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DENSITY-DEPENDENT LIMITS FOR A NONLINEAR
REACTION-DIFFUSION MODEL!

By DouGLAS BLOUNT
Arizona State University

A reaction—diffusion model, constructed on a grid by linking nonlinear
density-dependent birth and death processes through particle diffusion, is
studied by proving two laws of large numbers and a fluctuation theorem
under varying assumptions on the density parameter.

1. Introduction. In this paper we study a density-dependent stochastic
reaction—diffusion model introduced in Arnold and Theodosopulu (1980). The
model is constructed by partitioning [0, 1] into NP congruent cells, distributing
approximately NP! particles in the system and allowing particles to diffuse
between cells by rate N2 random walks and to react within cells as density-
dependent birth and death processes [Ethier and Kurtz (1986)]. Cell numbers
are divided by /, the density parameter, to represent concentrations, and one
obtains a step-function-valued Markov process Xy ;(t,r), for £ > 0 and r €
[0, 1]7, satisfying the stochastic differential equation

dXy /(t,r) = (ANXN, (&, 1)+ R(Xy. /2, r))) dt +dZy ,(t,7),

where Ay is a discrete Laplacian, R is a nonlinear polynomial determined by the
birth and death rates and Zy ; is a martingale arising from Dynkin’s formula.
The equation appears as a spatially discretized and stochastically perturbed
version of the reaction—diffusion equation

oY(t,r)
ot

In this paper, we prove two laws of large numbers and a central limit theorem.
Letting || - ||z, denote the Ly([0, 1]?) norm and setting

XN,I(t) = XN, (7D} P(E) = P(¢, ),

we show that for eachp > 1and T > 0,

= Ay(t,r) + R(y(t, 7).

sup || Xy, 1) — p@®)||L, — 0
t<T

in probability if I — co as N — oo.
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For p = 1, this result was proved for the linear model in Blount (1991), which
improved Kotelenez (1986a), where it was assumed that N2/l — 0 as N — oo.
Our result complements Blount (1992), where assuminglog N/l — 0as N — oo
allows one to replace the L, norm by the supremum norm.

For the case with / constant, p = 1, linear birth and quadratic death rates,
we prove

sup || Xy, 1) — Y(&)]|—a — O
t<T

in probability as N — oo for any a > 0, where (H_,, | - ||-o) is the Hilbert dis-
tribution space defined in Section 5 and 1;(¢) is the solution of
PUET) _ e,y + ROt ) ~ Lte r

with dj the coefficient of —x2 in R(x). Thus, in the constant density case, conver-
gence to a perturbed form of the previous equation occurs. This result is related
to the law of large numbers for a “local” reaction studied in Dittrich (1988a, b)
and Kotelenez (1992) for a measure-valued model and in Boldrighini, De Masi
and Pellegrinotti (1992) for a grid model similar to the one considered here.

For the central limit theorem, we assume p = 1. Assuming N/l — 0
as N — oo, it was shown in Kotelenez (1988) and Blount (1993) that
(ND)1/2 (Xy,1 — ) converges in distribution to the solution of a stochastic partial
differential equation

V() = (A +R'(y(®) ) V@) dt + dM(@),

where R'(x) = dR(x)/dx and M is a Gaussian martingale obtained from
Lim(N)Y2Zy; .
Here we consider the case N = I. Let R(x, y) be defined by

R(x) - R(y) = R'(y)(x — y) + R(x,y)x — y)%.

Assuming N = I — oo, we show N(Xy ; — 1) converges in distribution on
D([0, 00); H_,), for o > 1/2, to the solution of

dv(t) = (A +R (¢(t))) V() dt + dM(@) + R(1(), () y(t) dt.

Thus, assuming N = [ gives a fluctuation limit that is a deterministic pertur-
bation of the previous limit.

Ifthe stochastic model has no reaction but only diffusion of particles, then the
model has a stationary distribution where the particle numbers of different cells
are independent Poisson random variables. Our results are consistent with the
heuristic that, asymptotically, cell numbers should behave like appropriately
scaled and independent Poisson random variables due to convergence to local
equilibrium distributions. However, we do not attempt to directly use this idea
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but instead exploit the smoothing effects of the semigroup generated by Ay and
the martingale structure of the stochastic model.

Section 2 describes the deterministic model; Section 3 describes the stochas-
tic model and develops some basic technical results; Sections 4, 6 and 5 prove
(in that order) our previously described results.

2. The deterministic model. For x € R, let b(x) and d(x) be pblyno-
mials with nonnegative coefficients such that d(0) = 0, degb(x) < degd(x),
degd(x) > 2, and let

g
R(x) = b(x) — d(x) = Z cnx™.
n=0
Let S = [0,1]” and A denote the Laplacian, and for (¢,r) € (0, 00) x S, let (¢, r)
be a solution of

%w(t, r) = Ay, r) + R(y(,r),

¥(0,r) > 0 and v is periodic in each of the p space variakles
with period 1.

For x € R, define ¢,(x) and 9, (x) by

2.1)

V2 cos(rnx), forn > 0 and even,
onlx) = 1 n=0

¥n(x) = V2 sin(rnx)  for n > 0 and even.

For m = (my,...,mp) € {0,2,4,...}? and r = (ry,...,rp) € S, let f,,(r) denote
functions of the form

p
fm(") = H gmn(rn),

n=1

where g, = ©m, OF ¥m, - {fn} are eigenfunctions of A with eigenvalues
p
—Bm = -7y mZ;
n=1

they also form an orthonormal basis of Ly(S). Thus, T'(¢), the semigroup on Ly(S)
generated by A, is represented by

T(t)f = ZeXp(_ﬂmt)(fafm>fm, .

where f € Ly(S) and (f,g) = [ f(r)g(r) dr is the inner product on Ly(S).
Using variation of constants, any solution of (2.1) can be put in the form

t
2.2) ¥(#) = TEW(O) + / Tt ~ R (Y(s)) ds,
0
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where 1(¢) = 9(¢,-). A solution of (2.2) is a mild solution of (2.1).

Before defining the stochastic model, we need to suitably discretize A, T'(¢)
and {f»}. Let N be a positive odd integer and for & = (%1, ...,k,) € {0,1,...,N—
1}7, let

p
Iy =[] [knN "', (R, + DN') CS.
n=1

Let HY c Ly(S) denote the step functions that are constant on each of the
sets I, and are extended to be periodic in each variable with period 1. Set
e; =(0,...,0,1,0,...,0) (p coordinates and a 1 in the ith coordinate) and for
f € HY, define

VEF) = N7 f(r £ N %) - £(r),

p p
Anf() = 3" —ViVif() = Y N(f(r+N7%) - 2f(") +f(r - N-le)).

i=1 i=1

Let Py: Lo(S) — HY be the self-adjoint projection given by
Pnf(r)=NP / f@hdr ifrel,.
I

Using Py first extends Ay, Ty(¢) and Vii to Ly(S).
If f,, = I, _, &m, is an eigenfunction of A and m € {0,2,...,N — 1}7, define

p
fm,N(r)= Hgm"(an_l) ierIk.

n=1

{fm,n} form an orthonormal basis of HY as a subspace of Ly(S) and are eigen-
functions of Ay with eigenvalues

BN = —N? i (1 — cos (wmnN‘l)).

n=1
Basic calculations show that for 0 < ¢1(p) < co(p) < o0,
(2.3) c1(p)Bm < ﬂm,N < co(p)fm.

