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U-STATISTIC PROCESSES: A MARTINGALE APPROACH!

By WINFRIED STUTE

Justus-Liebig University

Foriid. data Xj,...,X, and a kernel %, the associated U-statistic pro-
cess is defined as

1
Un(u,v)=m Z P(X;, X1ix, <u,X; <o}
1<i#j<n

Variants of these processes occur, for example, in the representation of the
product-limit estimator of a lifetime distribution for censored/truncated data
or in trimmed U-statistics. We derive an almost sure representation of U,
under weak moment assumptions on k. Proofs rely on a proper decomposi-
tion of the remainder term into strong two-parameter martingales.

1. Introduction and main results. Assume that Xi,...,X, is a (finite)
sequence of independent identically distributed (i.i.d.) random variables with
distribution function (d.f.) F, defined on a probability space (2, A, P). Let k be a
function (the kernel) on m-dimensional Euclidean space and set (for n > m)

(n—m)!
U, = —,;!-—Zh(Xil,...,Xim),

where 7 extends over all multiindices 7 = (iy, .. .,i,) of pairwise distinct 1 < i i<
n,1 < j <m.Commonly U, is called a U-statistic. U-statistics were introduced
by Hoeffding (1948). They have been extensively investigated over the last 40
years. Most of the basic theory is contained in Serfling (1980), Denker (1985)
and Lee (1990). See also Randles and Wolfe (1979).

More recently much attention has been given to what has been called a U
(-statistic) process. For ease of representation we shall restrict ourselves to
degree m = 2. The U-statistic process is then defined as follows: for real uz and

v set

Un(uav) = 1
n

m Z h(Xi’XJ')l{Xf <u,X;<v}

1<ifj<n

Write

1 n
Fn(x)=;Z;1{&sx}, xR,
i= .
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1726 W. STUTE

the empirical d.f. of the sample. Then U,(u,v) becomes (assuming no ties)

Unlat,0) = / / h(%,9)1 (s 1) Fo(dx)Fy(dy).

Now, a standard method to analyze the (large sample) distributional behavior
of U, is to write U, as

U,=U, +R,,

in which (A]n is the Hajek projection of U, and the remainder R, = U,, — (A]n is
a degenerate U-statistic that is asymptotically negligible when compared with
U,. In fact, provided that A has a finite pth moment and zero mean,

a2y, - N(0,02) in distribution
and
E|R,PP < Cn-P.

See Serfling [(1980), page 188]. It follows that also
n'?2U, - N(0,0?) in distribution.

Of course, this approach immediately applies to U, (u,v) for each (u,v) fixed.
Just replace h(x,y) by h(x,y)1; <4 y<y}. Unfortunately, this is insufficient for
handling U, (u,v) [resp. R,(u,v)] as a process in (u,v). Particularly, the (point-
wise) Hajek approach does not yield bounds for sup, , |R,(z,v)|. Such bounds
are, however, extremely useful in applications. For example, in survival analy-
sis, U-statistic processes or variants of them appear in the context of estimating
the lifetime distribution F and the cumulative hazard function A when the data
are censored or truncated [cf. Lo and Singh (1986), Lo, Mack and Wang (1989),
Major and Rejts (1988) and Chao and Lo (1988)]. In Lo and Singh (1986) the
analysis of the remainder term incorporated known global and local properties
of empirical processes. In Lo, Mack and Wang (1989) the error bounds were
improved by applying a sharp moment bound for degenerate U-statistics due
to Dehling, Denker and Philipp (1987). In Major and Rejts (1988) a bound for
sup, |Rn(u, 1)| of large deviation type due to Major (1988) was applied, which
required & to be bounded. In all these papers estimation of F (resp. A) could
only be carried through on intervals strictly contained in the support of the
distribution of the observed data; similarly in Chao and Lo (1988) for truncated
data situations. This general drawback mainly arose because of lack of a sharp
bound for sup, , |R.(u,v)| when the kernel 4 is not necessarily bounded.
Classes of degenerate U-statistics also have been studied, from a different
point of view, by Nolan and Pollard (1987). In their Theorem 6 they derive an
upper bound for the mean of the supremum by first decoupling the U-process of
interest and then using a chaining argument conditionally on the observations.
Now, by Hélder, a more efficient inequality would be one relating the pth order
mean of the supremum to the pth order mean of the envelope function, p > 2.
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At least this is a typical feature of many other maximal inequalities. We also
refer to de la Pefia (1992) and the literature cited there. In these papers the
main emphasis is on relating the maximum of interest to the maximum of
a decoupled process. No explicit bounds for a degenerate U-statistic process
are derived that are comparable to ours. Note, however, that in applications
the leading (H4jek) part is well understood and it is the degenerate part that
creates the more serious problems. '

