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SINGULARITY OF SUPER-BROWNIAN LOCAL
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In a one-dimensional single point-catalytic continuous super-Brownian
motion studied by Dawson and Fleischmann, the occupation density mea-
sure A® at the catalyst’s position C is shown to be a singular (diffuse) ran-
dom measure. The source of this qualitative new effect is the irregularity of
the varying medium & describing the point catalyst. The proof is based on
a probabilistic characterization of the law of the Palm canonical clusters
x appearing in the Lévy—Khintchine representation of A® in a historical
process setting and the fact that these y have infinite left upper density
(with respect to Lebesgue measure) at the Palm time point.

1. Introduction.

1.1. Motivation and main result. A one-dimensional point-catalytic con-
tinuous super-Brownian motion X = {X;;¢t > 0}, in which branching is al-
lowed only at a single point catalyst, was discussed in some detail in Daw-
son and Fleischmann (1994) and Fleischmann (1994). This critical measure-
valued branching process X is associated with mild solutions of the nonlinear
equation

1.1.1) %u(t,z) = kAu(t, z) — 6.(2)u?(t, 2), t>0, zeR.

Here k > 0 is a diffusion constant, the (one-dimensional) Laplacian A acts
on the space variable z € R and the branching rate degenerates to the Dirac
8-function 8, describing a point catalyst situated at ¢ € R. In fact, the Laplace
transition functional, which determines this Markov process X, has the form

(1.1.2) E{exp(X:, —¢) | X; = u} = exp(u, —uy(t —s)),

0<s<t ¢c Dy uec .#. Here u, is the unique mild solution of (1.1.1)
with initial condition u|;—o; = ¢, where ¢ lies in some set @, of nonnega-
tive test functions, .# is the space of all finite measures on R and (m, f) is
an abbreviation for the integral [dm f of the function f with respect to the
measure m.
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It was demonstrated that there exists a version of X for which the associated
point-catalytic occupation time process

t N
(1.1.3) 9, = fo dr%.(), t>0,

possesses a jointly continuous occupation density field 1) = {1,(2); t > 0,z € R}
with probability 1. Consequently ¥,(dz) = y,(z)dz, t = 0, z € R, in spite
of the irregularity of the branching rate 6. [see Theorem 1.2.4 in Dawson
and Fleischmann (1994); hereafter, DF]. The occupation density measures
A*(dr) =: dy,(z),z € R, on R, (super-Brownian local time measures) were
shown to be absolutely continuous a.s. provided that z is different from ¢
[see (1.2.5) therel. Moreover, the super-Brownian local time measure A° at the
catalyst’s location has carrying Hausdorff-Besicovitch dimension 1 (cf. Theo-
rem 1.2.5).

On the other hand, DF, Theorem 1.2.3, says, roughly speaking, that, at a
fixed time, the density of mass vanishes stochastically as the catalyst’s posi-
tion is approached. Together these facts suggest that A® is a singular diffuse
random measure in contrast to the well-known absolute continuity in the case
of one-dimensional regular branching [cf. Konno and Shiga (1988) or Reimers
(1989)].

The heuristic picture is that density of mass arriving at ¢ normally dies
instantaneously due to the infinite branching rate at ¢, but that additionally
bursts of creation of absolutely continuous mass occur on an “exceptional” set
of times.

The main purpose of this note is to prove that A is in fact singular a.s.
Here we restrict our consideration to the case in which X starts off at time 0
with a unit mass . at the catalyst’s position ¢:

THEOREM 1.1.4 (Singularity of A°). Assume that Xo = 8. The occupation
density measure A° at the catalyst’s position is with probability 1 a singular
(diffuse) random measure on R,.

1.2. Methodology. QOur approach to this requires the development of
some tools that may be of some independent interest. First, we consider an
enriched version of X, namely, the historical point-catalytic super-Brownian
motion X := {X;; ¢ > 0}, which is necessary for our argument. Here the
state X; at time ¢ keeps track of the entire history of the population masses
alive at ¢ and their “family relationships” and arises as the diffusion limit
of the reduced branching tree structure associated with the approximating
branching particle system [cf., for instance, Dynkin (1991b) or Dawson and
Perkins (1991)]. _ _

In this setting, A°(dr) is replaced by A°(d[r,w]), where A‘([r1,r2] x B) is
the contribution to the “occupation density increment” A°([r1, r2]) due to paths
'in the subset B of c-Brownian bridge paths w on [0, r], which start at time 0
at ¢ and also end up in ¢ at time r, 7, < r < rg. These ¢-Brownian bridge paths
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w on [0, r] can be interpreted as the particles’ trajectories that contributed to
the occupation density increment A°([r1,r2]).