Tx(2), the semigroup generated on La(S) by Ay, can be represented by

TN@f = > eXp(—fm, NN+ fon, N ), V-

Let ||f]| = (f, f)*/? and || f||oo = SUP, ¢ s |f(r)|. Then, as is well known, T() and
Ty (2) are positive contraction maps for both norms.
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3. The stochastic model. Let! > 0 and b and d be the polynomials ap-
pearing in the definition of (2.1). X(¢) denotes the HY-valued Markov process
defined as

X(t,r)= @)/l ifr eIy,

where {n;} are the nonnegative integer-valued components of a jump Markov
process with transition rates given by

np —np+1 atratelb (nkl‘l y
3.1) ny —n, —1 atrate ld(nzl?),
(nesnpse) — (Me — 1,npse +1) atrate N2ng, 1<i<p.

(We assume ny 4 e, =1z, 1 <i < p.)

We take X(¢) to be right continuous with left limits and Markov with respect
to the filtration {FY};> o, where FY is the completion of the o-field generated by
{X(s)}s <¢. For each N and / we obtain a different process, Xy, ;, but we suppress
the subscripts unless necessary to avoid confusion.

If f(t) is a right continuous HY-valued process with left limits, let §f(¢) =
f(@#)—f(t—), where f(0—) = 0. Note that the first two jump rates in (3.1) determine
the rates at which particles react in each cell, and the last rate determines the
diffusion of particles by random walks to neighboring cells. Let 6Xz and 6Xp be
the reaction and diffusion jumps of X, respectively, and let

t
Zp(t) =) 6Xp(s) — / R(X(s))ds,

(3.2) o<t o
Zp@t) = 6Xp(s) - / AnX(s)ds

0

s<t

and |R|(x) = b(x) + d(x).
The following result follows from Dynkin’s semigroup formula and basic com-
putations. See Kotelenez (1986a) and Blount (1991).

LEMMA 3.1. If|| X(0)||oo < C(N,1) < o, then Zg and Zp are FN martingales,
and, forf, g € HV,

t
> (62p(e). 1) 6Zr(s).8) ~ OPD [ (IRI(X (). i) ds
s<t

and

> {(6Zp(s),f)(6Zp(s),8)

s<t 4

— (Ve /0 t <X(s), i (Vi) (Vig) + (Vif) (Vig)] > ds
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are FN martingales.
Letting Z(¢) = Zg(¢) + Zp(t), from (3.2) we have
(3.3) X() =X(0) + /Ot AnX(s)ds + /OtR(X(s)) ds + Z(¢).
Using variation of constants, (3.3) can be written as

t
(3.4) X(®) = Ty(®X(0) + / T(t — OR(X(s)) ds + Y(2),
0

where Y(¢) = [; Tn(t — s)dZ(s).
LetY(t) = Yg(®) + Yp(t) = [; Tn(t—s)dZg(s) + [, Tn(t—s)dZp(s). IfJ € {D, R},
then from variation of constants we have

t
YJ(t) = / ANYJ(S) ds + ZJ(t).
0

If (fn,N) Bm,n) is an eigenpair of Ay, let Y,,, Z,, denote (Y, fr n), (Zg,fm,n)- By
the previous equation and It6’s formula, respectively,

Yot = / B NYm(8)ds + Zp(2),
Y2(t) = —2Bm.N / Y2(s)ds+2 / Y, (s— )dZm(s)+Z 6Zm(s)

s<t

(3.5)

Applying (3.5) and Lemma 3.1 with f = g = f;,, ¥ proves the following lemma.

LEMMA 3.2. Assume || X(0)||o < c(N,I) < co. Then:

(a) E(Yp(t) fm N) (NPI)~ lE fO X(S) Zp_l(v+fm,N)2+(v fm N)2 ) exp( 2ﬂm N
x (t —s))ds.

(b) E(YR(®),fn,n)% = NPDTIE [ {|R|(X(5)), (fn, N)2)eXD(~20y, N(t — 5)) dis.

(©) (Yp@),fm,n)? < A(fin, n)(E), where A(f,, N X¢) is a submartingale satisfying

¢ p
EA(f, n)(®) = NP 'E / <X(s), > (Vifmn) + (v;fm,N)2> ds.
0 i=1
(d) (Yr(@),fm, )2 < B(fin, n)¢), where B(fy,, n)(¢) is a submartingale satisfying

t
EB(fp,n)®) = N")'E /0 (IRI(X().£2,v) ds.

To apply Lemma 3.2 we need to have a bound on the moments of X. From
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Lemma 3.2 of Kotelenez (1988), with a slight modification of its proof, we have
the following lemma.

LEMMA 3.3. Forn > 1,

sup IEX™(8)]lco < C(2,L, [|EX™(0)]o0, p) < 0,
s<t

where C is decreasing in l and p is any number such that R(x) < 0 for x > p.

Let M = (log N)* and let n be an integer satisfying 0 < n < p'/2N/M. For a
multiindexm € {0,2,...,N —1}?,let |m| = (£2_, m?)*/2 and let B,, = {m:nM <
|m| < (n+1)M}. For n > 1, maxy, g, |m|/min, cp, |m| < (n+1)/n < 2. Thus,
by (2.3),

max min <ec(p)
mGBnﬂm’N/meBnﬂm’N_ p

for n > 1. If |B,| denotes the cardinality of B,, then |Bn| < L, where L, =
c(p)MP(n + 1P ~ 1. Thus, L, /NP < c(p)logN)?/N — 0 as N — oo and doaln <
c(p)NP. Note that {fn n} = U,{fm,n: m € B,} and max,, B,y < c(p)NZ.

LEMMA 3.4.

(a) Let 7 be an {FN} stopping time such that sup; < 7| XEAT-)| < b < 0.
Then forn > 1,1 > 1y, c(p) > 0 and N > Ny(a2,l,),

P ( sup ( 2 <YD<tAT>,fm,N>2) > aan/NP> < o(p, DNPLY (e(pla?/6)

t<T m€EB,

(b) If sup, . 7 || [R|(X(t A7) || < b < oo, then the same estimate holds with
Y in place of Yp.

ProOOF. In the case p = 1, the result is proved as Lemma 3.21(b) in Blount
(1991) for the model with linear birth and death polynomials. However, the
proof depends only on the covariance structure of Z as determined in Lemma
3.1. Using the facts in the previous paragraph, the proof for p = 1 extends to
p > 1 with only minor notational changes in the proof given in Blount (1991). O

LEMMA 3.5. Let 7 be as in Lemma 3.4. Then sup, .1 |[Yp(t A T)|| — 0 in
probability if (N,1) is any sequence such that ] — 0o as N — oo.

Proor. Using the foregoing notation,

e ADIE = Y (Yo AT )+ S S (Yt AT, fon Y

m € By n>1meB,
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By Lemma 3.2(c) and Doob’s inequality,

P(s1<1p Z (Yp@EAT), me> >a)
t

mEBo

TAT p
<a (NPt Z E/ <X(s),Z(V;fm’N)2+ (Vi_fM,N)2>ds
i=1

m € By

< a~2(NPl)~te(p)b(logN)®**T - 0 asN — o

(even if [ is constant).
Recall 3,L, < c(p)NP. Thus,

<sup SN (YA, fun)? >a>

t<T ,S1 meB,

< ZP(sup Z (Ypt AT, fm, N> >02Ln/(C(P)Np))

n>1 t<T ,, €B,
< p'/2N(log N)~%c(p, T)N*(log N (p*/*N(log N)~% + 1)'? ~ /2
x (c(p)a®l/b)~EY,

where we have applied Lemma 3.4 and ¢(p) > 0. The last expression converges
to 0if I — oo as N — oo, which completes the proof. O

LEMMA 3.6. Assume |[EX%(0)||oo < b < 00 [recall ¢ = deg R(x)]. Then sup; . ¢
|Y&(®)]| — O in probability if (N,1) is any sequence such thatl — co as N — 0.

