if:

(i) For every open subset G of X,
s -1 >
3.1) lllﬁlglofaN log PN (GQ) > xlgg S(x).

(ii) For every closed subset F of X,
3.2) lim sup aNl log Py(F) < — mf S(x).

N — o0

(iii) The level sets {x € X: S(x) < s} are compact for all s > 0.
(By convention the infimum of the empty set is c0.)

REMARK. If (X,Py,ay) is a large deviation system with action functional
S(-), then we also say that the sequence {Py} satisfies a full large deviation
principle with rate function S() (cf. [5], Chapter 2).

For fixed T > 0, let C,t’ °([0, T1 x E) denote the set of all continuous functions
on [0,T] x E with compact support and first order continuous derivative with

respect to ¢. For every u,v € M1(E), g € Co(E), f € C;’O([O, T x E) and every
(), p(-) € Do, let

ey (B0 £, T) = {u(T), F(T)) — {u(0), £(0))
/ (1), L 1 exp(£(6) Quuoexp(£1s) ) ds
J('U,(); f, T) = /J,(-)(ou( )’ fa )) u(V)g) = <V’g> - log(u)eg>

and
(3.3) SEO (1) = sup{ L, (4(0),8) + Ty (4% £, T);

f € Cp°(10,TI x E), g € Gy},
(3.4) Su (1)) = 88 (u().

It is not hard to see that Vg € Cy(E), f € Cy °([0, T x E), 1,(11(0),8) + I (u(-); f,
T) is continuous on the space Do, and thus Su( ) is lower semicontinuous. It is
also true that S,(u(-)) = 0 if u(-) is the unique solution to the nonlinear master
equation (1.4) with starting point u.
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The main result of the present paper is:

THEOREM 3.1. Let u € My(E) satisfy (2.14). Then under assumptions (2.1)-
(2.5), (Do, fPftN ) N) is a large deviation system with action functional S,(-).

4. The proof of theorem 3.1.

4.1. Lower bound. In this subsection we will get the lower bound through
a series of lemmas. The method we use is similar to that used in [16]. Because
of the unboundedness of jumps, some new methods and techniques are needed.

For i(-) € Do, T > 0,5 € [0, T] and x € E, let Py (s, x) be the unique solution
to the martingale problem for {Q;); ¢ € [0,T]} with initial distribution é, at
times. For 0 <s <t <T,u,v € Mi(E), f € Cyp(E), we define

ls'<t> M(E) x My(E) x Cy(E) — (—00,+00),
lz’(t.)(ua v, f)= <I/,f(x(t))> — <u,]0gEPﬁ(-), (s, 7) [exp(f(x(t)))] >

ForanyM > 1landO =ty <t; < --- <ty =T, we denotebyﬂ'(N)(to,tl, .., ty) the
joint distribution of (e,m(y), - - - » Exmgs,,)) o0 M1 (E)®M+ D under P o 2 p(to,tl, .,

tyr) the joint distribution of (x(to), . . ., x(tsr)) on E®M+D under P, ,. Then we
have the following lemma.

LEMMA 4.1. If M (E) is endowed with the weak topology, then for any M >
1,0 =ty < t; < --- < tyy = T,(M(E)BM+D 7N(go t:. ..., ty),N) is a large
deviation system with action functional Ltf’(’) M(....) defined by

Li:)(’) uM(/J‘Ov H1, - a/LM)
M-1

(4.1) = sup Lu(uo; 8)+ Z sup lfj(?“‘(uk,uku;f)
g ECHE) -0 fECLE

M-1

= sup L(uo; @+ ) sup. lt’“"‘”(uk,uku,f)
gE€CKE) 2o fEC

The second equality holds because Ci(E) is pointwise dense in Cy(E).

PROOF. Theorem 3.5 in [3] implies that (M (E)®M+D 7Nz, 1. ... t3),N)
is a large deviation system with action functional

M
L(/J‘Ovp‘lw"aNM): sup I:Z(/J‘hﬁ)_H(fO)an)jl’
i=0

fo s fu € Co(E)

where

H(fo,...,fu) = log /

E®M+1)

M
plto, t1,. .. ta)dxo, . .. ,dxy)exp ( > fi(xi)) .

i=0
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By the Markov property of Py.) , we can rewrite H(fy, ...,fu) as

log EFi.u [eXP{fo (x(t0)) + h(f1,- .- far) ((20)) }] )
where

M
h(f11 . ,fM)(x(tO)) = logEPﬁ(‘).(to-x(to)) [exp{ Zﬁ(x(t,)) }:I .

i=1
Because A(fi,...,fu) € Cp(E), we conclude that

Z(NO’NL- . 7:U’M)

M
= sup [lu(u07 fO +h(fl) cee 1fM)) + Z(Muﬁ) - <;u'07h(fla s )fM)>:|

for - fur € Cy(E)

i=1
M

= sup lu(uo;8)+  sup (1isfi) = (o, R(Uf1y - - ) |-

g €Cy(E) fl,...,fMGCb(E); [ ) < ' >]

By induction we get the result. O

The following estimate is crucial in getting the lower bound from the large
deviation system obtained in Lemma 4.1.