Next, the infinite divisibility of the law of the random measure A° allows us
to use the framework of Lévy-Khintchine representation. Moreover, we can dis-
integrate the corresponding Lévy—Khintchine measure @ with respect to its
intensity measure to obtain its Palm distributions Q™" (d x). Roughly speak-
ing, Q"% (d x) is the law of a canonical cluster y but “given that it contains the
pair” [r,w]. Given such an r and a fixed c-Brownian bridge path w on [0, 7]
we derive a probabilistic representation (see Theorem 3.3.9) for the Laplace
functional of the Palm distribution @™* in terms of the (deterministic) Brown-
tan local time measure L°(w,dt ) at ¢ of this given bridge path w and solutions
of an historical version of the singular equation

(1.2.1) - ;—ru = kAu + 8. — d.u?, r>0

[see (3.1.4)].

Exploiting this probabilistic representation of @™, the key step of the
proof of Theorem 1.1.4 is then to demonstrate that the random measure
x(d[r',w']) distributed according to @™* has with probability 1 at the Palm
point r an infinite left upper density with respect to the Lebesgue measure
dr’ (Theorem 4.2.2). This is then shown to imply that the original super-
Brownian local time measure A at ¢ cannot have an absolutely continuous
component.

A different approach to the singularity result is given in Fleischmann and
LeGall (1994).

1.3. Outline. In Section 2 the point-catalytic super-Brownian motion X,
its occupation time process § and the occupation density measures A* are
adapted to the framework of historical processes. Based on this, the Palm
representation formula is derived in the following section. The singularity
proof then follows in Section 4.

Our general reference for standard facts on random measures is Kallen-
berg (1983), Chapters 6 and 10, and Kerstan, Matthes and Mecke (1982),
Chapters 1, 3 and 11; for Brownian motion and in particular for Brownian
local time, we refer to Revuz and Yor (1991), Chapters 6 and 8.

2. Occupation Density Measures in the Setting of Historical Pro-
cesses. The purpose of this section is to sketch how the point-catalytic super-
Brownian motion X and related objects of interest in the present paper can
be fitted into the general framework of historical processes. For the latter, we
refer, for instance, to Dynkin (1991b) and Dawson and Perkins (1991).

© 2.1. Preliminaries: Terminology. We start by introducing some terminol-
ogy we will use. If A, B are sets and a — B® is a map of A into the set of all
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subsets of B, then we often write

(2.1.1) A% B*:={[a,bl;ac A,be B} = | J{a} x B*
acA

for the graph of this map. Note that A x B* € A x B.

We adopt the following conventions. If E is a topological space, then subsets
of E will always be equipped with the subset topology. Products of topological
spaces will be endowed with the product topology. Measures on a topological
space E will be defined on the Borel o-algebra #(E) (generated by the open
subsets of E). A measure m on E with m(E\E') = 0 for some E’ € #(E), that
is, if m is concentrated on E’, will also be regarded as a measure on E’ (and
conversely).

If E; is a topological space and E; a normed space with norm | - ||, let
B[E,, E;] denote the space of all bounded measurable maps f:E1 +— Eg
equipped with the supremum norm |[f|le := sup{lif(el)ll; e1 € E1}, f €
C[E1, E;], of uniform convergence. Note that B[E1, E3] is a Banach space
if E5 is. By C[E1, E3] we denote the subspace of all continuous (bounded) f
in B[Eq, E2].

Once and for all we fix a closed finite time interval I .= [0,T],0 < T < oc.
We write C for the Banach space C[I,R] of all real-valued continuous paths
on I. The lower index + on the symbol of a space will always refer to the
subset of all of its nonnegative members.

2.2. Brownian paths W and Brownian path processes W. In this subsec-
tion we provide some preliminaries on historical processes starting at the level
of a one-particle motion (underlying Brownian motion process).