In this paper we shall employ martingale methods to provide a maximal
bound satisfying the above requirements. As a consequence we would be able
to improve the a.s. representations of the product-limit estimators of F for cen-
sored and trullcated data as discussed above; see Stute (1993, 1994).

Denote by U,(u,v) the Héjek projection of U,(u,v). As for proofs, unfortu-
nately, as a process in (z,v),

Un(u,v) — Un(u,v)

does not enjoy any particular properties, so that standard maximal inequalities
could be applied. As another possibility, assume for a moment that 4 is nonneg-
ative. Then U, (u,v) is nondecreasing in (u,v) and adapted to the filtration

Fuo=0 1z <a, £ < max(,v)) .

Let C,(u,v) denote the compensator in the Doob—Meyer decomposition of U,
(u,v); see, for example, Dozzi (1981). At first sight one might expect

U,(u,v) — C,(u,v)

to be a two-parameter martingale to which standard maximal bounds could be
applied; see Cairoli and Walsh (1975). A serious drawback of this approach is
that with this choice of J:

1. The process (U,(:) — Cyn(-), F) does not satisfy the fundamental conditional
independence property (F4) in Cairoli and Walsh (1975).
2. The compensator C,(-) is still a U-statistic process rather than a sum ofi.i.d.

processes.
3. U,(-) — C,(:) turns out not to be a degenerate U-statistic.

The last comments were meant only to express the author’s difficulties when
writing the paper, in finding a proper decomposition of U,(z,v), in which the
remainder term (at least the most interesting part of it) is both a two-parameter
(strong) martingale in (z,v) and a degenerate U-statistic for (u,v) fixed. Given
such a decomposition we could then apply standard maximal inequalities for
(strong) two-parameter martingales. Having thus replaced sup, , |Rn(x,v)| by a
single R,(u,v), E|R,(u,v)PP could be further dealt with by applymg Burkholder’s

inequality.
. Furthermore, in our analysis, the Doob—Meyer decomposition of the process

> h(s,X)lx <oy (s fixed)
. :
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will be employed. Finally, some global bounds for empirical d.f’s ¢ la Dvoretzky—
Kiefer—Wolfowitz (1956) will be required.

Now, the process U, (z,v) may be written as

n(n - l)Un(u,U) = Z h(Xl’XJ)]'{}(;Su)}{/SU}

1<i<j<n

+ Y XXk <ux <o
1<j<i<n
= I, (u,v) + II,(u,v).

The following theorem contains the key representation of I,,(u,v) in terms of a
sum of independent random processes.

THEOREM 1.1, Assume h € Ly(F ® F), with p > 2. Then we have

Lwvs= Y [ / h(x, X)L x, < o) Fldx) + / R, 31 x, <y Fldy)

1<i<j<n -

_ / / hiz, y)F(dx)F(dy)] +Ryu,v),
where for each ug, vy,

1.1 ]E[ sup |R,,(u,v)|"]§Cpnp.

u<ug,v<vp

The constant C satisfies
- [Z 1/p
C< c[ / / |h(x,y)|"F(dx)F(dy)]

with C depending only on p.

A similar representation also holds for II,(u,v). Putting these together we
get the following corollary.

COROLLARY 1.1. Under the assumptions of Theorem 1.1,
n(n — DU, ) = n(n — 1)[ / / h(x, y)F(dz)F(dy)
+ / / h(x,y)F(dx)F,(dy)

- / . / ’ h(x,y)F(dx)F(dy)]+Rn(u,v).

where the remainder satisfies (1.1), with C replaced by 2C.



U-STATISTIC PROCESSES 1729
Since (assuming no ties)

n(n — DUn(u, ) = n? / / h(x,9)1 (s 4 3y Fuld)F(dy),

we may write the equation in Corollary 1.1 as

n
n—1

/ / h(x,9)1(x 4 3y Fuld)Fo(dy) = Up(u,v)
- / / h(x, y)F(dx)F(dy)
+ /_ ) /_ e, y)FF, (d)

- /u /v h(x,y)F(dx)F(dy) + R,(u,v)/n(n — 1).