LEMMA 4.2. For.every v > 0,7i(-) € Do N C([0,T], M1(E)) and open neigh-
borhood V of fi(:) in Do, with the inductive topology, there exist finitely many
0=ty <t; < <ty=T and open neighborhoods V; of ji(t;),i =0,..., M — 1,
in M(E), under the vague topology such that

1

M-
(4.2) lim sup 1%7 log P;fv))u ({s ZVin ﬂ {e.t) € Vi}> < —.
i=0

N — o0

Proor. For any ji(-) € Do, N C([0,T], M1(E)), let V be any open neighbor-
hood of /() in D, with the inductive topology.
Lemma 2.3 implies that ¥y > 0,3m > 0, such that

(4.3) lim sup 1

im su NlogP(N) (DL,) < —.

(), u
The continuity of i(-) implies its uniform continuity. Thus

(4.4) 3,6>05 sup r(f), i) < =,
. : 0SS<tS6T1 4
t—s<

(4.5) {,u(') € Dm: sup r(u@),id) < s} cV.

t€l0,7]
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Now we choose any partltlon 0=ty <tg < <ty= T of [0,T] satisfying
ti—ti_1 <6, fori= -, M. If we take V= {1/ r(v, i(t;)) < €/4}, then we have

M-1
P, ({ evin ) eweT)

(4.6) -1
< p(ﬂl(\’; L(D2) + Z Pﬁ("))y ( ?up )r(e-(t), e.(t)) > %)
i1 teltitiv1

Let m, be an integer such that 32, ;27" <¢/4 and

me+A
. —2< > E:qu+ sup {WKMH>

x=0 y€E
N(I¢,t], A; w) = #{s:w(s) €A, w(s) # w(s—), selt, t}.

Then we have

&
2
N
7| 2 (L & @) ~ T (7))

j=1

N
Z(I{k} (5@) — Lo (V0 )

j=

P(ﬁ]X;,u{ sup r(e.(),e.)) >

te [tivti+l)

< p) g~ 1 >
(4.7 <Py, Sup 2

tE€ltitive) 0

|
> =)

| ™

Sen

te [ti)ti+1)

and

(N)
Pridu { sup

tE Ity tiv1) 4me

(I{k}(x(lN)(ti)) I{k}(x (t)))‘ = }

< Pﬁ(.),u{ sup

te€ [t tiv1)

(Fay (V@) — I{k}(xm(t)))‘ :

~ 4m.’

dt € [ti,ti+1), x(lN)(t) 5é x(lN)(ti) = k}

+Ppy, u{ sup

te lt;tiv1)

(1 (57 @) ~ Iy &M®)) ‘ o

3t € [t;, tiv 1), x(N)(t) #xN(@) =k}

3

< 2P0, u{N (It 11011, 0, 1, .. me + A} 25700) 2
< ZEPM')’“ {N([tn ti+l]7 {0, 1) ey Me t+ A}, x(N) }
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< 2EFko, {/ Quo (*1V(); {0,1,...,m. + A}) ds}
< Qme(tnl -t )
This combined with the independence implies

N

>l () - Iy (V)

j=1

1
(N)

g
>
tE [ty tiv) 4m.
N

55 (1) 2o 0, @1, 70 21))

n=N,
< 4V (g, (101 — 1]

where N, = [N - ¢/4m ] — 1.
Thus we have

IN

M-1 c
z PL](V;u( sup r(e.(®),e.(&)) > 5)

tE [t tiv1)

(4.8) .
<Mm.4 [qm ma-x{(tz+1 ti)}] ‘

If we take
(4.9) max {(t;+1 — )} < (exp [w —log qmeD A6,

then we obtain the inequality. O

LEMMA 4.3. If 1() € Deo,SE(u(-)) < oo, then there exists an integrable
function ho 1 on [0,T] such that for any 0 < s <t < T and g € Cy(E),

t t
(4.10) (), g) — (uls), g) = / ho, T(r)dr+/ (u(r), Qurg(M) dr.

This also implies that u(-) is continuous with respect to t and (u(-), g) is absolutely
continuous.

ProOOF. Let u(-) € Dy. To prove the continuity of u(.) it suffices to show
that the map ¢ — (u(?),g) is continuous for any g € C,(E).
For any continuity points 0 < s < ¢ < T of u(-), we can find a sequence of

smooth functions {k,} with k, — Ij, 4 such that for any f € C} °([0, T] x E),
Ty (O Bufy T) = (W), Baf(T)) — (u(0), b £(O))
- / < r), ah" f @, exp(—h,f(r) Qﬁ(,)exp(hnf(r))> dr
0
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(4.11) — (u@),f@®) — (u(s), f(s))
/ < (r), —— f ., exp(—f(r) Quc eXP(f("))>

asn — 0.

Thus S2(u(-)) < oo implies that there exists an R > 0 such that

sup {(uu), £O) = (4), F))
(4.12) F€C°®

/ < (r), f(r)+exp( f(r))Q,z(,)exp(f(r))>dr} <R.