For t € I =[0,T] and a path w € C = C[I,R], write i; := {wsns; s € I} for
the corresponding path in C stopped at time ¢, and C' for the set of all those
stopped paths. Note that C’ is a closed subspace of the Banach space C, that
C* C C! for s < ¢, that CT = C and that C° can be identified with R. Given a
path w € C, we interpret i := {i; ¢t € I} as a path trajectory. Because, for
s<t,

(2.2.1) | — Wslloo = sup |wr — ws| ———>0,
s<r<t t—s—0

w belongs to the Banach space C[I,C], hence, to its closed subspace

(2.2.2) ClI,C] :={w e C[I,C]; w; € C* Vt e I}.
Moreover,
(2.2.3) "l’b/ - w””OO = "w, - w””oo’ w/, w' e C’

implies that w + @ maps C continuously into C[1,C]. Note, the graph
{[s,ws]; s € I} of w € C[I,C] is a subset of I x C* [recall (2.1.1)] and that
I' x C* is a closed subset of I x C provided that I’ is a closed subinterval
of I.
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For each z € R, denote by II, the law on C of a Brownian path W with
diffusion constant k and starting at Wy = z (we normalize in such a way that
kA is the generator of this strong Markov process). Given the Brownian path
W we denote its continuous Brownian local time measure at the catalyst’s
position ¢ by L°(W,dt ) and note that formally

(2.2.4) LY(W,dt ) =6.(W;)dt.

Using the continuous map w + @ of C into C[I C] introduced previously, we
arrive at the so-called Brownian path process W= [W L¢ l'[s w,s €I, weC?]
on I, which is a time-inhomogeneous strong Markov process realized in the
Banach space C[1,C] [defined in (2.2.2)]. Note that we adjoined the addi-
tive functional L¢ = L°(W). This makes sense because given the Brownian
path process W we can recover the Brownian path W itself by projection:
W, = (W), tel.
The semigroup of W will be denoted by

(225) Sst¢(w) = s,w‘P(Wt)’ 0 <s<t=< T, we Cs’ ¢ € B[C, ]R]’

and the related generator by {A,; s € I}. (Note that as a rule occurrences of
the capital letter W refer to random objects, whereas related lowercase letters
denote fixed elements in path spaces such as C or C[I,C].)

In subsequent text we will use the continuous (nonnegative) additive func-
tional L¢(W) as a clock to govern the branching of a particle whose motion
is described by W. Actually, L¢ will serve as a probabilistic refinement of the
rough characteristics of the super-Brownian motion X, which is provided by
the branching rate 8.. More precisely L° will be exploited for the description
of the historical point-catalytic super-Brownian motion % we will deal with in
the next subsection (Dynkin’s additive functional approach).

2.3. Historical point-catalytic super-Brownian motion X. Let # ){ denote
the set of all finite (nonnegative) measures u defined on C = C[I,R], equipped
with the topology of weak convergence. Write || u| for the total mass u(C) of a
measure u € .#}. Introduee the closed subsets .} := {u € #f; w(C\C%) = 0}
of measures on paths stopped at time ¢ € I = [0, T']. Note that .7 ;= I

Now we are in a position to formulate as a proposition the existence and
characterization of the historical point-catalytic super-Brownian motion % re-
lated to the super-Brownian motion ¥, which was mentioned in the introduc-
tion.

PROPOSITION 2.3.1 (Historical point-catalytic super-Brownian motion %).
There exists a time-inhomogeneous right Markov process X =[%P,,sel,
p€ A ;] with states X; € A%, t € I, having the Laplace transition functional

(2.3.2) Py, exp (X, —¢) = exp (1, —u,(s, 1)),
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0<s<t<T,pcH}opc B, [C',R], where u,(-,-,t) is the unique #([0,t] x
C*)-measurable [recall (2.1.1)] bounded nonnegative solution of the nonlinear
integral equation

- ~ ¢ —_
@33)  uyl(s,w,6) = Mou[e(Wo) - [ LW, dr) u(r, W, )],
8
0 <s <t,w e C® or symbolically,
(2.3.4) —%uq,(s, w,t) = Asu¢(s, w,t)—8.(ws) u?o(s, w,t), 0<s<t, weC?

with terminal condition u,(t,-,t) = ¢. The following expectation and variance
formulas hold:

(2.3.5) By, (%e, 0) = f w(dw) M,ue(We),

~ ~ ~ t . ~
236) Var,u(&,¢) =2 [ w(dw) Mow [ LW, dr)liL, 5 o(F) P,
0<s<t<T,uecB[C,R]

Consequently, the historical population X; at time ¢ is now a measure on
paths stopped at time ¢, which, in contrast to X;, includes information on
which routes in space the masses present at time ¢ had followed up to ¢. Of
course, by the projection 3€t({w e C% wy € -}) = %, from X we can deduce the
super-Brownian motion X (but not its path continuity established in DF).

