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SUBDIFFUSIVE FLUCTUATIONS FOR INTERNAL
DIFFUSION LIMITED AGGREGATION!

BY GREGORY F. LAWLER

Duke University

Internal diffusion limited aggregation (internal DLA) is a cluster ~
model in Z¢ where new points are added by starting random walkers at
the origin and letting them run until they have found a new point to add
to the cluster. It has been shown that the limiting shape of internal DLA
clusters is spherical. Here we show that for d > 2 the fluctuations are
subdiffusive; in fact, that they are of order at most nl/3, at least up to
logarithmic corrections. More precisely, we show that for all sufficiently
large n the cluster after m = [wqn®] steps covers all points in the ball of
radius n—n/3(In n)2 and is contained in the ball of radius n+nr3(In n)%.

1. Introduction. Internal diffusion limited aggregation (internal DLA)
is a cluster growth model in Z?¢ where particles are produced one at a time at
the origin and allowed to do random walk until they reach a new point that
is then added to the cluster. To be precise, let S1(¢), S2(t),... be independent
simple random walks starting at the origin with integer time ¢. We define
ol =0,A(1) = {0} and for j > 1,

o’/ =inf{t > 0: S/(t) ¢ A(j - 1)},
A(j)=A(j -1 USI(a).

This is a particular case of a model discussed by Diaconis and Fulton [1].
It is closely related to a model called diffusion limited erosion, where random
walkers are sent from infinity and erase the first cluster point that they reach.
Lawler, Bramson and Griffeath [5] recently showed that the clusters formed by
internal DLA have the limiting shape of a sphere. To state the result precisely
it is useful to define the inner and outer errors 6;(n) and 6o(n) by

n—8y(n) =inf{|z: z ¢ A([wan®])},
n+8o(n) = sup{|zl: z € A([wan?])}.

Here wg is the volume of the unit ball in R? so that [wqn?] represents the
approximate number of lattice points in the ball of radius n. The main result
in [5] is that with probability 1,

n~181(n) - 0, n~180(n) — 0.
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72 G. F. LAWLER

The proof gave no estimate of the rate of convergence. There has been some
nonrigorous work (see, e.g., [2, 3]) that suggests that the error rate should be
subdiffusive (of smaller order than n'/2). In this paper we will prove that the
error is subdiffusive by showing that it is of order at most n1/3 at least up to
logarithmic corrections. Our theorem is as follows.

THEOREM 1. If d > 2, with probability 1,

1) lim n=3(In n)~28;(n) =0
(2) r}gxolo n~13(ln n)%80(n)=0

The powers of the logarithm in the theorem are not the best; in fact, one can
check in the proof presented that slightly smaller powers will work. However,
the methods in this paper are only strong enough to show that 6;(n) and
8o(n) are o(n'/3(In n)®) for some values of a. A more interesting question,
which we are currently unable to answer, is whether or not the errors are
o(n*) for some a < 1/3.

For the remainder of this paper, we assume d > 2. In Section 2 we prove
(1), the result for the inner error. The general idea of the proof is the same
as in [5]. We relate the probability that a point z € B, is not contained in
A([wgn?]) to the probability that a certain random variable (depending on
2), M — L, equals 0. M and L are far from independent, but we give very
sharp estimates for their expectations. If we let 6 = n — |z| we show that

E(M)~ns, EL)~ns, EM-L)~é&.

With high probability one expects that M will differ from E(M) by an amount
of order E(M)/2 and similarly for L. If 8 is such that

E(M — L) > E(M)"2 + E(L)"?,
then we would expect that M — L > 0. This is equivalent to
82 > n1/281/2.

Here we see where 6 = n1/3 comes in. By throwing in a logarithmic factor, we
can use large deviation estimates to make this argument rigorous.