In general, (4.12) is true for arbitrary 0 < s < ¢ < T by the right continuity of
7i(-). For fixed g € C4(E), g #0, 0 < s <t < T, and h € C!([s,#]) (the set of all
continuous functions on [s, ] with continuous first order derivative), define

I>¥(h) = h@)(ult), ) — h(s)(u(s), &)

¢ t
_ / P ), g) dr / R (), Qo &) dr

Let ||k = sup, ¢ s 4 |R(r)|. Then for any h with ||k|| < 1 we have
[I*(h)| = max{I*>*(h),I>*(-h)}

< max{Is’ th)
t
- / (1(r), exp(—g(Nh(N) Q) exp(8(NA(r)) — Qunh(rig(r))dr

t
. / (), exp(~g () Qury exp(IIR(P) — Quiyh(rgr)dr,

I»(=h) - / t <u(r), exp (—g(r)(—h(r)))Qﬁ(,) exp (g(r)(-h(r)))
- Quup(-h)e) dr
t
+ / <,L(r), exp(—g(r) (~h()) ) Qur) exp (g(r)(~h(r) )

- Quw (—h(r))g(r)> dr}

< R+ M(exp2|ig|l +2|ig| + 1),

where My = sup, ¢ 5 4 [{(1(r), %)+ % or y € supp(e), x #y3x,y] < 0o and supp(g) denotes
the support of g. Because

h
Is,t h) h Is t( >
4] = I
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and CY([s,?]) is dense in C([s, #]), we conclude that I*-¢ belongs to the dual space
C*([s, t]) of C([s,t]). Following Riesz—Markov-Kakutani (cf. [14]), there exists
a unique Baire measure m, ; (not necessarly nonnegative) on [s,¢] such that

I54h) = [! h(r)mg, «(dr). We also have from (4.12) that

t
§R+/
S

((r), exp (—g(rh(r) Q) exp (g(r)h(r))

1
/ h(r)ms +(dr)

— Qunh(r)g(r)| dr.

This implies that for every subset A of [s, #] with zero Lebesgue measure and
every h € C([s,t]), we have

<R.

/ h(rym, o(dr)
A

This means that m, ; is absolutely continuous with respect to Lebesgue mea-
sure. Thus there exists an integrable function A, ; such that

t
I5t(h) =/ h(r)hs,(r) dr.
Because
I%h) =1%T(h) —T%T(h)
T T
- / Who 1) dr — [ Wby 267) dr
0 t

t T
- / h(Pho (r) dr + / R (o, 2(r) — by, () dr.
0 t

and the left-hand side does not depend on the value of z on [¢, T, we get
ho,7(r) = ho +(r), forr € [0,¢].

Thus taking A = Ij; 4, we finally get (4.10), which implies the continuity of
u(-) and absolute continuity of (u(-),g), Vg € Cp(E). O

NoTe. Ifwe adopt the definition of absolute continuity in Section 4.1 of [3],
then u(¢) in Lemma 4.3 is actually absolutely continuous.

LEMMA 4.4. For every [i(-) € D, and open neighborhood V of [i-) in Do,

(4.13) lzlvni. iélf 1% log ?if(‘]; V) > —SEOq),
where
(4.14) SEO(u() = sup  Liys™(ulto),. .., ulty)).

0=ty < - <tpy,
M>1
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ProoF. Let j(-) be any element of D, and let V be an open neighborhood
of (). For every m > 0, V. N Dy, is an open subset of D,, by definition. If
S,‘;‘(')(ﬁ(-)) = 00, then (4.13) is obvious. Now we assume ¢ = S{:‘(")(ﬁ(-)) < 00. Then
by Lemma 4.3, fi(-) is continuous. Thus Lemma 4.2 is applicable. By direct
calculation we have

M-1
P V) > P (Vn N Vi>

a), u ), u
i=0
M-1
(N) (N)
Pac),u < ﬂ V> Tu()u( ven ) Vi)
i=0
~ ~ M-
=,,<N><to,...,tM><vox...xvm—?ﬁx;u( v,

where V; = {u(); pu(t) € Vi}, i=0,...,M — 1, and Vi = My(E).
Because Vj X - - - x Vs is an open subset of M1(E)®™+1 in the weak topology,
if we take « in (4.2) larger than ¢, then (4.2) combined with Lemma 4.1 implies

)

! M-
log?:fx;,u(vc n )}
i=0

> lim supl—vl—logw(N)(to, i)V X - x Vi)

N — oo

M-1
. 1
lim sup — log?u() V) > lim sup]vlogf}’ﬁf(\’; " (Vn ﬂ Vi>
N — oo N—oo i=0

N — o0

= max{hmsuleongM() u(

lim sup —
N — oo N

which gives (4.13). O
LEMMA 4.5. For every 7(-), u(:) € Do, we have

(4.15) SEO(u()) < SEO(u(-)).

Proor. Foreveryn >0,letE,={0,1,...,n} and

Qx,y, fory #x, x € Ep,

(4.16) qfcn;, =2y 4 q;’,‘;, fory=x, x € E,,
0, otherwise.
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For any u € My(E), f € Cy(E), we introduce an operator Q:

QUr@ =S ¢, (F9) - F@) + ullle, @) (Fx+ 1) — f&)).

yEE

Let P}, , be the unique solution to the time-inhomogeneous martingale

problem for Qﬁf()t) with initial distribution . Then P, , converges weakly to
P, u, the unique solution to the time-inhomogeneous martingale problem for

Qu» with initial distribution u as n goes to infinity.
Let us define for every s < ¢ and f € C,(E),

hﬁ")(s,x) = EP(:Z) ) [exp (f(x(t))) - 1],
&M(s,x) = log (1 +h{(s,x)).

Then by the backward equation we get

(4.17) &fa(s—’i) +QU hM(s,2)=0,  h{(tx) = exp(f(x)) —
(4.18) ?g—t#—) xp(~£(s, 1) @, exp(g{(s,10) =0, gt %) = ).