ProorF. By Lemma 3.2(d), HYR(r,‘)H2 B(t), where B(¢) is a submartin-

gale satisfying EB(¢) < (NP1)"EY,, fo |R|(X(s)), f,i ) ds. Thus, by Lemma 3.3,
EB(T) < ¢(T)/! and the result follows from Doob’s inequality. O

LEMMA 3.7. Assume |[EX%(0)||ooc < b < oo. Then, indexed by (N,I) with
1 > 1y > 0, the distributions of

{ /0 Ty — 9R(X() ds}

on C([0, T1; Lo(S)) are relatively compact.

PrRoOF. Letg(®) = [} Tw(t — s)R(X(s))ds. We claim:
() Elsup; < 1 Sjm| > n (8@, fm, N)Z] <e()/n?,
(i) E[Sup0<t<t+e<T 0<€<eo(g(t +¢e)—g@), fm N>2] <cT, |m|)(€0 + €9).

The proof will then follow from Ascoli’s theorem, Theorem 3.2.2(b) of Ethier
and Kurtz (1986) and the fact that ||f,, 5y — fin|lco = 0 a8 N — co.
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Consider, for [m|#0,
¢ 2
<g(t),fm,N>2 = (/0 eXp(_ﬂm,N(t—3))<fm,N,R(X($))>d3)

< ( /0 t exp(—26m n{t — 5)) ds) ( /0 t(fm, N,R(X(s))’>2ds)
< cjm|~? /Ot <fm,N,R(X(s)) >2 ds

where we have applied Cauchy—Schwarz and (2.3). Thus,

> (&), fu,w)’ < en” / Z fu RX(S)) ds
mI > n
Scn‘2/0 <1,R2(X(s))>ds

and (i) follows by Lemma 3.3.
Consider

2
(2 + ) — (81, o, )|
t+e
/ exXp(—LBm, N +€ — 5))
0

){ fn, v, R(X(5))

\/

2

fn 3 R(X(9)) ) ds

By
1
S'é(/ ‘ mea
1
32

</t+e
< 2P—1</0T<1,R2(X(s))>ds

and (ii) follows from (2.3) and Lemma 3.3. O

exp( —&fm, ) — 1)°

s)

(ﬂ?n,N€2T + 5)

(fo RX))

4. Law of large numbers in L,. In this section we assume the following:

(A1) |EX?9(0)||o0 < ¢ < o0.

(A2) (N,I(N)) is any sequence satisfying [(IN) — oo as N — oo.

(A3) || X(0)—1p|| — 0 in probability, where 1 is continuous and satisfies the
’ boundary conditions in (2.1).

After preliminary results and discussion we prove the following theorem.
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THEOREM 4.1.

sup || X(¢) — ()| — 0 in probability,
t<T

where 1 is the unique mild solution of (2.1) with ¥(0,r) = 1y(r).

By (A3), P(]| X(0)|| > e) — 0 as N — oo for e > ||1)g]|. Thus, by conditioning on
the event | X(0)|| < ||+l + 1, without loss of generality we assume:

(A4) [ X(O)]| < [[eholl + 1.

Because this implies X(0) < eV, 1) < oo, the estimates of Section 3 hold.

LEMMA 4.1.

sup [|Y(@)|| — O in probability.
t<T

ProoF. The result holds for Y in place of Y by Lemma 3.6, so we need only

prove it for Yp in place of Y.
Let 7 = inf {¢: |Yp(?)|| > a > 0}. Then

P( sup [Yp®)|| > a) < P( sup |[Yp(t A T)|| > a),
t<T t<T

so we may consider Yp(¢ A 7) in place of Y(¢).
For any e > ||1o] + 1, let

7, = inf{t: | X@)|| > e}.

By definition of the possible transitions for X,
o0\ 1/2
1Y@ = [6Xp@)] < 6X@)| < (2/(W22))

so we may assume ||[Yp(t A7)|| <a+1and || X(¢ A 7)| <e+1. Consider
P(sup IYp AT > a)
t<T
< P( sup [Yp@t AT)|| > a,sup || XEAT)| < e)
t<T t<T

+P(sup X@EATD)| > e).
t<T
We have
P(sup IYp A T)| > a,sup || XEAT) < e)
t<T t<T

< P(sup Y@ AT AT Za) -0
t<T :
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by Lemma 3.5. Now choose p such that R(x) < 0 for x > p. From (A4), ||[Yp(¢ A
| <a+1l, fot Tn(t — s)R(X(s))ds < pt, X(t) > 0 and (3.4), we have, for e large
enough (but fixed),

P<sup | X@EAT) > e) SP(sup IYr®)| > e/2) -0
t<T t<T

as noted previously. O

LEMMA 4.2. (a) {Xn, i} is relatively compact in D([0, T]; Ly(S)).
() If {Xn, } C {Xn, 1y} and Xy, — f in distribution as N, — oo, then P(sup, <T
If®]lco < e(T) < 00) =1and f € C([0, TT; Ly(S)).

Proor. (a) follows from Lemma 3.7, Lemma 4.1, (A1)-(A3) and (3.4). Be-
cause sup; < ¢ ||Tn,(#)Xy,(0) — T(t)y|| — O in probability, this also shows f €
C([0, T; Ly(S)).

Choose p such that R(x) < 0 for x > p and let g € Ly(S) with g > 0. By (3.4)
and (A4), 0 < (X(®),8) < (¢ +pT){1,8) + (TN®)X(0) — ¥(0)) + Y(2),g). By the
continuous mapping theorem, (Xy,,g) — (f,g) in distribution on D([0, T]; R).
Thus, by the preceding inequality, Lemma 4.1 and (A3),

P(o < {(f(t)g) < (c+pT)(1,8),0 <t < T) =
If D is a countable dense subset of Ly(S), we have
P(o < |(F®),8)] < (c+pT)(L,|g|),0<t<T,ge D) =1,

and the bound on ||f(¢)||o follows from the identification of the dual of L,(S)
with L,,(S). O

PROOF OF THEOREM 4.1. With a continuous initial condition, (2.1) has a
unique mild solution by Theorem A.1 of the Appendix of Kotelenez (1986b).
Thus, to prove Theorem 4.1 it suffices, by Lemma 4.2(a), to show that {Xy,} C
{Xn, i} and Xy, — f in distribution as N, — oo implies f is a mild solution
of (2.1).

By applying the Skorohod representation theorem [Theorem 1.8 of Ethier
and Kurtz (1986)] we obtain, on some probablhty space, {XN"} and f, where
XN =Xy, and f f in distribution and XN — f almost surely.