The outer error is analyzed in Section 3 using a somewhat different argu-
ment than that in [5]. By the estimate of the inner error, in [wgn?] steps we
expect at most O(n%~2/3)(In n)?) of the walkers to reach the sphere of radius
n before adding onto the cluster. This alone is not sufficient to show that they
all add on soon. It is necessary to show that the walkers that do reach the
sphere of radius n are spread out relatively evenly around the sphere. An es-
timate of this type (Corollary 10) is made is this section. With this estimate,
the remainder of the proof can be made by a fairly straightforward estimate of
the expected number of walkers that get to a certain distance without adding
to the cluster.
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It is convenient for the proof to define the random walks S 1,82 ...in terms
of two other collections of random walks. Suppose we have a collection of
independent simple random walks on Z¢,

{(Xit): i=1,2,...; Y*(t), x € 7%},

with Xi(0) = 0 for all i and Y*(0) = x. Define as before ! = 0, A(1) = {0}
and for j > 1,

o/ =inf{t>0: X/(¢t) ¢ A(j - 1)},
A(j)=A(j-1)U{X/(c))}.
Let

X(¢), t<a/,
yXie(t - gl), t>ol.

Sj(t)=l

Then it is easy to verify that S!, S2,... are independent simple random walks
and as before,

o/ =inf{t >0: S/ ¢ A(j—1)}.
We will write B,, for the discrete ball of radius n,
B,={z¢ Z%: |z| < n}
and
9B, = {z € Z%\ B,: |2— y| =1 for some y € B,}.

If S(¢) is a simple random walk, we write

&, =inf{t > 0: S(¢) € 4B,}.
Similarly, we write

¢ =inf{t > 0: S/(t) € 9B,},

£5 —inf{¢ > 0: Y*(¢) € 3B,}.
If z € Z¢% or A C Z2, we let

T, =inf{t > 0: S(t) =z}, T4 =inf{t > 0: S(¢) € A},

and similarly we define 3, 7%, frfa, 7%. We will introduce one other notation.
We say that a sequence of numbers vy, converges to zero quickly, written

'Yn —q) 0’
if it goes to zero faster than any power of n, that is, if for all g < oo,

lim nfy, =0.
n—>oo ~
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One example of such a sequence is y, = exp{—c(In n)*} for any ¢ > 0, @ > 1.
Note that if y, -2, 0 and p is any polynomial, then p(n)y, —> 0. We will

also use the convention that ¢, ¢1, ¢ will denote positive constants that depend
only on the dimension d; however, the exact value of the constants may change
from line to line.

2. Inner error. In this section we prove (1). Let

D(n)={z€Z% n—-2n"3(n n)? <|z| <n—n'3(n n)?}.

We will prove that there exists y, —> 0 such that
(3 P{D(n) C A([wgn®])} =1 - yy.

It then follows immediately from the Borel-Cantelli lemma that with proba-
bility 1, for all r sufficiently large,

D(n) c A([wgn®]).

Because all but a finite number of x are in D(n) for some n = n(x), this will
prove (1). To prove (3) it clearly suffices to show that there exists y, —> 0
such that for all z € D(n),

@ P{z ¢ A([wgn?])} < n.

This is the estimate we will prove.
For any n,m and z € B,,, define

N = N(n,m,z) = # of first m walks that first visit z before either
adding to the cluster or leaving B,

m . . .
=Y I{ri <o/ nE]},
=1

M = M(n,m, z) = # of first m walks that visit z before leaving B,
m . .
= Z I{Té < f;{,},
j=1
L =L(n,m,z) =# of first m walks that visit z some time
between o/ and &5

Kol <1i < £}

s

|
—

J

Note that N> M — L and
{ze€e A(m)} D {N > 0}.
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For any z € B, let

L=L(n,2)= Y Il <¢g}
yeB,

Note that for any n,m and z € B,
L(n,z) > L(n,m,z).
Therefore, for any a > 0, z € B,
(5) P{z¢ A(m)} < P{M — L =0} < P{M(n,m,2) <a} + P{L(n,2) > a}.