If the support of f is contained in E,,, then by definition the supports of h(")
and g(") with respect to the second coordinate are both contained in E,,. Hence

h(") and 2"’ are both in space C,t’o([O, Tl x E).
For all ¢; .1 > ¢;, let

T (), g) = (ulti 1), 805 ) — (ult:),8(E)
B /ttm < ), g( ) +exp(—g(r))Q§f(),) exp(g(r))>dr,
J;t'ff.t)i+1(l‘(-); g) = (/i(t;+ 1) g(ti+1)) — {ut),8())
B /ttm < ), g( ) +exp(—g(r))Qu(,)exp(g(r))>

LS ™ (uC), f) = (e 1), f)) — <u<ti>,g§:*31<t,-,x>>,

taking n large enough such that the support of f is contained in E,. If we take
f < 0, then we have g, < 0 and

forx <norx>n+A,

g (n) (n) - ’ .
Quw &l (5,2) ~ Q) &1, (5,2) { Yy ek, 9= 085, (s,3), forx e ln+1,n+Al
Thus by (4.18) we have

Q( (s)g§?31(s’x) z Qﬁ(s)gg?l(s x),

BT (MO, ) < T (wee,),
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which implies

(4.19) Laben™ (u(y; f) < _ sup JHS (u);8)-
g€C, (It tis1] X E)

Letting n go to infinity, we get

(4.20) B ues £) < sup TR (uc); g).
g€C, (Iti,tis1]l X E)

Because we can take f = f — Ifll, Vf € Cp(E), then it can be seen that (4.20)
is still true for general f.
ForO=ty<t1 <---<ty=T,let

% m1n {ltz+1 ti|} > e,

1 .,S“p Ji-ié.‘f” (WC58) < TS (usg:) +€/M
€Cy (ltis ti41] X E)

for some g; € Ci’o([t,-,ti“] x E).

Then each g; has an extension on C;’ %([0, T x E), which also will be denoted by
gi. For 0 <i <M — 1, we define

1, for t € [¢;, ¢ +1],
hi@t) =14 0, fort <t;—e/2 or t >t.1+¢€/2,
smooth, otherwise,
1, for € [to,t1],
¢ =40, fort >t +¢/2,
smooth, otherwise,
1, for t € [ty 1,tm],
hyr_1@®) =<0, fort <ty_q1-—¢/2,
smooth, otherwise.
Let
M-1
g%(t,x) = Z hi(t)gi(t,x).
i=0

Then we have

Jae (00);8°,T) = (W(T),g (D)) — (1(0),8°(0)

/0 < "), 6g5( )+exp(—g€<r))Qu<,> exp(g (r))>
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M-1

{ a0 (BC); hig, )}

i=0

T
+/0 {<H(7‘), eXp(_gs(r))Qﬁ(r) eXp(Ee(r))

M-1
- Z exp(—hi(r)g:(r)) Quc eXp(he(r)gz(r))>}

i=0

It is not hard to see that the second term will go to zero as ¢ — 0. Thus by
(4.11) we get that for any pair of continuity points ¢; < t;,1 of u(-),

M-1

Jm.)(ﬂ(‘); 55) — Z Jéi(")t“l(ﬂ(’x gi)°

i=0
This combined with the right continuity implies that for any n > 0 and any
t; < t; +1, there exists an € > 0 such that

M-1
sup {55 (u08) < Tao () E°) +
i=0 8€CY (i, t11] X E)

< sup {J,z(.>(u(~); g)} +

g€Cy (0, Tl x E)
This combined with (4.1) and (4.20) implies (4.15). O

Now we turn to prove the lower bound for the nonindependent case. The
main result of this subsection is the following lemma.

LEMMA 4.6. For every Ti(-) € D and any open neighborhood V of 7i(-), we
have

4.21) lim inf = Tog XV (V) > ~8, (7).

Proor. Let fi(-) be any element of D, and let V be an open neighborhood
of it. If S,,(7i(:)) = oo, the result is obvious. Now we assume S, (7i(-)) < oo. For
anyp>1,p'>3, 1/p+1/p’=1and u(-) € D, let

N
KN (xM0), ) =Z/ o Elongg )(x(N)(s ); ¥)N (ds,dy; x™M()),
i T
G (u0) = -N [ (1wl - [} ds,

L(N) (N)() :U'() Z/O - E[ q//jg ) (N)(s_)’y))—l’ /p_l}

X Qus— (¢ (s =), dy) ds
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Choose m large enough such that i € D,, and
1
N

Then for any § > 0, we can find an open neighborhood W of z such that W; c V
and .

log P00 (D%, < —28,(A()).

N 0, u

(4.22) |G (u())| < 6N uniformly on Wy N Dyy,.

Let M,(E) = {u € My(E): (u,p) < oo} equipped with the weak topology.
Then we have that for any v € M,(E),y #x +1, [(q’,j(x,y))‘P//P —-11Q.,(x,y) =0,
whereas for y = x + 1 it is a continuous function with respect to p uniformly in
x on M (E). This implies that there is an open neighborhood Wy C V such that
(4.23) ILE (M), u()| < Nér(p,T) uniformly on Wz N Dy,

where r(p) is a constant associated with p.
All these combined with Theorem 2.2 imply that for W = W; N Wy,

PMW) > PV (WD)
(4.24) > EFiu [exp (K;N) @M, eaa00)) +GFY (5x<N>(-))>; exmey €WN 'Dm]
> exp(—N6)EP{ﬁ]ﬂ [exp(K}N) (=M, Ex(N)(.))); gy € WN Dm].
By applying Holder’s inequality, we get

EP(;zA,]L [exp(K}N)(x(N)(')’ Ex(N)(.)));é‘x(N)(.) ewWn Dm]

'
4.25) > EPLN:‘ [exp (—%K;N) (x(N)(-), Ex(N)(.)) - L(TI’V; (x(N)('), 5x(1v)(.))