Let Ey = (HY,| - |)) and define

D(10,T%; Ey) — D(I0, T); Ex)

by

13
Fx()(®) = 1) = Ty(21(0) - / Ty(t — )R(y(s) ds
0
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Letting ?N,, =Fy, (I?Nn ), we have
—~ —~ t —~ —~
R, (&) = Ty, (O, (0) + / Ty, (¢t — R(Z, () ds + Ty, (©).
0

Because Ey has finite dimension, Fy is continuous and Yy, = Fy,(Xy,) implies

that YN =Yy, in distribution. In particular, sup, 1 HYM ()] — 0in probability
by Lemma 4.1. Thus, without loss of generality, we delete the A and assume
— f almost surely. By (3.4), we have with f(0) = v,

¢
(4:1) £(£) = T@)F(0) + / T(t — )R(f()) ds + e, (£) + by, (£),
0

where

en,(®) = f(t) — Xn,(t) + Yy, (t) + Ty, ()X, (0) — T(2)f(0)
and

t t
Sy, () = / Ty, (t — )R (Xy, (s)) ds — / T(¢ — $)R(f(s)) ds
0 0

Consider ey,. By our Lemma 4.2(b) and Lemma 3.10.1 of Ethier and Kurtz
(1986),

(4.2) sup ||f(¢) — Xy, @) — 0
t<T
almost surely. Thus, by Trotter—Kato and Lemma 4.1, sup, < 1 |ley,®)]| — 0 in
probability.
Consider
t
oy, () = Z [/ exp(—fm, N, — 5)) <fm,N,,aR(XN,,(S))> dsfm,N,
0

|m| <K

- /0 "exp(~6n(t - ) (fm R(Fs))) dsfm]

s / 5P(~ B, 1,6 ~ ){ Fr, 4 B (X20,8)) ) dfo,,

|m|>K

-3 / ex0(~fn(t - ) (fu, R(F(S)) ) .

|m|>K

In the proof of Lemma 3.7, it was shown that

Z / exp(—Pm, N, (¢ —s))<fm No» (XN,,(S))>dsfm N

EST | jm| > K

2
E l:sup } <c(T)/K2.
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By the bound on ||f(#)||« in Lemma 4.2(b), the same argument shows

E {sup
t<T

For m fixed, | B, N, — Bm| + |1, N, = fnlloo — 0. AlsO, [|fm, Nlloo + [|fimlloo < c(p).
By (Al), Lemma 3.3, and Lemma 4.2(b),

5 /Ot exp(—fn(t =) (fon, R(£(s)) ) ds

|m|>K

2
J < o(T)/K?.

T
E / (1,|RXn(s)| + [R(F(®)] ) ds < ().
0

Also, by Lemma 4.2(b),
T
/ (1,|R(Xn()]| + [R(f6)] ) ds
0
1/2

T T 1/2
g::(T)(/ ”XNn(s)—f(s)”zds) (/ (X%9-D(s) + 1, 1>ds> :
0 0

The right-hand side of the inequality converges to 0 in probability by (4.2), (A1)

and Lemma 3.3.
From the discussion in the previous paragraph, it follows that, for m fixed,

sup
t<T

t
0

— exp(—fBn(t —9)) <fm,R(f(s)) >fm) ds

(o]

converges to 0 in probability. Thus, sup, < 7 [|0n, (#)]| — 0 in probability. By going
to a further subsequence if necessary, we obtain

sup ||6n, () + e, (®)|| — 0
t<T

almost surely and Theorem 4.1 follows from (4.1). O

5. The central limit theorem. In this section we assume p = 1 and let
{Ha}aer denote the decreasing sequence of Hilbert spaces obtained by com-
pletion of the trigonometric polynomials in the norm

1/2

IFlla= | > ((Fr0n)2 + (Fr90)2) (L + B

n

Note Hy = Ly(S). If & > 0, f € H_,, and g € H,, the Ly(S) inner product (-, )
extends to ’

(fag) = Z ((fa ‘Pn)(ga (Pn) + (fa ¢n>(ga wn))
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and satisfies |(f,g)| < [|fl|-allgll«- Also, a1 < ag implies ||f||la, < [Iflla;-
Note HN c Hyc H_, fora>0.Fora c Rand f € HY, let

1/2

“f”a,N = Z ((f? (pn,N>2 + (f’ 1/’n,N>2)(1 +/6n,N)a y

where ¢, nx and ¥, y are the discretized versions of ¢, and 1,, from Section 2.
Ifa > 0andf,g € HY, then [(£,8)] < [Ifll—anliglla, v-

Note ||/f|lo,n = |[f||o and, more generally, basic calculations [Blount (1987)]
show that for f € HY and o > 0 there exist positive constants c¢;(a) and co(a)
with

(5.1) 1D |-a,n < Ifll-a < cal@fll-a,n-

The following basic facts will be needed for computations:
Assume m,n #0.

(a) Pm,N¥Pn,N = 2_1/2[4%’m+n,N +<Pm—n,N],
(b) lpm,N"/)n,N = 2_1/2[90m—n,N - ‘Pm+n,N],
(c) ‘Pm,N"/)m,N = 2_1/2[¢m+n,N - wm—n,N]

Let a,, n = Nlcos(nmN~1) — 1] and b,, y = N sin(mmN~1).

(d) VEQm, N = Qi NOm, N £ b, NYm, N

(e) V:‘:T,Dm,N = ibm,N‘Pm,N +am,N'¢m,N,

() a, N +b% N =BmN

(® Pm,N = P2N-m,N; Ym,N = —~VaN-mN,
@m,N = Q2N —m,N,  bm,N=—boN_m N-

Note that multiplying ¢, n¢s, N, and so forth gives rise to subscripts outside
our original domain of definition, but (g) shows this is not a problem.
Fix a > 1/2 and, for the remainder of this section, assume:

(A1)N =1.

(A2) || X(0) — 1(0)||cc — O in probability.

(A3) P(N)Y/4| X(0) — 1(0)||o < ¢) — 1 for some ¢ < co.
(A4) (ND)Y/2(X(0) — 1(0)) — Vj in distribution on H_,,.
(A5) d* /dr*x(0,r) is continuous for some £ > max(4, a).

Recall ¢ is a solution of (2.1) and R(x) the reaction polynomial. For v € [, k]
it is shown in the Appendix of Kotelenez (1986b) that U(z,s), the evolution
system [see Pazy (1983)] generated on H., by A + R'(3(t)), satisfies both

U, )l < IIfllyexp(c(T)E —s)) fors <t <T,

(5.2)
[@Flly < DNF -
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For 8 > 3/2, let M denote the C([0, 00); H_p)-valued Gaussian martingale
with characteristic functional

E[exp(i(M(t), w))] = exp <— /Ot ((1&(3), @?) - %<|Rl(w(s)),<p2>) ds)

for ¢ € Hg. [See Kotelenez (1988) for further discussion of M]. We assume Vo
independent of M. Let

m i—1
R(x,y) = Zci(iji—l—jyj—l),
i=2 j=1

where {c;}7' are coefficients of R(x), and consider the stochastic partial differ-
ential equation

(6.3) dV() = (A +R'(1,b(t)))V(t) dt + R(y@), y(®)y@)dt + dM(@), V(0) = V.

It follows from Kotelenez (1988) that (5.3) has a unique mild solution V €
C([0, 0); H_,) a.s. and given by

t t
(5.4) V() =Ut, O)V(O)+/ U(t,s)dM(s)+/ U, )R (y(s), ¥(s))9(s) ds.
0 0

In this section we prove the following result:
THEOREM 5.1. (NI)Y/2(X — ¢) — V in distribution on D([0,00); H_,).

The proof will be given after preliminary results and discussion.
Let & = hy denote the HV-valued solution of the ordinary differential equa-
tion
Oh(t,r)
ot
h is a spatially discretized version of (2.1).