Inequality (1.1) together with the Markov inequality yield, with probability 1,
(1.2) sup |R,(u,v)| =o(n'*¥P(Inn)?),

u<ug

v<vp
whenever § satisfies p6 > 1. Furthermore, if A is bounded, (1.1) may be applied
for each p > 2.

So far we kept uo and v, fixed. In such a situation integrability of A” only up to
(ug,vo) is sufficient. Actually, it may happen that (xg, vy) = (u,,v,) varies with n
in such a way that A is not integrable over the whole plane, but [ [** |a|P dF
dF — oo at a prescribed rate. Theorem 1.11is particularly useful also in this case.
On the other hand, if either u, or v, becomes small as n — oo (such situations
ocecur quite often in nonparametric curve estimation), then the integral

/_w /_oo b,y ) F(dz)F (dy)

also becomes small, to the effect that the bound in (1.2) may be replaced by
smaller ones. The last remarks also apply to the results that follow.

Interestingly enough (1.2) may be improved a lot. This is due to the fact that
according to Berk (1966) a sequence of normalized U-statistics is a reverse-time
martingale. Utilizing this, we get the following result.

THEOREM 1.2. Under the assumptions of Theorem 1.1, with probability 1,

sup |Ra(u,v)| = o(n(Inn)?)
u é Up *
VS Vg

whenever pé > 1. For bounded h’s, we may therefore take any 6 > 0.

With some extra work the logarithmic factor may be pushed down so as to get
abounded LIL. The necessary methodology may be found, for a fixed U-statistic
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rather than a process, in a notable paper by Dehling, Denker and Philipp (1986).
After truncation, they applied their moment inequality, at stage n, witha p = p,
depending on n such that p,, — oo slowly, to the effect that for a bounded LIL
the moment inequality “serves the same purpose as an exponential bound”
(personal communication by M. Denker). Since this method is well established
now, we need not dwell on this here again.

In the next theorem we are concerned with a two-sample situation. Let
Xi,...,X, beii.d. with common d.f. F and let, independently of the X’s, Y7, ...,
Y,. be another i.i.d. sequence with common d.f. G. We shall derive a represen-
tation of the process

n om
nmU,p(u,v) = Z Zh()(“ Yl)l{X, <u,Yj<v}-
i=1j=1

THEOREM 1.3. Assume h € L,(F ® G), with p > 2. Then we have

nmUpm(u,v) =Y Y [ / h(x, Y1y, < o) F(dx)

i=1j=1

+ / h(X;,y)1(x, <uyG(dy)
- / / h(x,y)F(dx)G(dy)] + Ryn(u,v),

where for each ug, vy,

E | sup |Rum(,v)lP| < [Cznm]p/z.
u<ugy
v<vg

The constant C satisfies
- Uy o 1/p
c<C [ / / IhGx, y)I"F(dx)G(dy)] .

The analogue of Theorem 1.2 is only formulated for m = n.

THEOREM 1.4. Under the assumptions of Theorem 1.3, with probability 1as
n — oo,
sup |Run(u,v)| = o(n(In n)°)
u<ug

USU()

whenever pé§ > 1.

Another variant (resp. extension) of Theorem 1.1, which is extremely useful
in applications, comes up when, in addition to X;, there is a Y; paired with X;.
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Typically X; is correlated with Y;. We may then form
Lwv)= Y  AXY)x<uy<0)-
1<i<j<n
Clearly, this I, equals the I, from Theorem 1.1 if X; = Y;; similarly, for II,(u, v).
Theorem 1.5 is an extension of Theorem 1.1 to paired observations.

THEOREM 1.5. Assume that (X;,Y;),1 <i <n,is aniid. sample from some
bivariate d.f. H with marginals F and G. Assume h € L,(F @ G) with p > 2.

Then we have

I.(u,v) = Z [/

1<i<j<n -

u

b, Y1y, < oy F(d) + / h(Xe, )1, <.y Glely)

- / ’ / ’ h(x,y)F(dx)G(dy)] + Ry (u,v),

where R, satisfies (1.1) and the h-integral in the bound is taken w.rt. FQG. The
assertion of Theorem 1.2 also extends to the present case.