Note that (2.3.4) formally follows from (2.3.3) by using the representation
(2.2.4) of the Brownian local time measure L‘(W,dr), by writing (2.3.3) in
terms of the semigroup of the Markov process W [recall (2.2.5)], and then by
a formal differentiation to the time variable s; compare with (1.1.1), where we
could use a forward formulation because of time-homogeneity.

REMARKS ON THE PROOF OF PROPOSITION 2.3.1. The construction of the
process is -essentially a special case of the general construction of Dynkin
[see, e.g., Dynkin (1991a, b)]. In our case the Brownian path process W serves
as the underlying right Markov process ¢ (motion component), the Brownian
local time measure L°(W,dt) at the catalyst’s position as the continuous
additive functional K of ¢ and the branching mechanism ¢ is specialized to

Y(u)(s,w) = u?(s,w), 0<s<T, weC’ ueB[IxC,R,]

The right property (and consequently right continuity and strong Markov
property) of X follows from the arguments in Dynkin (1993), Theorem 2.1,
together with Section 1.6.
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2.4. Historical point-catalytic occupation time measures 9. In this subsec-
tion we introduce an historical analog of the point-catalytic occupation time
process £ of (1.1.3). For this purpose, for fixed 0 <s <t < T, let

@4l Donv) = /stdrdr,w(r,-)), ¥ € B, [[0,¢] % C*,R],

getting a finite random measure Qs,t defined on [s,¢] x C*. In fact, by the

Proposition 2.3.1, X is right continuous and hence the integral in (2.4.1) makes
sense; see also Theorem 3.1 in Dynkin (1993).
We call ) := {¥),,; 0 < s <t < T} the historical point-catalytic occupation

time process related to X. By standard arguments [see also Theorem 1.2 in
Dynkin (1991b)] we get the following proposition.

PROPOSITION 2.4.2 (historical point-catalytic occupation time measures @).
The Laplace transition functional of [X,Y] is given by

(2.4.3) Py exp[—(%:, @) — Dy, )] = exp(p, —t gy (s, -, 1)),
0 <s=<t= T’/-L € /;',‘P € B+[Ct,R]’¢’ € B+[[0,t] 52 C.,R], where u(P,l/I("" t)
is the unique #([0,t] x C*)-measurable bounded nonnegative solution of the

nonlinear integral equation

Upy(s,w,t)
244 ~ ~ ¢ ~ ¢ ~
@A i [e@+ [ dr W) - [ LW, drd o, e, 0)],
0 <s <t we C’ or, more formally,

9 -
(2.4.5) - Eguq,,.,,(s, w,t) = Aty y(s,w,t) + (s, w) — Bc(ws)ui,'/,(s, w,t),

with terminal condition u,y(t,-,t) = ¢. The following expectation formula
holds:

\ o . -
(2.4.6) By (Do) = / p(dw) / dr M, ,y(r, W,),

0<s<t<T,ue# yecB,[[0,t] XC,R]

9 s:(d[r,w]) measures the increment of the historical process X at time r at
the path w stopped at time r. Note that again by projection, ,,([0,] x {w €

C; w; € -}) =9, from 9) we can deduce the point-catalytic occupation time
process 9 related to X.
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2.5. Historical super-Brownian local time measures. The next step in our
program is to turn to the historical super-Brownian local time measures (his-
torical occupation density measures) AZ,, which can loosely be defined by

25.1) (R29) 1= [ Du(dlr,w]) w(r,w) 8:(W,),

2eR,0<s<t=<T,yeB,[[st] xC",R]. Roughly speaking, Xj’t(d[r,w])
measures the increment of the density of those paths w concerning the histor-

ical process % that at time r are stopped at 2.
To be more precise, we introduce the set

(2.5.2) Ch? == {w e C',w; = 2}, tel, zeR,

~

of continuous paths on I stopped at time ¢ at z. Note that I’ x C** (for any
z € R) is a closed subset of I x C if I’ is a closed subinterval of I. Now we are
ready to rigorously define the historical occupation density measures.