For the remainder of this section, we let m = m(n) = [wgn?®]. We will
estimate E(M(n,m, z)) and E(L(n, 2)). Note that for z € B,,

]E(M(n’ m, Z)) = [wdnd]P{Tz < gn},
E(L(n,2)) = Y P*{r, < &}.
y€B,

[Here we write P* to indicate probabilities assuming S(0) = x with the under-
standing that S(0) = 0 if no x is written.] Let G,, denote the Green’s function
for the ball B,:

gn_l
Gn(x,y)=E* )" I{S(t)=y}, «x,y€B,.
t=0
It is standard that for x, y € B,
Gn(x,y) = Px{'Ty < én1Gr(y,y).

For d > 3, we let G be the unrestricted Green’s function,
Glx,y) =B 3 1(S(8) = 5}
and for d = 2, we let a be the potential kernel
a(x,9) = lm S TPS(0) = x} = P(S() = )]

Note that G,,, G and a are all symmetric functions. We write G(x) = G(0, x)
and a(x) = a(0,x). For x, y € B, the unrestricted Green’s function and the
potential kernel are related to G, by the formulas (see [4], Propositions 1.5.8
and 1.6.3)

(6) Gn(x,y) = G(x,y) —E*[G(S(£n), ¥)], . d=3,
(7 Gn(x,y) = lE"[a(S(fn), yl-alx,y), d=2
qu’any x € By, let

b(x) = b(x,n) =E*[|S(£n)l —n].
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Note that 0 < b(x) < 1. In the lemmas that follow all o(-) and O(-) terms will
represent error terms as n goes to infinity that are uniformly bounded in z.

LEMMA 2. For ze€ D(n), |zl =n -3,
wgn®G,(0,2) = 2né + 2b(2)n + (d — 1)62% + o(n'/8).

PROOF. We first assume d > 3. By (6),
Gn(0,2) = Gu(2,0) = G(2) — E*[G(S(£n))].
For |x| > n/2, it follows from [4], Theorem 1.5.4, that

G(x) = |22 + o(n~9+(1/8)),

2
(d - 2)wq
Therefore, if e =d — 1/8,

2

B IS4+ o(n™?)

wdE*[G(S(§r))] =

= %Ez[nz‘d(l +(2 - d)n(18(€) — ) + O(n72))]

+o(n~%)

— 2 2-d _ 1-d —&
_d—2n 2b(2)n" "% +o(n"%)

and
2
d-2
=37 % 2n2‘d +2n1795 + (d — 1)n"%86% + o(n~%).
By subtracting, we get the result.
Similarly, if d = 2, we have by (7),
Gn(0,2) = Gn(2,0) = E*[a(S(£R))] — a(2).

There exists a constant C ([4], Theorem 1.6.2) such that for |x| > n/2,
e=15/8,

wqG(2) = (n—8)2%%+0(n°)

a(x) = —72;1n x| + %Tg + o(n~?%).
Hence (because wy = ),
woE?[a(S(£,))]=2E*(In |S(&n)|+ C) +o(n™%)
=2E*[In n+C +n~1(|S(&,)| —n)+ O(n"2)] + o(n™*)
=2 ln n+2C +2b(2)n"t + o(n~%),
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w2a(z) =21In (n — 8) +2C + o(n™%)
=21n n+2C—-2n"16 —n28% + o(n"%).

Again the result follows from subtracting the two terms. O

It follows immediately from Lemma 2 that for z € D(n),
G.(2,2)E(M) =2n8 + 2b(2)n + (d — 1)6% + o(n1/®),

where § = n — |z| and M = M(n,m, z). In order to estimate the expectation
of L = L(n, z), note that

Gn(2,2)E(L) = Y Gu(y,2) = Y Gu(z,y) = E*(£,).

yeB, y€B,

LEMMA 3. For ze D(n), |z2|=n -6,
Gn(2,2)E(L) = 2né + 2b(2)n — 82 + O(1).

PrROOF. By a simple martingale argument (see [4], (1.21)),
E*(£) = E*(IS(£)1%) — |21%.