Fix p such that R(x) < 0 for x > p. We may assume (0) < p, and from the
Appendix of Kotelenez (1986b), we have

(5.5) = Anh(t,r) + R(k(t,r)),  R(0,r) = Pyw(0, 7).

(5.6) 0 <y, r)hEtr)<p

and

®.7) sup [[4(8) — A®)|loo < c(TIN-L.
t<T

It is-shown in the proof of Lemma 6.4 of Blount (1993) that
(5.8) supN||A(@) — (@)= — O.
t<T
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Let Un(¢,s) denote the evolution system generated on HY by Ay + R'(h(2)).
From Lemma 4.1 of Blount (1993) we have, for v € [0,%] and f € HY,

|UnG@,$) || =y < Ifll—vexp(c(T)¢ —s)) fors<t<T,
|R@f (|- < c(DIIf |-

By (Al), (A2), (5.7) and Theorem 4.1 of Blount (1992),
(5.10) sup (IA@®) = X®)|oo + [[9(&) = X®)]|oo) — O
¢<

(5.9)

in probability. Using (3.3) and (5.5), we can write

t
X(t) - h(t) = X(0) — h(0) + / (A + B (h(s)) ) (X(6) -~ h(s)) ds
(5.11) t 0
. / R(X(s), h(s)) (X(s) — h(s))* ds + Z(z).
0

By variation of constants, we can write

t
N(X(t) - h(t)) = Uyn(t, O)N(X(O) — h(O)) + / Upn(t,s)N dZ(s)
(5.12) ¢ 0
. / Un(t, 9R(X(s), hs))N (X(s) — h(s))2 ds.
0

LeEmMA 5.1. IflogN/l — Oas N — 00, then (A2), (A4) and (A5) imply that
(VD)2 U0, ) (X(0) — (0)) + /0 U, )dZ(s)]

converges in distribution on D([0, 00); H_,) to U(-,00Vy + [; U(-,5)dM(s).

ProoF. This was shown in the proof of Lemma 6.3 of Blount (1993) assum-
ing N/l — 0 as N — oo. However, the stronger assumption on / was only used
to eliminate the last term in (5.12) [with (N7)!/2 in place of N, and the proof
of Lemma (5.1) only requires (A4) and (5.10), which holds by Theorem 4.1 of
Blount (1992). O

By Lemma 5.1, (5.12) and (5.8), Theorem 5.1 will follow if we can show
that the last term in (5.12) converges in probability to the corresponding term
in (5.4).

By (A2), (A3) and (5.6), we may, by conditioning on X(0), assume that

(5.13) 0<X(0)<p
anci

(5.14) N|X(0) — h(0)]|2 < ¢ < 0.
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Let 7y = inf{¢: | X(#)||c0 > p}. Because [|6X(#)||co <171, we may assume

(5.15) 1 XE AT < p + 1.

LEMMA 5.2. There exists a = a(p, T) < oo such that

P( sup N|[Y(t A )|2 > a2) 0.
t<T

PrRoOOF. We use the notation developed for the proof of Lemma 3.5. For any
a > 0, it follows from Lemma 3.2(c) and (d) that

P(supN Z (YA Tl),fm)N>2 > a2>

t<T mEB,
< oT, p)a~2~log N)® — 0 as N = — oo.

By Lemma 3.4(b), exactly as in the proof of Lemma 3.5,

P(supN 3 (YA, fun) > a2>
t<T

m ¢ By
< o(T)N*(log N)~(ca®l /(N p)) ¥V

= c(T)N3(log N)~(ca®/p) " '*" because N =1.

For a = a(p, T) large enough, the last expression converges to 0 as N — co. O

Choose ana = a(p, T) as given by Lemma 5.2 and let 7, = inf{¢: N ||Y(t/\7-1)||§ >
a}. By Lemma 5.2 and (5.10), 7 = 74 A 75 satisfies

(5.16) Pr<T)—0 asN — co.

Let

X@®), t<T,
t

XeEAT)+ fttM AnX(s)ds +/ R(X(s)) ds, T <t<oo.

AT

X@) =

X evolves as X until time 7 and afterward, if 7 < oo, according to the solution
of (5.5) beginning at X(7). By (5.16),

(5.17) P(X®)#X®),0<t<T)—0 asN — oo,

so we may restrict our attention to X.
Letting Z(t) = Z(t A 7), we havé

t i
X(6) = X(0) + / AnX(s)ds + / R(X()) ds + Z(2).
0 0
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By variation of constants,

t
(5.18) X(t) = Ty(X(0) + / T(t — )R(X(s)) ds + T@),
0
where
t
(5.19) Y = / Tyt — 5)dZ(s).
0

Ifr <ooand ¢ > 7, then
t
X(t) = Tw(t — IX(r) + / Ty(t — R(X(s)) ds.

By (5.15),0 < X(7) < p+1 and it follows from the properties of the deterministic
system [Kotelenez (1986b)] that

(5.20) 0<X(@t)<p+1 fort>0.

(5.18), (5.20), (5.6) and variation of constants applied to (5.5) imply that

sup || X(@) — k()|
t<T

INA

T)( || X(0) — h(0 Y
(5.21) exp(c(p) )(II (0) ()Ilo+f;u;|| ()Ilo)

IA

exp(e(o)T) (1 X(0) ~ KOl + sup [¥¢ Aol ),
t<

because ¥(2) = Ty(t — t AT)Y(¢ A7) and T < 5. Note N|5Y(®)|2 = N|ISX®)||2 <
N(2/(Ni?)) = 212, Thus we may assume sup, < 7 N||Y(¢ A73)||2 < a(p, T), and by
(5.21) and (5.14), we have

(5.22) supN|| X(t) — h(®)|2 < alp, T) < oo.
t<T

REMARK 5.1. By (5.17) and our previous discussion, it suffices to show that
N / Un(-, OB (X@), h®) (Xt) - hit)) dt
0
converges in probability on D([0, c0); H_,) to

/ UC,OR($®), $0) ) dt.
0

Consider

7
|| On IR (X, hO)N (X () - bt e
0
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fort < T. Note

oo 1/2
fll-a < (1,|f|>C<Zm‘2“> = c(@)(1,|f])
1

because o > 3. Thus, by (5.9), (5.10), (5.17) and (5.22),

sup_||Un(E,0)(B(X®),h) - RB(ht), h®) )N (X) - b))’

t<i<T
< ¢(T,a)sup || X(t) — h®)||eo — 0
t<T

-

in probability, and we may replace R(X, k) by R(h, h).
Let

Pyof = Y Afs@m N)m, N + (s Ym, N ), N

m<n

P,f = Z (fs om)Pm + (s bm)Pm.

m<n
By (5.1), f € HY implies

1/2
I = Py, ) fll-a < c<1,|f|>< > m-“) :

m>n

Thus, (5.9) and (5.22) imply

lim sup |Un(Z)R(h®),h®)d — Py, )N (X@) - h®)?|__ =0

N0 il
and, similarly,

lim sup [[UEDR(p@), %) - Payy@)||_, = 0.
I

n—=00, o3
This implies we need only consider

(N(X — 1) em N )em N

for e N = ©m, N OT ¥, » and m fixed in place of N&X — h)2.