-p/p’
p
+ L(T]:II), (x(N)(‘),Ex(N)(.))>] X [PE{V& (Ex(N)(.) eWn Dm)] .

Then (4.24) combined with (4.25) implies
PVW) > PV (WNDy)

> exp(—Nb)exp(—Nr(p, T)ép/p") [PLN,‘) (Exmey €WN Dm)]p

(4.26)
« EP [exp(—p’/pK(TN) (=), exm0)

. -p/p’
_'L(Ty})%(x(N)(')’ Ex(N)(.))):l .
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Let
Y, (x(N)()) = eXp(—p’/pKt(N) (x(N)(')’ ax‘m(-)) - L:(f,lz) (x(N)(')’ ‘Ex“")(-)))'

Because {x{(#)}}V. , have no common jumps P{M-almost surely, by a local proce-

dure and It5’s formula (cf. [11], page 66), we have that Y,(x(™(-)) is a P{") -local
martingale and thus a supermartingale. This implies

1
427) log®"(V) > —(1+r(p, Thp/p)8 + 1£v log PV (,m0() € W N Dy).
By Lemmas 4.4 and 4.5, we get

1
(4.28) ¥ log P)(W) > —S,(f).

Letting § — 0 and then letting p — 1, we finally get (4.21), which is just the
lower bound. O

4.2. Compactness of level sets. In this subsection we will prove the com-
pactness of the level sets by using the lower bound.

LEMMA 4.7. Let us assume (2.1)~(2.5) and (2.14). Then for any v > 0, the
level set @, () = {u(-) € Doo; Su(u(-)) < v} is compact in Doo.

Proor. Let~y > 0 and ®,(y) be given. Because C([0,T], M1(E)) N Dy, is a
closed subset of D, in the “inductive topology,” to prove the lemma it suffices
to prove the compactness of ®,(y) in C([0,T1, M1(E)) N Dy. In order to do this,
it suffices to verify that

(4.29) sup sup {(u(),p) < co
H()EBy(y) 0T

and ®,(v) is compact in C([0, 7], M;(E)) in the uniform topology.

For every n > 1, let p,(x) = ¢(x A n). Then {¢,} is a sequence of bounded
continuous functions on E. By the definition of S, (u(-)), we get

(4.30) sup {(,u(O), ©n) — log(u,e"’")} <.
ll/()n‘e:;(“/)v

This combined with (2.14) implies

(4.31) su ' (0), <n+7.
M(~)€>¢I;("/), {(ll' ‘Pn)} T
nz
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By Fatou’s lemma we get

(4.32) sup  {(u(0),0)} <n+.
u(-) € By(y)

For every n > 1, let f,.(x) = p(x)Ig, € C(E). By (2.5), we have

(4.33) exp(—fn®)) Que) exp(fux)) < MO)+ [|u@®)||(e — 1), for anyn > 1.
On the other hand, by (4.12) we have

su IO ()
)€ <1>13<~/>, { o (b fn)}
n>1

(4.34) = sup {(u(t),fn)—(u(O),fn)

u(-) € @y (),
n>1

t
_ /o <,u(s), exp(—/fn(*)) Qus) exp(f,,(x))> ds} <.
Fatou’s lemma combined with (4.32)—(4.34) implies that for any ¢ € [0, T1,

t
(4.35)  sup {(,u(t), w)} <MOT +7+~+2 / sup  (u(s), ) ds.
u(-) € Bu(y) 0 u(-) € duly)

Let Ry = (\(0)T + 1 + 7)e?T. Then by Gronwall’s lemma we conclude that

(4.36) @,(y) C Dg,.

By Lemma4.3,®,(y) C C([0, T], M1(E)). To finish the proof, it suffices to show
the relative compactness of ®,(vy) in C([0,T1, M1(E)). By Lemma 1.3 of [10], it
suffices to show the compactness of {{(u(-), f); u(-) €®,(v)} in C([0, T, (—o0, +00))
for every f € Ci(E). Let f € Ci(E) be arbitrarily given. Clearly, we have
SUpPg < ¢ < 7 [{1(@), f)| < co. By Ascoli’s theorem, it remains to prove the equicon-
tinuity of {# — (u(),f): u(-) € ®,(y)}. For any u(:) € Do, § > 0, p > 0, let

(4.37) Dg:p ={ () € Dyo; sup |(,u(t),f) - (,u(s),f)| <p
s,t€ (0,71,

t—s<é

For fixed v we can find an R > Ry by Lemma 2.3 such that

(4.38) lim sup % log PV (Dg) < —27.
N—-0
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Applying the Markov property, we derive for any s > 0, § € [0,7/2] and p > 0
the estimates (cf. [1], page 56)

2 (D0 (Df,)°)

<P sup  [(u®),f) = (uls), F)| > p, u() € Dy
s,t €0, T]

(r/61-1 foes N
< PV (£ M
@39 ; <16<t<((1+2>5>/\ Z( @®) — (= )))I

> g—,(—:x(N)(.) € DR)
1 N
N2 (FE™w) - f(xi-”’w)))]

> 5, Ex(y € ®R> .