Note that
E*[IS(£2)*1 = E*[n® + 2n(IS(£,)] — n) + O(1)]
=n? +2b(z)n + O(1)
and
212 = (n — 8)® = n® —2n6 + &> O

Summarizing the two lemmas we see that for z € D(n),
E(M) = [Gn(2,2)]7(2n8 + O(n)),
E(L) = [Ga(2,2)]71(2n6 + O(n))
and for all n sufficiently large,
E(M) ~E(L) = 6°[Gu(2,2)]7".
It is standard (see, e.g., [4], Theorem 1.6.6) that
Gn(2,2) <c In n,

thé logarithmic term being needed only if d = 2. The basic idea of the re-
mainder of the proof is that, with high probability, M — E(M) will be of order
E(M)Y2 and L — E(L) will be of order E(L)Y2. If E(M) — E(L) is of a greater
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order than this, we will be able to conclude that M — L. > 0. This will be true
if
8%[Gn(2,2)]7! > [2n8/Gr(z,2)]",
that is, if
53/2 > nl/an(z, 2)1/2.

From this we see that § = n'/3(In n)# for some B8 > 0 is the right order of
magnitude to guarantee this. To make this rigorous, we call on a standard
large deviation estimate for sums of indpendent indicator random variables.

LEMMA 4 ([5], Lemma 4). Suppose X is a sum of independent indicator
functions and u = E(X). Then for all sufficiently large n and all A € (0,1/4),

P{IX — p| > u'/?} <2 exp{—1u®}.

By choosing A so that E(M)* =In n and E(L)* = In n, we see that there
exists a y, — 0 such that, except on a set of probability at most yn,

|M —E(M)| <E(M)"(In n),  |L—E(L) <E(L)"*(n n).
If 6 € [nY3(In n)2,2n'3(In n)?],
(In n)?[E(M)Y2 + E(L)Y/?] < en®3(In n)*[Gn(z,2)]7"2,
E(M) —E(L) > en*3(In n)*[Gn(2,2)]! > cn?3(In n)"?[Gn(2,2)]7 V2
Hence for all n sufficiently large,
E(M) —E(L) > 4(In n)*[E(M)Y? +E(L)Y?]

and we get the theorem by setting @ = E(M) — (In n)2[E(M)Y2 + E(L)V/?]
in (5).

3. Outer error. In this section we will prove (2). We will start by giving
a slightly different construction of an internal DLA cluster. Fix n and let m =
m(n) = [wgn?]. The construction we describe will depend on 7. Essentially we
let m random walks run until they either add to the cluster or reach distance
n. After letting all m walks run this far, we then let those walks that have
not added to the cluster run some more until they either add to the cluster
or reach distance n + 2n1/3; then those that have not added yet can go until
distance n +4n'/3 and so forth, until all walkers eventually add to the cluster.
 To be precise, let S1,...,S™ be independent simple random walks starting
at the" origin. Define

o}=0, A;(1)={0}.
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For 1 < j < m, we define
o =inf{t: 8/(t) ¢ A1(j— 1)},
pl=olnEl
A1) = Ar(G - 1) U{SI(p])}.

Note that A;(j)\ A1(j — 1) is nonempty if and only if p{ = 0. Let J1(,) be
the indicator function of the event {o] > pj}. Note that
m
m =|A1(m)|+)_ J1(J).
j=1
For general i > 1, we let s; = n + 2(i — 1)n'/3,
ol =0, A1) =Ai1(m).
For j > 1, we set

=0l ,, ifdia(j)=0;

g;

otherwise we set ,
o} =inf{t: 8/(t) ¢ Ai(j— D)},

p{ = O-zj A fgf’
Ai(j) = Ai(j - 1) U{Si(p])}
and J;(j) equal to the indicator function of { a-ij > p{ }. Again
m = |Ai(m)|+ > Ji(j).
j=1
For any j let i = i(j) be the smallest i such that p{ = crij and set
i
pl = ;.
Note that
Ai(m) Cc Ag(m) Cc As(m)C---.
If we set
A(m) = lim A;(m),
B i—>00
then A(m) has the same statistics as an internal DLA cluster after m steps

as defined in the Introduction. This fact is not immediately obvious, but it can
be proved by labelling the m particles and using the rule that if more than
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one particle is at a site, we only move the particle with the highest index. For
more details of this, see Section 6 of [5].