Ife,, = @m OF Y, the subsequent Lemma 5.3 shows that (N(X(¢)—A(2))?, e, n)
— ((t),en) in probability for each fixed ¢ > 0. Assume for now this is true. By
(5.22), (5.6) and the bounded convergence theorem (applied twice), this implies

(5.23) /0 TE(KN()_((t) ~ h®) e )~ <¢(t),em>‘>dt o0,
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By a standard Trotter—Kato type argument,

sup sup ||(Un(2,t) - UE,1)f]|, — 0
t<i<Tf€A

for compact sets A C Hy. Because ¢ € C([0, c0); C([0, 11)), this implies
sup ||(Un(t,t)— UG B)R(%(), ¥())em]|, — O.

t<i<T

Also, [lem — em,Nlloo + 8UP; < 7 [|¥(#) — A(®)]|oc — 0 as N — oco. Remark 5.1, the
discussion following Remark 5.1 and simple calculations complete the proof of
Theorem 5.1, assuming Lemma 5.3, which we now state and prove.

LEMMA 5.3. (N(X(@#) — h(2))?, em,N) — (Y(t),em) in probability for each fixed
t>0.

ProoF. By variation of constants,
X(t) — h(t) = Tn()(X(0) — h(0)) + /0 Tt - R (r(s)) (X(s) — h(s))ds
" /0 Ty — 9B(X(6), h(s)) (X(s) — his) ds
" /0 Tt — ) dZ(s).
For 0 <? < t with ¢ > 0 fixed, let
(%) = Ty(®)(X(0) — h(0)) + /0 i Ty (t — s)R' (h(s)) (X(s) — h(s))ds
+ /0 2 Ty(t — s)B(X(s), h(s)) (X(s) — h(s)) " ds

2
+ / Tn(t — s)dZ(s).
0
Applying It6’s formula to g2(#) and noting that g(¢) = X(¢) — h(t), we obtain
(X® - (1)’ = (TvO (X O - k)’
t
+2 / (Tt — (X - h(s)))
0
x (Tt - OR' (k) (X(6) - h(s)) )ds
T
+2 / (TN(t - 8)(X(s) - h(s)))
0
x (Tw(t - 9R(X(s), () (X(6) - his))" ) ds
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¢ _ _

2 T — X(s=)—-nh T —s)dZ
N /0 (Twtt — 9)(X(s-) — h(s)) ) (Tt — 5) dZ(s))
+ 3 (Tt — 9)6Z(s))°

s<t
=g1(8) + g2(t) + g3(t) + g4(t) + g5(2),

respectively.
Consider

N|(om,m:810)|
< V2N(1,6:®)

= VEN Y exp(~fn,wt) ((X(0) — A(0), @n, )" + (X(0) — (0}, ¢n,x)").

(5.24)
< VAN Y ((X(O) ~ b0}, g )" + (X(O) ~ 50}, 4 )"
n<K
+V2N|| X(0) - h(0)]|2 Y exp(—f, nt).

n>K

By (A1), (A4), and (5.8), N|| X(0) — h(0)||—q is bounded in probability. Thus, by
(5.1), N2((X(0) — 2(0), ¢ n)% + (X(0) — h(0), ¥», v)2) is bounded in probability for
each n, and the first sum converges to 0 in probability for any fixed K. By (5.14)
and (2.3) the second sum goes to 0 as K — oo.

Consider ’

¢
N(1,g5) = 2N /0 S exp(~26n, w0t — ) (K(s) — h(s),en, )

x (R (1(6) (X() — h(s)), en,v ) ds,

where we use e, x to denote ¢, x or ¢, y. By (5.12), Lemma 5.1, (5.22), (5.1),
(5.6), (5.15) and (5.17), sup, < y N|| X(¢) — h(2)|| o is bounded in probability. Be-
cause fé exp(—Ly,n(t —8))ds < (1 + n2)~1, the results and facts given in the
previous sentence show N(1,g5(t)) — 0 in probability. Applying some of the
basic facts listed after (5.1) shows N (e, n,82(¢)) — 0 in probability with essen-
tially the same proof.

Consider

N|(em,n.£50)]| < csup | X(t) — k)] - supN|| X(®) — A0} 0
< t<T |

in probability by (5.10), (5.17) and (5.22).
. Consider N(pm, n,84(t)) and let

fin(t,s) = Tn(t —s) [gom, N (sz(t - S)()_((S) - h(S)))] .
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Because (6Zp)(6Zg) = 0, Lemma 3.1 with N = and It6’s formula imply that

E[N(¢m,v.840)’]

2
= NzE{ > <<pm’ N (TN(t —-8)(X(s-) - h(s))) (Tw(t - s)éZ(s))> }

s<tAT

=FE |:/t/\7' [<X(S)7 (v+fm(t,3))2 + (V_fm(t,s))2> + <|R|(X(S)),fn%(t,3)>:| ds]
0

¢
<c / E([V*n(t, )2 + (e, 9)]13)ds
0

t
< c/ ) exp(—cn®(t - 5))E (()_((S) — h(s), son,N>2 +(X(s) — h(s), ¢n,N>2)
0 n

x (n +m + 1)%ds,

where we have used the basic facts listed after (5.1) to obtain the last inequality.
Equation (5.18) and variation of constants applied to (5.5) show

(X(t) — h(t),en, ) = exp(—Pn, nt)( X(0) — h(0), e, )

4
+ / exp(—Ln, N — 5)) <R(}—((s)) — R(h(s)), en,N> ds
0

t
+/ exp(— B, n(t — 8)) d( Z(s),en, N ).
0
Applying Lemma 3.1 to the last term we obtain
E(X(©) — h(0), 0, n)” < 37 exp(—cn®)E((X(0) - h(0),en,n)°)

+e(l+ n2)-2E( sup || X(s) — h(s)||§o> +e(TYND L.
s<T

From this and our previous inequality, we have

E [N, v,84(8))’]
< c(m,T) [EHX(O) — h(0)|| +E( sup || X(s) — h(s)||?,o> + l‘l} -0
s<T

by previously noted results, and the same holds with ¥m,n in place of o, N
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Consider Ngs(t) = NX; < «(Tn(¢ — 8)6Zp(s))? + N3, <:(Tnt - $)6Zp(s))2%:

E NZ <em,N, (Tw(t - 3)5ZR(S))2>'

s<t

<VENE Y. (1, (Tw(t - $)6Za(s)*)

s<tAT

tAT
=VaNE) (N /0 exp(~fn, (¢ — ) (|R| (X)), 0% + Y2 ) ds
<cdY (14037 o0,

where the last equality followed from Lemma 3.1. So we need only consider
N (Tn(t - $)6Zp(s)).
s<t

For 0 < o < ¢ with ¢ > 0 fixed and f € D([0, 00); Hy), let
m
F(P)t, ) = D)1 / eXP[(—Fim 3 — i, Wt — 5)]
m,nv0

X (£, (V"o WXV 01,3 + (V™ 0, 8)T™ 5, ) o, o,
+ (£, (Vo NIV, 8) + (V"% NIV Y, 8) Yo, N,

+2( ), (V0o WV Ui, ) + (V™0 WXV U, ), i, v | ds

(5.25)
For £ fixed and 0 < p < ¢, Lemma 3.1 implies

m =N 3 (enw,( (Tt — $)6Z(s)*) — N{ep, v, FCX)E, A 7))

sSuUNnT

is a mean 0 martingale. Note (1,(Tx(¢ — s)6Zp(s))?) < (1, (6Zp(s))?) < 2(NI2)~1,
Thus,

2
Em*(u) = EN* 3" (enw, (Twtt = £)52(s))”)
s<uAT

<R TE Y (1, (Tt - 1525)?)

s<SpuAT
< 4N%(NI2) 'el 1 = N2

because N = [ and where the last inequality follows from Lemma 3.1. Thus,
Emz(t) — 0as N — oo and the proof will be complete after showing N (e, N, F(X)
(t,t AT)) — (e}, %(t)) in probability.