PROPOSITION 2.5.3 (Historical super-Brownian local time measures AZ,).
Fix2e R, 0<s<t<Tand p € .#; Then there is a finite random measure

Xg,, defined on [s,t]x C** [recall (2.5.2) and (2.1.1)] having Laplace functional
(254) ]TDS,;L eXP(Xz,p _¢’) = eXp(,U«, —ulll,z(s$ ) t))’ ¢’ € B[[()’ t] 52 (c.’z’ R],

where uy ,(-,-,t) is the unique %([0,¢] x C*)-measurable bounded nonnegative
solution of the nonlinear integral equation

ulll,z(s’ w, t)
~ ¢ _ t ~
@50 i [ L War) g T - [ LW dr) i, W, 1))
S S
0<s<t<T, we C® or, more formaliy,

(256) - ggulﬂ,z(s, w, t) = Asuc//,z(sy w, t) + 6z(ws)¢’(s’ w) - 8C(ws)ui,z(sa w, t)’

with terminal condition uy, (¢, ,t) = 0. The random measure AZ, is P, ,-a.s.
diffuse, that is, it does not carry mass at any single point set. Finally, the
following expectation formula holds:

@51 Bou(igew) = [ tdw) Ty [ LW, dr) v, W,)],

¥ € B,[[0,¢] x C**,R].
Note that according to this proposition I\g,t is defined only for fixed z, s, ¢ (and
not as a family of random measures on a common probability space). This is
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sufficient for the purpose of proving Theorem 1.1.4. In fact, the original super-
Brownian local time measures A* restricted to the interval [s,¢] and then
denoted by A7, coincide in law with the marginal of AZ,:

(2.5.8) AZ,(B)ZX:,(BxC), zeR, Be®(I), 0<s<t=<T.

REMARKS ON THE PROOF OF PROPOSITION 2.5.3. As in the nonhistorical
case, one can derive the Laplace functional of Xj,t by approximating the
S6-function 6, in the heuristic expression (2.5.1) by the smooth functions
p(e,-—2z), € > 0. Here p denotes the continuous Brownian transition density
function (with generator xA):

(2.5.9) p(r,y) = (4mwxr) V2 exp[—y?/4kr], r>0, yeR.

Because the original super-Brownian local time measures A* are a.s. diffuse
(Theorem 1.2.4 in DF), the a.s. diffuseness of AZ, follows from (2.5.8) by con-
tradiction. The derivation of the expectation formula is standard.

Note that the laws of the random measures X;t are infinitely divisible; in
fact, in the representation (2.5.4) pass from u to u/n, n > 1.

3. A Palm representation formula. The purpose in this section is to
derive a probabilistic representation of the Laplace functional concerning the
Palm canonical clusters in the Lévy—Khintchine representation of the in-
finitely divisible random measure X;T (see Theorem 3.3.9).

3.1. Specialization. From now on we assume in this section that, for s €
I = [0,T], the starting measure u € .# ; of X at time s is a unit measure

Sw concentrated at w € C*°, a path, stopped at time s at the catalyst; recall
(2.5.2). (Note that we reserve the boldface letter w, for a starting path.) For
convenience, we write Psy instead of Ps,,. Also, let

3.1.1) Cyw = {w € C™; w is a continuous extension of w},

2

0<s<t<T, we C*, denote the set of all c-bridge paths w on [s,r], that
is, bridge paths on [s,r].that start and end at the catalyst’s position c. (The
path w before time s is determined by w, whereas after time r it is constantly
¢, but the behavior of w outside [s, r] is not relevant in most cases.) Note that
the subsets [s, T'] x Cy, of I x C are closed.

By Proposition 2.5.3, with respect to lli’s,w, the finite random measures X;T

are concentrated on [s, T'] X C;w and have Laplace functionals

(3.1.2) Pow exp(AS 7, —¢) = exp[—uy (s, w, T)],

sel,weC*, ¢ eB,[[0,T]xC"*,R]. Here uy (-, T) is the unique bounded
nonnegative solution of the nonlinear integral equation

. - T —~ —~
(B13)  wpe(s,w,T) =T [ LW, dn)u(r, W) =l (n, 7., 1],
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sel, weC*, or, as a formal shorthand,

4 -
(3.1.4) —otwe(sw, T) = Asuye(s,w, T)

+ 8c(we (s, w) — 8e(we)ul (s, w, T),

s € I, w € C**, with terminal condition u (T, ,T) =0.