As before, we can do the preceding construction on a probability space on
which are defined independent random walks {X/: j=1,2,.---} and {Y*: x €
2%}, where X7(0) = 0 and Y*(0) = x. We define 07,0/ and so forth with X/
in place of S/ and then let :
Xi(¢), t<ol,

YXD(t—ol), t>ol.

SI(t) = {

For each s > n, z € dBs, m = [wgn®] and r = n — n'/3(1n n)?, let

M(s,n,2) = 3 I{S9(¢)) = 2},
j=1

Lis,n,z) = Y {8 = 2 &1 > o),
Jj=1

W(S, n, Z) = M(S, n, Z) - L(S, n, Z),
L(s,n,z2)= Y K{Y?(£)) =2}
y€B,
For any U C dB,, we write
W(s,n,U) = Z W(s,n,z), W(s,n) = W(s,n,dB;).

zeU
Note that
® {L(s,n,z) > L(s,n,2)} C {B(r) ¢ Ay(m)}.
The proof in the previous section can be adapted verbatim to show that
9 P{B(r) ¢ Ai(m)} 5 0.
Also,

|A(m)N Bg| < W(s,n).

What we are going to prove is that there is a vy, 2, 0 and a constant ¢ > co
such that for all i with s; < 2n,

(10) E(W(si41,1)) < (1 — c(In n)"2)E(W(s;,1)) + V.

, By iterating this inequality, we see that there is a vy, —2, 0 such that for all
n sufficiently large,

E(W(n +n3(In n)4,n)) < (1-c(ln n)~2)® W'2EW(n,n)) + y,.
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However, the right-hand side goes to zero faster than any power of n. With
the aid of the Borel-Cantelli lemma, this gives (2). Hence it suffices to prove
(10).

LEMMA 5. There exists a constant ¢ < oo such that for every x € B, and
everyr <n,if6=n-—r,

Y Galz,y) <o
y€B,\B,

PROOF. See, for example, the proof of (2.10) in [5].

LEMMA 6. There exists a constant ¢ < oo such that if r =n — 8, 8 > nl/3
and x € /B,,

lwgn?Gr(x,0) — 3 Gn(x,y)| < c8?.
y€B;

PROOF. Let § = n — |x| (so that |8 — | < 1). Then as in Lemmas 2 and 3,
we can show that

wan?Gn(x,0) = 2né + 2b(x)n + 0(82),
Y yeB, Gn(x,y) = 2n8 + 2b(x)n + O(8?).

However, by Lemma 5,

(11)

> Galx,y) = 0(82). o
y€B\B;
LEMMA 7. Suppose r =n —n'3(In n)? and x € dB,. Then for every s > n,

wan?Gy(x,0) = Y Gs(x,y)[1+ O(n~*3(In n)?)],
yeB,

where the O(-) is bounded uniformly in x and s.

PROOF. Let p1 =0,m1 = &, and for j > 1,
p; =inf{t > n;_1: S(¢) € IB,},
nj = inf{t > p;: S(¢) € dB,}.
We can write

Gs(x,0) = E [fz_l 1{S(s) = 0}]

t=0

00 nj ‘
=[S 1e > 0} Y 1S =0}

Jj=1 - t=pj

= 3 P&, > p;}E[G(S(p}),0) | & > ps].
Jj=1 .
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Similarly,
Y Gul,y) = 3o PHE > I 3 GalS(p1)3) 164 > p,-].
yeB, Jj=1 yEB,