REMARK. The results of this section may be extended to U-statistic pro-
cesses of degree m > 2, but proofs become more complicated and the notation
even more cumbersome. As far as applications are concerned, however, the case
m = 2 is by far the most important one.

We end this section by presenting five examples to which the theorems may
be applied. For these we remark that in the formulation of the previous results,
the point infinity could also be included in the parameter set. What matters is
that the parameter sets of the coordinate spaces need to be linearly ordered.

ExaMPLE 1.1 (Censored data). Inthe random censorship model the actually
observed data are Z; = min(X;,C;) and §; = 1(x,<c;}, where X; is the variable
of interest (the lifetime), which is at risk of being censored by C;, the censoring
variable. For estimation of the cumulative hazard function of X, a crucial role
is played by the (one-parameter) process

6z~ 7,
2 (11—_{157(22}._)1{2;-9} =I,(w), ueR
1Sl<]§n i

Here H is the d.f. of Z;. If we introduce
Z;,, if §=1,

Y, =

| oo, if §=0,

then

61z, <uy = Ly <u}



1732 W. STUTE

and, therefore,

Liz>y,

I,w) = . Z El——ijﬁ)%Y,) Ly, <u) = In(u, 00)
<i<j<n

for an appropriate kernel /. The fact that Y; is an extended random variable is

of no importance to us. The theorems have been formulated for real variables

just for the sake of convenience, but may be generalized easily to the foregoing

setup. This example is discussed in greater detail in Stute (1994).

ExAMPLE 1.2 (Truncated data). Here one observes (X;,Y;) only if Y; < X.
Though originally X; is assumed independent of Y;, the actually observed pair
has dependent components. For estimation of the cumulative hazard function
the following process constitutes a crucial part in the analysis:

iy <x<x
Lw= 3 Gy lwsa
1<i<j<n t

for some particular function C. Obviously I, may be decomposed into two parts,
each of which is of the type as discussed in Theorem 1.5, with v = co. See Stute
(1993) for a thorough discussion of this example.

ExAMPLE 1.3 (Two samples). In the situation of Theorem 1.3, the Wilcoxon
two-sample rank test for Hy: F' = G versus H;: F = G(- — A) is based on the
U-statistic

n m
Tom = Z Zh(Xn Yj)1
i=1j=1
with A(x,y) = 1{; <,}. In our previous notation,
Tom = nmUpm (0o, 00).

We may now consider the associated process U,,, in order to construct tests
for Hy versus Hy, which are based on the whole of U,,, rather than only T},,,.
It would be interesting to compare the power of these tests with that of the
standard Wilcoxon test.

EXAMPLE 1.4 (Trimmed U-statistics). Gijbels, Janssen and Veraverbeke
(1988) investigated so-called trimmed U-statistics.

] [nal (nB]
n(n — l)U,?(a, /B) = Z Zh()(zm *Xj:n)’

i=1j=1

where X;., < --- <X, ., denotes the ordered sample.
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Since

n

nln = DU ) =, > b X)ix, < prvcer,x < oy

i=1j=1

we see that UQ(a, B) is related to U,(F; (), F;'(8)), neglecting the sum over
i =j for a moment. Observe that u = F;}(a) and v = F; 1(8) are random in this
case. The (uniform) representation of U, in terms of a (simple) sum of indepen-
dent random processes together with their tightness in the two-dimensional
Skorokhod space allows for a simple analysis of U%(a, 3), not just for a fixed
(o, B) [as done in Gijbels, Janssen and Veraverbeke (1988)], but as a process in
(a, B). Details are omitted.

U-statistic processes also occur in the analysis of linear rank statistics. We
only mention the possibility of representing a linear signed rank statistic (up to
an error term) as a sum ofi.i.d. random processes [cf. Sen (1981), Theorem 5.4.2].

ExAMPLE 1.5 (Linear signed rank statistics). For a sample Xj,...,X, and
a proper score function ¢, it is required to represent the double sum

> e XDlgx <xylio<x <u-
1<ifj<n

We see that Theorem 1.5 applies with Y; = |Xj|.