3.2. Vanishing deterministic part of X;T. In this subsection we show that

the historical super-Brownian local time measures X;T do not contain a de-
terministic part.

LEMMA 3.2.1 (Vanishing deterministic component of X;T). Fix s € I and

we C* If ]'f’s,w()];T > v) = 1 for some deterministic measure v on I x C, then
v=0.

PROOF. Take v as in the assumption of the lemma, and suppose that m :=
v(I x C) > 0. Hence, AgyT(I x C) > m with P, w-probability 1. Therefore, by
the representation (3.1.2) with ¢y = 6, 6 > 0,

3.2.2) exp[—0m] > P, exp[—ﬂxg,T(I x C)] = exp[—ue(T — s)],

where, by (3.1.3), ug > 0 solves the simplified forward equation
3.2.3)  wuy(t) = 0/0tdr p(r,0) ~/ot dr p(¢—r,0)u2(r), t>0,
related to the formal equation

(3.2.4) g = kbug + 08— el 20, uol,_y, =0

(for convenience, by time-homogeneity, we switched to a forward setting). In
the next lemma, we will show that u4(t) ~ +/8 as 6 — oo holds, for fixed ¢ > 0.
Then from (3.2.2) we conclude 0m < ug(T —s) ~ /0 as § — oo, for fixed
s < T, which is an obvious contradiction, because m > 0 by assumption. On
the other hand, if s = T, then use u4(0) = 0 to again derive a contradiction
using (3.2.2). The proof will be finished after verifying the following lemma. O

LEMMA 3.2.5. The (nonnegative) solutions to (3.2.3) satisfy uge(t) ~ /0 as
0 — oo, for each fixed t > 0. '

PROOF. Setting v¢(s) := 0712u4(071s), s> 0, from (3.2.3) we get

’

ve(s) = /Os dr p(r,0) — /Os drAp(s -r,0) V%(r).
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Hence, by uniqueness, vy = u;. Therefore, ug(t) = 01/2u1(6t) holds. However,
by DF, Lemma 4.3.1(ii) (where ¢ = 0 without loss of generality), we have
u1(s) 1 1 as s 1 co. Then the claim follows because ¢ > 0 by assumption. O

3.3. The Palm representation formula. Recall that each historical occupa-
tion density measure XS, has an infinitely divisible distribution. Therefore, we
can apply the so-called Levy—Khmtchlne representation, which, for convenience
we state in the following lemma (where, by Lemma 3.2.1, the deterministic
component is dropped).

LEMMA 3.3.1 (Lévy—Khintchine representation). Fix s € I and w € C*.
There is a uniquely determined o-finite measure Qs,w defined on the set of all
nonvanishing finite measures x on [s, T] X C;n [recall (3.1.1)] such that

(3832)  Bowexn(Rz,—9) = exp[~ [ Quuw(dx)(1 - exp(x,~1))]
Y eB.[[s,T] x C;iw»R], where the latter integrals are finite.

Roughly speaking, the Lévy—Khintchine measure Qs describes canonical
clusters y, which by a “Poissonian superposition” can be added up to form
AL o7 I this case a canonical cluster y =: [ x(d[r,w]) [, is interpreted
as a collection of weighted pairs [r, w] referring to c-bridge paths w on [s,r]
[recall (8.1.1)]. In particular, the “randomness” of the paths w given r concerns
the behavior of w before time r. o

Next we want to determine the intensity measure @,y (first moment mea-
sure) of the Lévy—Khintchine measure Q;y defined by

33.3) (Quwrt) = f Quw(dx) (o), e BL[[s,T]1% C,R].

Because A¢ does not have a deterministic component, by (2.5.7) we have

— - - ~ T ~
(3.3.4) (Qs,w, Y) = Ps,w(/\;,T, ¥) = 1-[s',w‘/. L(W,dr) ¢(r,W,).
For convenience, we introduce the ¢-Brownian bridge laws

M75,(A) == T,w(W, e A| W, =0),

(8.3.5) .
0<s<t<T,weC’Aec#(C).

Note that f[;;ﬁv is a law on the péth space C (and not on C[I,C]), so we could
write Iy, as well. Using this notation, from (3.3.4) we make the following

conclusion.
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LEMMA 3.3.6 (Intensity measure @,w) Fix s € I and w € C*°. The inten-
sity measure Qg of Qsw is a finite measure on [s,T] % C;w given by

_ T .
(3.3.7) @) = [ dr p(r = 5,0) [ 175, @w)(r, w),
¥ € B, [[s, T]% C;5,R].