T
<= sup P™M( sup
6 vem,® 0<t<26

For any x‘™(-) € D([0, T1, E®V), let
N

Y (£,6,50) = 32 {F600) £ (70)
(4.40) i=1

~ [ exp (1769 e, 0 (7)) ar |

Then for every 8 > 0, v € M,(E), exp(KN(Gf,t; xV(-))) is a P{M-martingale.
(4.39) combined with (4.40) and Doob’s inequality implies

N
PftN)< sup %Z (f(xﬁN)(t)) - ( (N)(O))) 2, ExM(y € DR>
i=1

0<t<26

< sup P(,,N){ sup KN(6f,¢; w)>N(ﬁp 2¢(f,R)6
(4.41) v € M(E) 0<t<26

x (exp(28IIF1) - 1)),Ex(m(.) e @R}

< exp [—N{ pp 2c(f,R)5(eXP(2,3||f||) - 1) }} )
where c(f,R) = sup{¥, c£4x,y; * € supp(f)} + R. This implies
" (Dr N (D] ,))

(4.42) oT
<oy [_N { % _ oe(f,R)s (exp(261f1) - 1) }]
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Minimizing the expression on the right of (4.42) with respect to 5 > 0, we have
for [p/(8c(f,R)|f]I6)] > 1,

P (Drn (D o))

(4.43) oT » p
< 5 exp [‘N {4llf|| <l°g <8c<f,R>nf||6) - 1) +2e(f ’R)‘S}J

For the given v, let ng = [1/4||f||]. If we choose p, = 1/n, 6, = 1/8||flle(f,R)n)
e~ 12llflm | then we have

lim sup logﬂ’(N) (73 n (D, ,p,,)c)

N — oo

2T Pn Pn
<l log — = &)
%“fl‘opzv 8 e"p[ {4llf|| <l°g <8c(f,R)IIfII6n> l)

(4.44)
+ 2c(f7 R)5, }J

1
<=3+ < -2, vn > ng.
T dlfn = T 0

This combined with (4.38) implies
hm sup ]T/' log J’(N){(depn }

< max { lim supN log'.P(N){DR}

N - o0

(4.45)
lll'nSlle]-Og:}:‘(N){‘D n 6n,Pn) }}

N— oo

< 2.
Because ng p, 18 a closed subset of D, we have by (4.21),

(4.46) inf S, (u() > .

p( €L )e

Thus for any n > ng, we have

(4.47) du(y)CDf .

This means that

(4.48) ®,(7) c C(10,T), My(B)) (| Df ..
- n>ng

Thus we obtain the relative compactness of ®,(y). Because S,(-) is lower semi-
continuous we, in fact, obtain the compactness of ®,(y). O
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4.3. Upper bound. In this subsection we obtain the large deviation upper
bound. The method we use is a generalization of the method used by Comets
[2] in proving the large deviation principle for the Curie-Weiss model on the
torus.

For every g € Cy(E), f € Cy°([0, T x E), u € My(E), x™(.) € D([0, T, E®N)
and u(-) € Do, let

Hy(u(); f,8,T) = L, (1(0),8) +J (u(-); £, T),
N t af(s x(N)(s))
(N)()) = it
B(t,x'M()) = ;/0 (_—83
+ exp(—f(s,xEN)(s)))ngm,mexp(f(s,xEN)(s))))ds

N
F(t,xM(t)) = exp [Z ( f(t, M) — f(o,ng’(O))) - B(¢, x(N)(-))} :
By It6’s formula we have

F(t,sM@) -1
t t
- / F/(s,xM(s)) ds — / F(s,4™(s)) dB(s,x™()
0 0

[ [ ot
o JE i=1 l
x N(ds,dy; xEN))

¢ N (N) ¢
- / F(s,x(m(s))zwds— / F(s,x™M(s)) dB(s,4™())
0 0

Os
i=1

+/0t+/EF(s—,x(N)(s—))§ [exp((f(s—,y)—f(s—,xEN)(s—)))) - 1}

X N(ds, dy; x™)

* / t iexp( ~Fls= ™)) ) Qe 0% (£ (5=, %)) ) ds
- [ fremaen S oo (- ~to-0-9) ]

i=1
xN(ds dy; =M.

Thus F(¢,xM(¢)) is a martmgale with respect to PNV,
Let YYM(u(); f,8,T) = expINH,(u(-); f,g, D). Then we have the following

lemma.
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(N)
LEMMA 4.8. EVw [YV(u(); f,8, T = ER" [Y M (e,an; fr8, TN = 1.

ProOOF. By direct calculation we have ER” exp[Nl,(exm(g),&)] = 1. This
combined with the fact that F(¢,x™(¢)) is a martingale with respect to P{
implies the result. O

The next theorem is crucial for obtaining the upper bound.

THEOREM 4.9. Assume (2.1)-(2.4) and (2.14) are satisfied. For all v > 0, € >
0, s > 0, there exists an integer Ny such that for all N > Ny,

(4.49) ?;N){rOT(p(-), ,(s)) > s} < exp[-N(s — 7)),
where rop (u(-), ®,(s)) = inf,() e a,6) SUPy < ; < 77 (1@), v(®)).
In order to prove this theorem we need the following two results:

LEMMA 4.10. For any u(-) € Do and I < Sy (u(-)) there exists &' > 0 and an
integer N such that for all N > N,

(4.50) P {ror (u(), () < 8'} < exp[—NI].