2. Proofs. We may and do assume without loss of generality that the X’s
are uniformly distributed on the unit interval. Otherwise, use the representa-
tion X; = F~1(U;) in terms of a uniform U; and the quantile function of F, upon
replacing u and v by F(u) and F(v), respectively, and h(x,y) by the transformed
kernel A(F~1(x), F~1(y)).

In the following we shall always write U; instead of X;. In order to prove
Theorem 1.1, we start from the decomposition

Lw,v= Y kU, U)lwy,<q, U <v}

1<i<j<n

= Z [/ h(S,Uj)l{Ujgv}ds"'/ h(Ui,t)l{UiSu}dt
0 0

1<i< j<n
—/ / h(s,t)dsdt}
0. Jo

+ 01, 0) — Y, v) — 6,(u,v) + €51, v),

where
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Bw,v)= > Biw,v),

1<i< j<n

TW@,v)= Y ),

1<i<j<n

8,(u,v) = Z 6;j(u,v),

1<i<j<n

en(u,v) = Z €;j(u,v),

1<i<j<n

with
1w, >s
Bij(u,v) = h(U;, U1y, < u, U; < v} —/ {lU A2} g, Uplwy, <vy ds
sl
—/ {U>t}h(U,,t)1{U<u}dt+/ / L zst 1 {U>t}h( t)dsdt,
0

1y < 1
vij(u,v) = / —i-‘ié—}-—-[h(s,u;.)lesu}— / Wizt g, t)dt]ds,
0 0

1-s 1-—1¢
U Iig<p —t iy >s
8w, v) = / %[h(m,mmsu}— / {1U> Lhs t)ds]dt
0 - 0 -
and

1 —-s1
&ij(u, v)—/ / {U<s}s s {U1<_t} h(s,t)dsdt.

Hence, the remainder term in Theorem 1.1 is given by
Rp(u,v) = Bu(u,v) — Y, v) — 6,(u,v) + £, (1, v).

As is well known from univariate empirical process theory, the bracketed quan-
tity in v;; constitutes, for fixed s, the martingale part in the Doob—Meyer decom-
position of h(s, Uj)1(y, < v}; similarly for §;;. This observation led us to consider
Bi; as the crucial martingale part in the decomposition of the two-parameter
process h(U;, U1y, < u,U; < v}-

Furthermore, to cope with the dependence of the summands of 3,, we con-
sider the associated “sliced processes”

Bw,v) = Z Bij(u,v), 2<k<n.

1<i<k<j<n

Sliced processes have the advantage that the variables appearing in the first

coordinate are independent of those in the second component. This fact will

guarantee that for a proper filtration to be introduced, the crucial conditional

independence property (F4) of Cairoli and Walsh (1975) will always be satisfied.
For this, let

5t =0(lp<op y<y 1<i<kk<j<ns<ut<v).
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Then g% is adapted to the filtration F%. Moreover, we have the following lemma.

LEMMA 2.1. Foreach2 <k <n:

(a) BF is a (centered strong) martingale w.r.t. the filtration F*.
(b) For each (u,v), B¥(u,v) is a degenerate (zero mean) U-statistic.

PROOF. For (a) we have to verify that the conditional expectation of an
increment over a rectangle given the past equals zero. By 1ndependence we
may restrict ourselves to a particular pairi < £ < j. Foru < u’ and v < v,
write R = (u,u’] x (v,v’]. Check that, by independence of U; and 3

E[h(U;, ULy, vpery | U; < u,Uj)

=E[/( ] {lU_>s}h( Ulp <y <vyds| Ui < u, UJ
u,u’

S e<Usn g [ g
1-u (u,u’] T

and

B[ fl””}h(Uz,t)l{uw,q}dtlU<u,U,J

—]E[// 1{"”} {””}h( s,t)dsdt | U; <u, UJ

{U>“}//h( £) {U’>t}d dt.

Conditional expectations w.r.t. o(U; < v, U;) are dealt with similarly. A Markov-
argument completes the proof of (a); (b) is straightforward. O

LEMMA 2.2. Forany 0 <ug,v9 < landp > 1,

2p
E| sup |[Biw,v)f| < (_p_) sup ]E[[,@k(u v)[p]
0<u<u P—-1) o<u<u,
0<v<yy 0<v <y

PrOOF. Follows from Lemma 2.1(a) and, for example, Theorem 1.2(b) of
Cairoli and Walsh (1975). O

We now bound the right-hand side in Lemma 2.2. Fix some (z, v) and put, for
k<r<n,

Y. Bjww),  Fr=oUy,...,Uy_y,...,U,).

1<i<k
k<j<r
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Clearly, S, is adapted to F,. Moreover,
]E[Sr l Fr - l] =S, _1+ Z E[ﬂir(uav) I Fro 1]

1<i<k
=8,_1 by Lemma 2.1(b).