Roughly speaking, Q;w(d[r,w]) selects pairs [r,w] in such a way that r
is absolutely continuous distributed, and conditioned on r, the path w is a
c-bridge on [s, r] with law IIgg

For almost all w with respect to f[;:f,v, the Brownian bridge local time mea-
sure L*(w,dt) makes sense (note that f[;:&, describes a semi-Martingale). It
will be involved in the Palm representation formula that follows.

For Qw-almost all [r,w] € [s, T]x C;",fv we can build the Palm distributions
Q¢w formally defined by disintegration:

(3.3.8) Qsw(dx) x(dr,dw) = Qow(dr,dw) Qu(dx).

Roughly speaking, Q;w describes a canonical cluster y according to Q,w, but
given that it contains the pair [r, w]. Recall that by (3.3.7) the bridge local
time measure L‘(w) makes sense.

THEOREM 3.3.9 (Palm representatlon formula). Fix s € I and w € C*‘. For
Qsw-almost all [r,w] € [s, T] X Cy5» the Palm distribution Qgyw has Laplace
functional

(33.10) [ @¥(dx)exp (x,~¥) = exp[~2 [ Li(w,dt) uyclt,w., T)],

¢ € BL[[0,T] x C**,R], where uy(-,-,T) > 0 is the unique bounded solution
of (3.1.3).

Consequently, given the Palm time point r and a corresponding c-bridge
path w, the Laplace functional of @ is expressed with the help of the (de-
terministic) bridge local time measure L‘(w) and solutions of the equation
related to X;T. The proof of this theorem will immediately follow.

3.4. Proof of Theorem 3.3.9. To get (3.3.10), we must show that, for func-
tions ¢, € B,[[0,¢] x C**,R],

[Qutdr,dw) ¢(r,w) [ @z(dx) exp(x, ~4)
(3'4.1) ,
| - / Qo (dr, dw) go(r,w)exp[—z f Lé(w, dt) uy.(t, w.At,T)].
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Using (3.3.8) and (3.3.4), this can be written as
[ Quw(dx) (x.0)exp (x,—9)

- T —~
(34.2) = My f LYW, dr) o(r, W,)
k]

x exp[ -2 fs LYW, dt) uy (8, W, 7)].

Here uy(-,-, T) > 0 solves (3.1.3). To prove (3.4.2) we shall first reformulate
both sides of (8.4.2) separately in order to show that they satisfy the same
equation [(3.4.5)]. Starting with the Lh.s., it equals

(343) - [ Quw(dx)(1 = exD (6, + 591,y = vynls, W, T),

which by (3.3.2), (3.1.2) and (3.1.3) coincides with (d/de)u (s, w, T')|.—o+. Here
ug(-,-, T) > 0 (for given ¢ + £¢) is a solution to

- T ~ ~
(344 us(s,w,T) =y [ LW,dr)[( +e0)(r, W) - ud(r, Wy, 1)),

s € I, w € C*, that is, (8.1.3) with ¢ replaced by ¢ + £¢. Consequently,
Uy,e(+,+, T') solves

- T ~
v(s,w, T) = M,y / LW, dr)e(r, W)
(3.4.5) $ r
—2f,, / LYW, dr) uye(r, Wy, TYo(r, Wy, T),

s € I, W e C*, with u,, taken from (3.1.3). In other words, this equation
describes the “Laplace transform” of the Campbell measure of Qs as written
at the left-hand side of (3.4.2). By the way, replacing formally ¢ by &, ,, we get
the equation related to the Laplace transform of the Palm distribution Qgy.
We also mention that by a formal differentiation of (3.4.5),
Gag) ~3a W)= Alsw T) 4o (wels,0)

—28(ws) uy(s,w, T)v(s,w,T), sel, weC*,

with terminal condition v(T,-, T') = 0. Therefore, the r.h.s. of (3.4.2) can for-
mally be thought of as a Feynman—Kac solution of (3.4.5).