Proor. For any u(-) € DS and I < S, (7u(-)), there exists v > 0 such that
I+v < 8S,@(-). Assume S,(7(-)) < 0. By Lemma 2.3, there exists By > 1 such
that

(4.51) PV{(Dr,)°} < exp[-NU +7)].

By the definition of the action functional, there exist f € C,t’o([O, T] x E),
g € Cy(E), such that

Choose R > R, such that 7i(-) € Dg.
Because H,(u(-); f,&,T) is continuous at 7i(-) on Dg in the uniform topology,
there exists an §’ > 0 such that

H,(m(); f,8,T) < “(%g‘vHu (uC); £,8,T) +~/8,

where V = {u(:) € Dg; ror(u(-),n(-)) < 8'}. _
By Chebyshev’s inequality and Lemma 4.8, we get

IPW) < IV Y (), £,8,T) € YOV f,8,1))
< Jo Y (0); £, T) P (dut) 1

inf,,ev Y™ (u); .8 T)  infuyev Y™ (u(); £.8,T)




2146 S. FENG

Thus
9><N>(V)<exp[ i H (40 fg,T)]

p[ H,(n(); f.&7T) - 7/3)]
< |-

N (Su(m0) 27/3)]
< exp[-N(I ++/3)).

This combined with (4.51) implies (4.50). The case of S,(7i(-)) = co can be
proved similarly. O

(4.52)

LEMMA 4.11. For all a > 0, there exists an R > 1 and a compact subset
K, C Dg in both the uniform and the Skorohod topology such that for every
§ > 0, there exists Ny > 1 such that for all N > Ny,

(4.53) ?gm{rw(u(-),zfa) > 5} < exp[—Nal.

ProoF. Ifa =0, the result is trivial. Suppose a > 0. By Lemma 2.3, there
exists R > 1 such that

(4.54) P {(Dr)} < exp[-N(a+1).
For fixed a and R we construct a sequence {A;};=1,... satisfying
T/AJ €N, Aj/AJ‘+1 € N\{Oa 1}’
Aj < (a+1)/2¢(j, R)exp[16(a + 1)1 - 1),
JAj is decreasing,

where N denotes the set of integers and ¢(j, R) is defined later and is a positive

increasing function of j.
Let K], be defined as

K. ={ u()eDp; sup r(u@),us) < —1.-, j=12,...
t,s€[0,T], J
[t—s|<A;

By definition and the Ascoli—Arzela theorem, we have that K, is a relatively
compact subset of the space Dg N C([0, T1, M1(E)). Let K, be the closure of K,
in Dg N C([0, T1, M1(E)). Then K, is a compact subset of Dr N C([0, T1, MI(E))
Because Dx N C([0, T, M1(E)) is a closed subset of D in the uniform topology,
we have that K, is a compact subset of Dg in both the uniform and Skorohod
topology. For any & > 0 choose jo such that 1/jo < 6. Let

. 1
D(jo)={ u() € Dg;  sup r(u@®),us) < —
t,s€[0,T], Jo

E=sl<ag
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For any positive integer j, let n(j) € N be defined as

n(j)=inf{ — }
n§n2 2j

By an argument similar to the estimates (4.39) and (4.42), we have for any
8 >0,

P (Dr N DoY)
nGio) LT/ Bjp1 = 1

<> Z PV ey € Dr, sup
k=0 =0 1A, <t<(+2A;)AT

NZ(I{k}(x( M) — Iy (¢ (N)(IAJO)))i 4_1_}

(4.55)

n(jo)

< 37—1— Z exp [—N(-g— — 2c(I 3y, R)A j, (exp®® — 1)):'

JOko

< %—n(JO)eXP l:"N('ﬁ‘ - ZTJO’R)AJO( - 1))] ’
Jo 4j

where ¢(jo, R) = supy, < n(j,) ¢}, ). Let 8 = 8jo(a+1). Then by the construction
of A;, we conclude that

(4.56) PN (Dr N D)) < i—Tn( Jjo)exp[-N(a +1)].
Jo

Now let mg = T/Aj,, tp = kAj,, k= 1,...,mq. For any u(-) € D, we define
10(-) as follow:

), ift=t, forl <k <my,
(4.57) o(t)={)u' k k 0

linear, otherwise.
Obviously rop(u(-), 1°(-)) < § on D(jy). Thus

?Lm{uo € D(jo); ror (), Ka) 2 & }
(4.58)
< PP { DG n {100 ¢ K1} }.
Using an argument similar to that in Comets ([2],.pages 28 and 29), we can

verify that on D(j), the slope of u°(-) satisfies

P(10), 1))

. -1
Ts < o)

<@GAYTY i > jo.
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This implies that for any j > j, and u(-) € D(jy),

1
sup r(po@®), p0s) < =.
¢,s€[0,T1, J
[t—s|<A;

Forj < jo we can show

(4.59) su r(pf@), u%s)) = max r(u@¢ ), Ko@),
t,selg,)Tl, (N a ) [t —tl <A (N Ll l)
[t—sl<A;

where ¢ (resp. s) belongs to some interval [¢;,2; . 1] (vesp. [t;,£;,1]). Forany u, v €
M,(E), we define |u| = £ ,1/2"|u(n)| and r(p, v) = |u — v|. Then the argument
used in [2], (Section V) also works here. To complete the argument note that
forh e [tV +t—38), the1 Atip1+t—8)l, b — pOh) — Ok +s —t) is an affine
function, and use the fact that u — || is a convex function to conclude that
u2(h) — u°(h +s —t) achieves its maximum on the boundary of the interval. Thus
in order to prove (4.59) it suffices to verify that the |u°(t) — u°(#;)| is less than or
equal to the right-hand side of (4.59) when ¢ € (¢;,#;,1) and [¢—#;| < A ;. Because
Aj/Aj, is an integer, we get that |t; —t;| V ;41 — t;| < Aj. This combined with
the convexity of A — |u°(h) — u°(¢;)| implies the result.
Hence we have