By Lemma 6 and (11), we have for any x € 4B,

Y Ga(x,y) = 04n?Ga(x,0)[1+ O(n~#3(In n)?)],
yeB,

and hence

]E"[ > Gu(S(pj),y) 1 €5 > Pj]

yeB;
= wan? E*[Gn(8(p;),0) | & > p;1(1+ O(n~2/3(In n)?)). m
LEMMA 8. Suppose r = r(n) = n —n'3(In n)? and m = m(n) = [wgn®).
Then for any s > n and z € dB,,
E(M(s,n,2)) =E(L(s,n,2))(1+ O(n"23(In n)?)).
PROOF. For any x € B, and z € dB;, by a last-exit decomposition (see, e.g.,
[4], Lemma 2.1.1),
P¥(S(¢é) =2} = ) Gs(x,y)P{S(&s A &) = 2}

y€dB,

= Z Gs(x, y)P*{S(és A &r) = ¥y}

y€iB,
= P*{£, < £)BX(Gs(S(£:), %) | €7 < £).
Therefore,
E(M(s,n,2)) = P*{{, < £} wan®IE*(G5(S(£,),0) | £ < &),

E(L(s,n,2)) = P*{¢, < fs}lE’[ Y Gu(S(E), y) | £ < fs].

yeB;
The lemma now follows from Lemma 7. O
There exist ([4], Lemma 1.7.4) 0 < ¢; < ¢ < oo such that foralln <s < 2n
and all z € 9B;,
cin'™® < P{S(£,) = 2} = can?~?.

Hence we can deduce from Lemma 8 that if m = [wyn?], n < s < 2n and
r=n-nl3(ln n)?,

- (12), cin <E(M(s,n,z)) < cn,

(13) E(M(s,n,z) — L(s,n,2)) < cn'3(In n)2.
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For any V, we write

M(s,n,V)=M(s,n,VNIB;) = ZM(S n, z)-ZI{S’(fs) eV},
zeV Jj=1

L(s,n,V)=L(s,n,VNaB,) =Y L(s,n,2) = Y I{Y*(&) e V}.

2eV x€B,

Note that M(s,n,V) and L(s,n, V) are both sums of independent indicator
random variables so that Lemma 4 applies to them.

LEMMA 9. There exists a constant c3 < oo and a sequence Yy, -2, 0 such
that if n < s <2n, m = [wgn®] and V C 0B, with |V| < 10n@-1/3,
P{W(s,n,V) > csn%3(In n)?} < yn.
PROOF. Without loss of generality, we may assume |V| = 10n@-1/3, We

write W, M, L and L for W(s,n, V), M(s,n,V),L(s,n,V) and L(s,n,V). For
any aj,ag > 0,

P{W >a;+as +E(M — L)}
< P{M > E(M) + a1} + P{L <E(L) — as}
< P{M >E(M)+ a1} + P{L <E(L) —as} + P{L > L}.

By (8) and (9), P{L > L} < v, for some y, —> 0. By Lemma 4, if we set
= E(M)Y2(In n) and ag = ]E(L)1/2(ln n), we can see that the right-hand

s1de is bounded by some vy, 0. By (12),

]E(M) < cn(d+2)/3
and similarly

E(L) < cn'd+2)/3,
Hence,

(In n)[E(M)V2 +E(L)2] < cn®?/8(In n) < cn?3(In n),
the last inequality holding because d > 2. Finally, by (13),
E(M — L) < en%3(In n)?,

which completes the lemma. .

' We write B(x, R) = {y € Z%: |x — y| < R}. Because there are only O(n%)
points in Bg, the following is an immediate corollary of Lemma 9.
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COROLLARY 10. Let F,, = F,(c3) be the event
{W(s,n,B(x,n'?)) < csn¥3(In n)? forall n < s <2n, x € B,}.

There exists a constant cg < oo and a sequence vy, —> 0 such that P(F,) >
1-— vy,

We will need one simple estimate for the probability of hitting a set before
leaving the ball of radius n.