We consider (o, v, F(f)t, 1)) using the basic facts listed after (5.1). Using
facts (c) and (g), it follows that (¢, n, om, ¥, n) = 0, so we need only consider
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the first two inner products on the right-hand side of (5.25). Note that only
terms with m,n #0 contribute to the sum. The remaining two inner products
sum to
<f(3), Pm — n,N>2(am,Nan,N + bm,an,N)‘Pm —-n,N
+ <f(S), Pm +n,N>2(am,Nan,N - bm,an,N)S0m+n,N,

after applying (a), (b), (d) and (e).
Fact (g) shows that

( ) = 1, iflm—n|=k&,
$k,N)Pm —n,N) = 0, else,

_ 1, ifm+n=korm+n=2N —k,
(¢k,N7¢’m+n,N> = 0, else.

From this we obtain
(or, N, F(f)E,0))
= 2(Nl)_1/ Z exp(_(ﬂm,N + ﬂm+k,N)(tL - 3))
0 m<N
X 2(am,Nam +k, Nt bm,me +k,N)<f(3)a (pk,N> ds

s [ exp(~(B + e~ 5)
0 a
mgz-'.:'él_\fk—k
m,n <N
X 2@m, NGn, N — bm, N, N)F(5), 01, N) ds.
Basic calculations show
2(@m, NUm +k,N + bm, NOm 1, N) _ 1+cN,m. k)

Bm,N + Bm+r, N

where |c(N, m, k)| < ck(m +k)~L.
From (2.3), basic facts (f) and (g) and the previous two equations, it follows that
(or, N F(f)E, 1))

m
exp(—(Bm,N + Bm+r,N)E —8)
= 2Ny MZSN/o PGy k=D |

X (ﬂm,N + ﬂm+k,N)(f($), SOk,N) ds

where |en, 1(f, p)| < c(R)1og N)INI)~ sup, . ,, [(f(s), o, w)]-

Analogous calculations show (5.26) holds with v,y in place of ¢, y. Using
(5.6), (5.10), (5.16), N = [, (5.26) and ¢z, 5y — @rllc — O shows the limit of
N{gr, v, F(X)¢,t AT)) is the same as

(5.26)

t
lim 2N! Z /exp(—(ﬂm,N+ﬂm+k,N)§t—S))(ﬂm,N+ﬂm+k,N)(¢(s),<Pk)ds'

N—oo m+k<NVO
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However, this limit is (¥(¢), ¢z) by (2.3) and the continuity of (i(-), ). The
same holds for ¢, n, 9. O

6. Law of large numbers with a constant density parameter. Let
R(x) = b(x) — d(x), where b(x) = b1x + by, d(x) = dox? + d1x, d2 > 0 and by, by,
dy > 0. For any value of /, the density parameter, let

(6.1) Ry(x) = R(x) — " dax.

Let v, denote the solution of (2.1) with S = [0, 1], ¥;(0) = 4(0) continuous and R;
in place of R. X is the stochastic model with reaction polynomial R(x). In this
section, we assume:
(A1) P(|| X(0)||lo <¢)— 1 for some ¢ < co.
(A2) [(X(0) —(0), pm)| +|{X(0) — %(0), ¥n)| — O in probability for each fixed
m as N — oo.
(A3) [ is constant.

THEOREM 6.1. (A1)-(A3) imply that

sup || X(#) — i@)||—a — O
t<T

in probability as N — oo for any a > 0.

The proof of Theorem 6.1 will follow from preliminary results and discussion.
(A1) and (A2) imply

(6.2) | X(0) — %(0)||— — O in probability Vo >0
and by conditioning on X(0), we may assume

(6.3) P(| X(O)o <¢) =1 fore < co.

LEMMA 6.1. There exists a = a(l, T) < oo such that P(sup; < 7 | X(#)llo < @) —
las N — oo.

PrOOF. Let X? denote the stochastic model where there is no “death” re-
action (d = 0), but only diffusion, immigration and “births” according to b(x) =
byx + by. If Xb(0) = X(0), we may couple X and X? so that P(X(¢) < Xb@),t >
0) = 1. This may be done as follows. Run X and consider the initial particles as
painted white. Between deaths, particles independently do random walks and
give birth, with the offspring placed in the same cell as the parent. Particles also
are independently added to the system as determined by . Each time a white
particle dies, paint the particle black, but let it remain in the system where it
may move and give birth independently of other particles according to the same
rules. However, its offspring are also painted black and black particles do not
interact with white ones. X is determined by the number of white particles in
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each cell and X ® is determined by the total number of particles in each cell, black
and white. By construction, X < X°. Because this implies || X(®)||o < || X ®llo,
it suffices to prove the statement of the lemma for X*. We have

t
X2() = Tn(@®)X2(0) + by / Tn(t — )X P(s)ds + bot + YO (2),
0
which implies
t
(6.4) | X8@)llo < | X200 + b1 / | X8(s)lods + bot + |Y2@)]o.
0

By (6.3), (6.4) and Gronwall’s inequality,

t<T

sup || X°(®)||o < exp(b,T) <c +boT + sup ||Yb(t)||0)
so it suffices to prove the result for sup, . 1 [Y2@®)|lo. Let 7 = inf{z: | Y (@)|lo > a}.
Using Gronwall’s inequality again,

(6.5) sup || Xb(t A 7-)|| < exp(b1T)(c + boT +a).
t<T

We use the notation developed for the proof of Lemma 3.5. Consider

P( sup |[Y2@®)||o > a) < P(sup Z (Yo(t A ?),fm,N>2 > a2/2)

t<T € B,

+P<sup Z (Yo(t AT), me> >a2/2)
t<T

m ¢ By
< (ND7HC(T)1 +a)log N)Fa™

+C(T)N3(log N)~ 1 (Cy(T)a2l/(1 + @)~ E¥,

where C1(T') > 0 and we have applied Lemma 3.2 (¢) and (d) to the sum over B,
and Lemma 3.4(b) to the sum over m ¢ By. The first term on the right converges
to O for any a, and the second term converges to 0 for a = a(l, T') chosen large
enough. O

FixT > 0anda =a(,T) < oo satisfying Lemma 6.1 and let 7 = inf{¢: || X))o
> a}. As in Section 5, let X denote the solution of

t t
(6.6) X()=X(0)+ / AnX(s)ds + / R(X(s))ds +Z(2),
0 0

where Z(¢) = Z(t A 7). We have
(6.7 P(X®) #X®),0<t<T)<P(r <T)—0,
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so we consider X in place of X.
Note [|6X()]lo < (2/(NI2)Y/2 — 0 as N — co. Thus, we may assume

I XE¢AD|o <a+1land || X@)o = |X®)o <a+1lfort < 7.Ift < co and
t > 71, then

t
0 <X(t) = Tyt — 1)X(1) + / T (t — 9)R(X(s))ds

t
< Tute = DX+ [ Tute = 5)b(X(w)ds.