Hence (S;, F;)r <r < » is @a martingale, with S, = §%(u,v). Set

D, = Z Bir(u,v), kE<r<n.

1<i<k
From Burkholder’s inequality [cf. Chow and Teicher (1978), Theorem 1, page
384],
p/ 2}

n
<Bi(n—k+DP2-1N"EDP  ifp>2,
r=k

> p2

E[l,@,’:(u, v)[”] <BE ]E[
r=k

where
B, = 18p%%/(p — DV/2,
A similar argument now yields an upper bound also for E|D,|?. Set,for 1 <i < &
andk <r<n,
i
Ti = Zﬂjp(u, U), gi = G(Ulv cet Ui) Ur)
Jj=1

Then T; is adapted to G;. Because of

E [8#w,v)|G;—1] =0 [cf Lemma 2.1(b)],

(T, S)1<i<ris amartingale. Putting E; = §,(u,v) we get as before, since T}, _ | =

r

E—1
ED, P <Bb(k—1P/2~ 1N E|Ef ifp>2.
i=1
In summary, we therefore have, if p > 2,
. n k-1
4 E[lﬁ,’:(u, v)l"] <BP(n—k+1P27 Mk — P21 N E[|8u, v)P].
r=ki=1

Because the U’s are i.i.d. we arrive at the following lemma.



U-STATISTIC PROCESSES 1737

LEMMA 2.3. Forp > 2and 0 < ug,vg < 1,

E| sup |B:u,v)f| < C5(n—k+1)P/2k —1)P/?
0<u<ug
0<v<uyg
with
p \*
Cl{ = (—) ng sup E [|ﬁ12(u,v)|p] .

p-1 0<u<u
0<v<uyg

Lemma 2.3 will now be used to bound the supremum of
B, v)= Y Bijw,v).
1<i<j<n
For this note that the function u — u(1 — u) on [0, 1] attains its maximum at
u =1/2. It follows that
(n—k+ P2k -1)P2< (n/2)’, 2<k<n.

Lemma 2.3 implies

sup |Brw,v)||| <Cin/2,
0<u<ug

0<v<ug p

where || - ||, denotes the norm in pth mean. To bound the sup of |3,|, we first
consider the case n = 2™ with some integer m. Write

Bu(u,v) = By(u,v)

=1
with
2m—l
By(u,v) = Z By(u,v)
k=1
and
By (u,v) = Z Bij(u,v).

k-12 <i<@k-12-1<j<hk2

Note that since the By;’s are sums over pairwise disjoint index sets, each B; is
also a strong martingale. The Cairoli—-Walsh (1975) inequality is therefore also
applicable to B;:

. "
(2.1) E| sup |Bi(u,v)P g[pL] sup E[|Bi(u,0)P].
0<u<ug -1 0<u<ug
0<v<uyg ) 0<v<uy
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To bound the right-hand side we shall use the fact that for some & = &( p)>0,
El§ + 7P < (1 - e)2Pmax(E[¢)P, ElnlP),

if ¢ and 7 are independent with E¢ = 0 = Ez. The preceding inequality is trivial
if p is an even integer and may be readily extended to a general p > 2. Iterative
application to B; together with (2.1) yields :

E| sup |Biw,0)P| <(1—eym~iopm=Delorl = (1 — cyn=1Ppp.
0<u<u,
0<v <y,

Conclude

m
<Cin Z(l —e)m-b/p < KCin,
p =1

sup |Ba(u,v)|

where 1 < K = K(p) < oo is a constant depending only on p,butnot on k. In the
following we verify the last inequality for a general n, with 2K rather than K.