. . 1
(4.60) D(jo) N {u’() ¢ K.} C U {,u(-) € D(jo); r(ulty), uty) > —.},
k15 <o J
where the union extends to all pairs (¢,/) with0 <k <l <moA(T/Aj+A;/Aj)
and j < jo. For any fixed &, [, j, we have

fPZM{u(-) € D(jo); r(pt), uity) > Jl}

n(j) N
1 1
< Z Pﬁ,N){ ’]Tf Z (I{m} (xEN)(tk)) — Iy (ng)(tl))) ‘ > 4—j’ Exmi) € DR}
m=0 i=1
n(j) 8
(e28 _
< g::oexp [—N(;17 — 2c (), R)A j(e 1))]

< n(j)exp [_N<§% — 26(j, R)A j(e®? — 1))] .
Let 8 = 8j(a + 1). We conclude
fPﬁ,N){u(J € D(jo); r( pts), uty) > }1-} < n(j)exp[-N(a +1)].

Using the rough upper bound moA /A, on the pairs (k,]) we get
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Jo—1
(4.61) TELN){D(jo) N {u°C) ggK;}} < m0< > n(j)Aj/Aj0> exp[—N(a +1)].

Jj=2

This combined with (4.54), (4.56) and (4.58) implies

:PgtN){rOT(/J'(‘),Ka) > 5}
< P {u0) € Dg; ror(u),Ka) 2 6} + PN {(DpY}
< P Dr N D(jo)r} + P {(Dr)}
+ PP u) € Dok ror (), Ka) > 6}

< %Z‘—n(jo)exp[—N(a +1)] + exp[—Nl(a + 1)]
Jo

Jo—1
+mg ( > n( j)ZA{—> exp[—N(a +1)].
Jo

Jj=2

Because all the coefficients depend only on jj, and j, is independent of N,
there exists an integer Nj such that for all N > Ny, (4.53) is true. O

THE PROOF OF THEOREM 4.9. Forany~y > 0,e > 0ands > 0,choose R > 1
and a compact subset K; of Dg from Lemma 4.11, with a = s, such that there

exists an integer N for all N > N ,
PN (D)} < expl-Nsl,  ®,(s) C Dp.

Let K¢ = K, N {ror(u(.), ®,(s)) > £/2}. Then K¢ is also compact in Dg in the
uniform topology and thus the Skorohod topology.

For every fi(-) € K¢, by applying Lemma 4.10 with I = s, we have that there
exists Ny() and 6, < € such that for any N > N,

(4.62) ?;N>{r0T(u(~), i) < 5,1@} < exp[—Ns].

Let {{u(-) € Dr; ror(u(-), (1)) < 65,9} ¢ =1,2,...,L} be a finite open cov-
ering of K¢ from all the balls satisfying (4.62), § = min{-zl-dﬁi(.); i=1,2,...,L}.
Then for any u(-) € Dg satisfying ror(u(-), Ks) < 6 and rop(u(-), ®,(s)) > € there
exists [i(:) € K, such that ror(u(-), a(-)) < é. This implies that ror(f(-), ®,(s)) >
/2, that is, fi(-) € K¢. Hence _

fPfﬂ){u(-) € Dp; ror(u(-), Ks) < 8, ror(u(-), ®uls)) > 8}

(4.63) L
<> PN {N(-) € Dp; ror(u-), () < 5,1,.(.)} < L exp[-Ns].

i=1



2150 S. FENG

Finally we have

TELN){"OT(M(-), Du(s)) > e}
< PNV(DRY} + iPLN){ﬂ(.) € Dg; ror(u(),K,) > 5}

+ P0{ ) € Dpsror (), Ks) < 8, ror (), u(6)) > ¢}
< (L + 2) exp[—Ns].

(4.64)

Letting N go to infinity, we get (4.49). O
Now we are ready to prove the main result of this subsection.

THEOREM 4.12 (Upper bound on Dy,). Under assumptions (2.1)-(2.5) and
(2.14), for any closed subset A of D, in the “inductive topology,” we have

(4.65) lim sup zlv logPM(4) < — “(;?gA Sy (u().

N — oo

PRrROOF. Let A be any closed subset of Do.. If inf, ¢ 4 S,(1) = 0, then the
result is trivial. Now we assume that s = inf, ¢ 4 S,(x) > 0. Choose R > 1 and

N such that for any N > N ,
(4.66) PN DRI} < exp[-Nsl,  ®,(s) C D.

Because for any s > v > 0, ®,(s—~) is compact in D, in the uniform topology,
we get that A; = AN Dp and ®,(s — ) are disjoint closed subsets of Dg in both
the Skorohod and the uniform topology. Thus there exists a strictly positive
constant ¢ > 0 such that rop(41, ®,(s — 7)) > €. This implies

(4.67) PV{Dr N A} < PV {ror(u(), Buls - 7) 2 ¢ .

Because v is arbitrary, (4.66) combined with (4.67) and Theorem 4.9 implies
(4.65). O
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