This implies

t

| X®o <(@a+1)+bg / | X(s)||lo ds + bo(t — 7).
By Gronwall’s inequality and our previous discussion, this shows
(6.8) sup | X(®)]lo <@, T) < oo.
t<T

Applying variation of constants, we have

t
6.9 X(t) = Tn@®)X(0) + / Tn(t — $)R(X(s))ds + Y(t),
0
where , ,
Y@) =Yr®) +Yp(t) = / Tn(t — s)dZg(s) + / Tn(t — s)dZp(s).
0 0
Let V(#) = Ty(@)%(0) + [; Ty(t — $)R(X(s))ds. Then
(6.10) X(t) = V(t) + Tn(@)(X(0) — %(0)) + Y (&)

and

t t
V() = Ty(£)(0) + / Ty(t — $)R(V(s))ds — dy / Tt — )Y 5(s)ds
(6.11) 0 0

t

+/ Tn(t — s)e(s) ds,
0
where
- — 2
&‘(S) = —dg |:2YD(S)YR(S) + YIZQ(S) + (TN(S)(X(O) — 1/)(0))) jl
6.12) +(b1 — dn) [ Tw(s) (X(0) — $(0)) + Y))

— 25 [T ()(X(0) - $(0)) (V(5) + ¥(5)) + V&I (5)].
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LEMMA 6.2. (a) sup;<p 1Y(®)o < all,T) < co.

(b) sup;<r|l Y(#)||—o — 0 in probability for o. > 0.

(¢) {Xn}is relatively compact in D([0, T; H_,,) for any o > 0 and any distri-
butional limit g of {Xn} satisfies g € C([0, T1; C([0, 11)) almost surely.

(d) For €m,N = Pm,N O ";bm,N:

sup
t<T

¢
</ Tyt — s)e(s)ds,em1N>[ — 0 in probability.
0

PROOF. Let

~ t —
V() = Tew(0) + / T( - 9R(X(s)) ds
0
t
= TOP(0) + / exp (—Bnlt — 9))
m YO0

X (<<pm,R()_((s))>gom + <¢m,R()_((s))>1,bm>ds.

By (6.8),

t
/ exp(—fin(t — 5)) (<<pm,R()_{(s))><pm + <¢m,R()_((s))>z/zm)
0
< al,T)(1+m?)'andfor 0 <t <t, <T,

/t:z (l<g0m,R(}_((S))>l + l<z/zm,R()_((s))>l) ds < al, Tty — t1).

sup

t<T 00

Because 3,,(1 + m2)~! < oo, {17} is relatively compact in C([0, T; C([0, 1])) by
Ascoli’s theorem. Also,£6.8) and ||om, N — @mlloo + |¥m —Vm, Nlloo + |Bm, N — Bm| — 0
imply sup; < 7 |V(¢) — V(®)||cc — O in probability using calculations similar to
the previous calculations for V. This proves (c) with V in place of X, and (c) will

follow from (b) and (6.10). B
Estimates similar to those in the preceding text with V in place of V' show
sup; <7 [IV(®)|lo < al,T). By (6.8), (6.10) and our assumptions, (a) holds. (b)
follows from (a), (6.8), Lemma 3.2(c) and (d) (with Z in place of Z) and (5.1).
Now we prove (d). Recall the norm || ||, 4 defined in Section 5. The foregoing
estimates using V in place of V show, for ¢ > 0, IV®|la,n < ct,l,0) < oo for
0 < a < 3. Fixa € (0,3). Then [(en, x\V®),Y(®))| < c(m,t,D)]|Y®)|-o — 0 in
probability by (b). Also, |(e., nV(®),Y®))| < V2|[V(®)]o]| Y®)lo < al, T). Thus,

E(sup )
t<T

T
S/ EI(em,N,V(s)Y(s)Hds — 0.
0 :

t
<em,Ni/ Ty - s)(V(s)?(s))ds>
0
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In a similar way, the remaining terms in (6.12) can be dealt with using L,
estimates, (a) and the following facts:
@ | Tn(s)XX(0) — (0]l < [|X(0) — (0|0 < ¢,

(i) || Tn(s)X(X(0) — 4(0))|lo — 0 in probability for s > 0 by our assumptions,

(iii) E||Yr®)|2 < c(t, DN~! by Lemma 3.2(b) (with Z in place of Z),

(iv) E||Yp@®)||2 < c(¢,1) by Lemma 3.2(b). O

Let g be a distributional limit of X. As in the proof of Theorem 4.1, we may
apply the Skorohod representation theorem to assume without loss of generality

that X — g a.s. in D([0, T1; H_,) for any o > 0. Also, by (6.10) and the proof of
Lemma 6.2(c), we may assume

(6.13) sup [V®) —g(®)||cc — 0 a.s.
t<T
We need a final lemma before completing the proof of Theorem 6.1.
LEMMA 6.3. For e, N = ¢m N OF Y, N,

t =2
<em,N,/ Tn(t — S)(YD(S) - l’lg(s)) ds> -0
0

sup
t<T

in probability.
ProOF. Recall Y(t) = f; T(t — s)dZp(s). By Itd’s formula,

t
Vo) =2 / (Tt — )Y p(s—)) (Tw(t — s)dZp(s))
0

(6.14) B
+ 57 (Tt - 5)6Zp(s))”.

s<t

It follows from Lemma 3.1 that
) 2
E [<em,N, / (TN(t - S)?D(S‘)) (TN(t - S)dZD(S))> j|
0
tAT
6.15) =WD7'E / <X(s),
0

Z [ViTN(t - s)(em,NTN(t - s)?p(s))] 2> ds.

i=+,—
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For s < t A 7, consider (note || X(s)||oo < NY2||X(s)]|o)
<X(s), (V*T(e ~ )(em v Tt — )7n(s))) 2>

< N2 XE)o]|V* Tt — 5)(em, N Tt ~ T )
< NY2|| X6)o||V* (em, N Tt — )7 (6) .
< all, IN'/? Y "(n +m + 1%exp(—cn’(t - s))

X ((71)(3), (Pn,N>2 +(Yp(s), %,N>2>,

where the last inequality follows after applying the basic facts listed after (5.1).
By the proof of Lemma 3.2(a), E((Yp(s), ¢n,n)2 + (Y (s), ¥n, n)?) < c(NI)~! and
the expectation on the left side of (6.15) is dominated by a(l, T,m)N~'/2, This
shows we need only consider the last term on the right-hand side of (6.14) to
prove the lemma.

Recall F(f)(t,u) defined in (5.25). It was shown in the proof of Lemma 5.3 that

2
E [<em,N,F(X)(t, EAT) — Z (Tn - s)6ZD(s))2> J

s<t

=FE [Z <em1N, (TN(t - S)(SZD(S))2>2}

s<t

<4(N?)'E [ > (1, (Twe - s)azp(s))2>}

s<t
= 4(N?) B[ To®)3) < o, TI(NB) ' — 0,

where the last line follows from (6.14) and Lemma 3.2(a), respectively. The proof
is completed by basic calculations using (5.26), (6.10), (6.13), Lemma 3.2(c), (6.7)
and the continuity of g. O

PrOOF OF THEOREM 6.1. By (6.11), (6.13), Lemma 6.2(c) and (d) and
Lemma 6.3, we have P((h(¢),f) =0 for all¢ > 0, f € {¢m, ¥n}X_y) = 1, where
h(t) = g(t)—T(t)z/;(O)—f(; T(t—s)R;(g(s))ds. Because h € C([0,T1; C([0,1])) a.s., it
follows that A = 0 a.s. and the proof is complete by previously noted uniqueness
results. O
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