LEMMA 2.4. Forp >2and 0 < ug,vy < 1,

2.2) sup |Gu(u,v)||| <2KCin.
OSuSuo

0<v <y p

ProoF. We shall show (2.2) by induction on n. It is already known that the
left-hand side of (2.2) is less than or equal to KCin if n = 2™. In particular, (2.2)
holds for n = 2. For a general n, denote with n the largest power of 2 contained

in n. Since
Bn = Z Bij + Z Bij + Z Bijs

1<i<n<j<n 1<i<j<n n<i<j<n

Lemmas 2.2-2.4 together with the induction hypothesis imply

(2.3)

< clg +KCin + 2KCi(n — n).
P

sup | Bn(u, v)|
u,v

By construction, n < 2n. Hence the right-hand side of (2.3) is less than or equal
to 2KC1n. The proof is complete. O

NoTE 2.1. From Hoélder’s inequality we obtain

c p_\gel [ [ he oPdsdt]
< | —— s,t)"dsdt
o< () Bl [ [ e opasa

X 1+ + 1 L
T—u  1-ve (I—ugXl—vg)|"
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Next we introduce the process

'Y:(u,v) = Z ’Yij(U,U),

1<i<k<j<n

where as before

1y, <o
715w, v) = / Wie) s[h(s,U,-n{vjsu}— / {1”’>‘}h< s,0)dt|d

Set
= U(U1,~'~3Uk—la l{Ulft}) k< .] <n,t< U).
For each u, v%(u, -) is a martingale w.r.t. the filtration ¥ k Consequently,

sup |fy (u, )|
0<u<uy

is a (nonnegative) submartingale. From Doob’s inequality,

P

E| sup |y of| < (L) ]E[ sup |7k, vo)|” ]
0<u<ug p-1 0<u<ug
0<v<uvy

Nowfor0<u<ug<l,

(k& — D||F—1 —Id|l

1- Uo
uo 1
x / > [h(s, Ul <vey = / {1U’>t} h(s t)dt]
0 le<j<n 0 B
with Fj, _, denoting the empirical d.f. of Uy,...,Us_1. From the Dvoretzky—
Kiefer—Wolfowitz (1956) bound,
E[|F -1 - Id|,] < Chk — 1)7P/2,

|‘/ni(u7 vO)l S

where Cj is a universal constant. Since F}, _; is independent of o(Uy, ..., Uy),
an application of Holder’s inequality in connection with Burkholder’s inequality
(the Marcinkiewicz—Zygmund version for independent summands suffices here)
yields, for p > 2,

IE[ sup |7k, vo)l”]
0<u<ug

__an
(1 —ukp

U 1
0 0

(h— 1?20 —k + DP/?

vo 1 P
(s, w1y < vg) — / %h(s,ndt dwds.
1o
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This bound is similar to the one in Lemma 2.3. Also the arguments leading to
Lemma 2.4 may be carried over so that in summary we get the next lemma.

LEMMA 2.5. For
W@,v)= > %iw,v)

1<i<j<n
and p > 2,
sup |ya(u,v)||| <2KChn.

0<u<ug

0<v<ug p

NoOTE 2.2. Again, by Holder, we obtain

pCoB, / / , )1/p< 1 )
Cy < (p -1 _u0)< |h(s, )P dsdt 1+ = )

The proof of Lemma 2.6 follows the same pattern as that of Lemma 2.5.

LEMMA 2.6. Recall
Gw, )= > 6ju,v),

1<i< j<n
with
V1 —t
6,~j(u,v)=/ L’lst—}z——[h(Ui,t)l{Uigu} —/ {lU A28 s t)ds] L.
0 - 0 _

Then, for p > 2,

sup |6,(u,v)]| <2KCjsn.
0 S u S Uug
0<v<ug p

NoTE 2.3. The constant C3 satisfies

__pCeB, / / . >1/p( 1 )
Cs < DA -0 ( (s, )P ds dt e i),

- Qur final result is concerned with the process

€n(u, v) = Z . eij(ua U),

1<i< j<n
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where as before

1 —s1
&ij(u, v)—// {U<S} 5 {U1<_t}t h(s,t)dsdt.

Denote

@)= > &)

1<i<k<j<n

As in the proof of Lemma 2.5, we may apply the Dvoretzky—Kiefer—Wolfowitz
bound to get for 0 < ugp,vg < landp > 2,

E| sup [efw,v)]’| < Chk—1)P2(n - k+1)P/2
0<u<ug
0<v<uyg

LEMMA 2.7. For 0 <ug,vg<landp > 2,

sup |en(u,v)||| <2KCyn.
0<u<ug

0<v<uyg p

NoTE 2.4. The constant C, satisfies

1/p
p
Cos (1 = uo)1 = vg) uo)(l —vp) (/ / |h(s, )| det) )

We are now in the position to give the proof.