LEMMA 11. For every & > 0 there exists a 6 > 0 such that if A C B, with
|A| > enf, then
P{ra < ép} > 6.

PROOF. Let £ > 0. It suffices to prove the result for n sufficiently large.
Find u = u(¢) < 1 such that (for all n sufficiently large)

By \ Bunl < gnd-

Then any A C B, with |A| > en? satisfies |A N By,| > (g/2)n?.
Let V = Z,;_l I{S(¢) € A} denote the number of visits to A. Then

E(V)=Y G = Y Gu(»)z3n? inf Gu(o).
yeA y€B,,NA y&Bun

There exists a constant c¢(g) > 0 (see [4], Propositions 1.5.9 and 1.6.7) such
that

inf Gn(y) > c(e)n?2.
Y€Bun

Hence E(V) > c(e)n?. However, it is standard that for all x € B,, E*(V) <
E*(¢,) < cn?. Hence,

P{V>1}=E(V)[E(V |V >1)]"! > ce(e)n?[cn?] ! = 8(¢) > 0. o

4

We will also need one simple geometric fact about “locally finite coverings.”
We will state it as a lemma, but we omit the proof.

LEMMA 12. There exists a constant K = K such that for every R > 0 and
V C Z8, there exists a subset V C V satisfying
Vc U B(x,R)

er
and such that for every y € 72, '
{xeV: |x—yl <2R}| < K,

where | - | denotes cardinality.
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We are now ready to prove (10). Let F,, = F,(c3) be the event described in
Corollary 10. By Lemma 12, for each n < s < 2n we can find x1,...,x, in dB,
with

u
(14) 9B, C | B(x4,n'/?)
k=1

and such that each y € Z¢ is contained in at most K of the sets {B(xs, 2n'/3)}.
Fix i and x € dB;,. Write U = B(x,n1/3) and 2U = B(x,2n'/3). For any set
A, either

|AN(Bs,, \ B;,)NU| > 0.01n%/3
or, for every y € dB;, N U,
|A°N (B, \ Bs,) N B(y,n'?)| > 0.01n9/3,

Recall the definitions of p/ and J;(j) given at the beginning of this section. Let
Y =Y(i, j,U) be the indicator function of the event {S/(¢/) e U, J;(j) = 1}.
By Lemma 11, for some & > 0,

P{p’ < £],1,87(p7) € 2U, J:(j) = 1,87(¢]) e U}
= SE(YI{Awn()° N B(SI(&)),n¥3) 1 BS = 0.0129/%))
> SE(YI{|Ai1(m)° N B(S7(£]),n'®) N BE,| > 0.01n%%})
> SE(YI{|Ai11(m)NU N BS| < 0.01n%/3}).
If we sum this over all j, we see that
E[I(Ai+1(m)\ A;(m))N2U|] = 8E(W(s;,n,U)Iz),
where Z denotes the event
{lAi41(m) NU N B; | <0.01n%3},
but on Z°¢, )
I(Az41(m) \ A;(m)) N2U| = 0.01n%/3
and, hence,
E[I(Ai41(m)\ A;(m)N2U)|] = 0.01n%3E(1z.).
Therefore, if s = s;,
E[1(Ai1(m) \ Ai(m))N2U|] = E[6W(s,n,U)Iz +0.01n%31 ;]
> cE[min{W(s,n,U),n%3}]
> c(ln n) 2E[W(s, n, U)Ip,]
> ¢(In n)*E[W(s,n,U)] - vy,
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for some vy, —> 0. If we cover 9B, by balls U, = B(x3,n/3) as in (14), we get
E[|(Ai+1(m)\ A;(m)) N By, 11> K1) E[[(Air1(m) \ Ai(m)) N 2U4[]
%

> ¢(ln n>-2E[Z W(s,n, Uk>] -
k

> ¢(In n)2E[W(s,n)] — ¥,

for some vy, -2, 0. However,
W(s;,n) — W(siy1,n) = [(Aiz1(m) \ Ai(m)) N Bg,,, |,
which gives (10).
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