Proor or THEOREM 1. We have already seen that

> UL U, <u,v,<0)

1§i<j<n

[/ h(s, IIJ)I{U <U}ds+/ h(Ul,t)].{U <u}dt
(2'4) 1<z<J<n

_ / / h(s,t)dsdt]
0 0

+ Bn(u,v) — Ya(u,v) — 8,(u,v) + £,(u,v).

When both zy and vy are less than 1/2, the assertion of the theorem is an
immediate consequence of Lemmas 2.4-2.7 and Notes 2.1-2.4. If at least one
of them is larger than 1/2, the indicator 1(y, <4, v, <} on the left-hand side of
(2.4) needs to be decomposed into (when both u,v > 1/2)

Lvi<y2,u <2y + La/2<vi<u,1/2< Uy <o}
+1w, <1/2,172<U; <o} + L1/2< U <u, U < 172}
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The theorem has been proved already for each of the four U-statistic processes
pertaining to the above indicators (after a possible time change), upon observing
that the intervals [0, 1/2),(1/2, u] and (1/2, v] all have length less than or equal
to1/2. O

PrOOF OF THEOREM 1.2. Since for each (u,v),R,(u,v)/(n(n—1)) is a se-
quence of normalized U-statistics, it constitutes a reverse-time martingale w.r.t.
the decreasing sequence of o-fields

3",,=J(Xi;n:1§i§n,Xn+1,...), n>2.
Hence

p
R lt’ — I

is a nonnegative reverse-time submartingale. Set ¢, = n(Inn)~%. By Borel-
Cantelli it suffices to show that for each ¢ > 0,

(2.5) ZP(EzIHl . Tgk” sup |Rn(u,v)|/n(n —1) > 5) < 0.

v<u

By Doob’s maximal inequality the last probability is less than or equal to

(28(2* — 1) PePeh, \E | sup [Ry(u,v)PP | = Ok,
u<ug
v<vg

in view of Theorem 1.1. Since pé > 1, the proof of (2.5) is complete. O
NoTE2.5. The last proof utilized ideas from Serfling [(1980), Section 5.3.3].

ProOOF OF THEOREM 1.8. The arguments are almost the same as for The-
orem 1.1. In fact, some simplifications are possible. Because the two samples
are independent, introduction of 3%,~%, ... is superfluous. Rather, we may deal
with B, Yn, . . . directly. For example, after a reduction to the uniform case,

Bn(u,v) = z Z Bij(u,v)
i=1j=1
with
Bij(u, v) = h(Us, V)1(y, <u,v; <v)

U 1 : .
_/ {1UL =2 h(s, V)1 (v, <0y ds
o 1-

-1
/ {Vj>t}h(Ul,t)1{U <u} dt

// 1{U>s} 1{V>t}h( dsdt
=
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is a strong martingale w.r.t.
gu,u =0(1{(&S3}’1{‘/j$t}’ 1<i<n,1<j<m,s<u,t< U)~

So a direct application of the maximal inequality for two-parameter strong
martingales and the Burkholder inequality is possible, to the effect that the
arguments leading to Lemma 2.4 are superfluous. Similarly, for ~,, 6, and ¢,. O

PROOF OF THEOREM 1.4. With only minor modifications the proof is the
same as for Theorem 1.2. O

ProOF OoF THEOREM 1.5. This follows almost verbatim the arguments for
Theorem 1.1. The reduction to the uniform case incorporates a sequence (U;, V;)
of i.i.d. random vectors in the unit square with uniform marginals such that

X, =F'U), Yi=G'V)
for which the joint distribution of each (U;, V;) is the copula C of H, that is,
H=CF,Qq).

The processes f3;j,7ij, . . - are defined similarly, with U; replaced by V;. Because
of possible dependencies between U; and V;, §,, for example, has to be sliced
again by introducing the g*’s. O

Acknowledgment. The constructive comments of a referee, which led to
an improvement of the original Lemma 2.4, are highly appreciated.
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