To complete the proof, by uniqueness it remains to show that the r.h.s. of
(3.4.2) also satisfies (3.4.5). We change the notation from [s,w] to [r, W,] and
put the rh.s. of (3.4.2) into the second term of the r.h.s. of (3.4.5) in place of
v(r,W,,T). Then, for s € I, w e C*‘, that second term equals

- T ~
_ o, / LW, dr) uye(r, W,,T)

- T —~ r —~
X H,,w,/ LY (w,dr’) qo(r’,Wr)exp[—zf LYW, dt) uy,(¢, Wt,T)].
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Applying the Markov property at time r to the Brownian path process W’, this
simplifies to

- T ~
— 2l f LW, dr) uye(r, W,, T)

T ~ r —~
x f Le(w,dr) o(r, W,)exp[—z / LYW, dt) uy.(t, W, .T)].
Change the order of integration to get

. T ~
— 2l [ LW, dr') o(r', W)

r ~ r ~
x f LYW, dr) uy(r, W,,T) exp[—2 f LE(W, dt) uy.(t, W, T)].
s r
The latter expression compensates the two remaining terms

. T —~
Ty / LW, dr) o(r, W,),

. /s L LW, dr) o, W) exp|—2 /s " LW, dt) w2, W, T)]
of (3.4.5), where we used the r.h.s. of (3.4.2) instead of v(s,w, T'). In fact,
/s " LYW, dr) 2uy(r, W, T) exp[ -2 / " LW, dt) w2, W, T)]
equals

/ LYW, dr) exp[-2 / " LW, dt) ug(t, W, T)]

L°(W dr)
=1-exp[-2 f LW, dt) uy(t, Wi, T)].
This completes the proof of Theorem 3.3.9. O

4. Singularity of the Catalyst’s Occupation Density Measure. In
this final section we shall carry out the following program. The main point
will be to show that the Palm canonical clusters x according to Qg%, more
precisely their marginals x* := x(- x C) on [0, T], have an infinite left up-
per density d(x*) at r [see deﬁmtlon (4.2.1) and Theorem 4.2.2]. This implies
the analogous property for the “Palm realizations” of the historical super-

Brownian local time measures )‘s:r Therefore, AS . Ag (- x C) also has
infinite left upper densities at a random exceptlonal set of ‘times that carries
A5, (Corollary 4.3.1). Because A s 18 diffuse and for an absolutely continuous

measure v the left upper density d(v) is finite at v a.e. r, this finally implies
that A{ ;. is singular, for any 0 <s < T, thus proving Theorem 1.1.4.
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4.1. A simple equation estimate. Fix a constant b > 0. To realize the pro-
gram outlined above we need a lower estimate of the solution to the following
(ordinary) integral equation:

tAbe t
@11)  u.(t) = (be)™ /0 ds p(t—s,0) — fo ds p(t —s,0) u(s),
t > 0, where & > 0. [This is related to the formal equation

d
—pue(t:2) = KBu,(t,2) + (b&) 10,65 (2)

- 8c(z)u§(t, z), t>0, zeR, ue|t=0+ =0.]
LEMMA 4.1.2. Recall that b > 0 is fixed. For each constant a € (0,b], there

is a constant 8 > 0 such that for the solution u. of (4.1.1),

(4.1.3) us(t) > 8 7172, t €[ea,eb], £>0.

PROOF. As in the proof of Lemma 3.2.5 we rescale by setting v(¢) =
Jeus(et), £,t > 0. Then we immediately see that v solves the same equation
as u1. By uniqueness we conclude that v = %;. Thus we only need to show that
u; is bounded away from O on the interval [a, b]. Restricting our attention to
¢t < b, we can exploit the fact that u1(¢) is related to the super-Brownian local
time t),(c) = A°([0, ¢]) [recall (2.5.8)]:

Eocexp[—b71p,(c)] = exp[—u,(t)], 0<t<b

(cf. Proposition 2.5.3 or DF, Theorem 1.2.4). Hence u, is monotone nondecreas-
ing. Therefore, it suffices to show that the solution to

t t
4.14) o(t)=b" fo ds pa(s,0) — fo ds pi(t—s,0)v%(s), 0<t<b,

is strictly positive for sufficiently small ¢ € (0,a].
The first term on the r.h.s. of (4.1.4) equals k+/¢ with some constant & > 0.
We use it to bound v2(s) < k2s < k2t in the second term to arrive at

u(t) > kvE— B3V,  t<b,

which is certainly strictly positive for all ¢ > 0 sufficiently small. This com-
pletes the proof. O

4.2. Infinite left upper densities of Palm canonical clusters. Let v be a fixed
measure on I = [0, T]. The left upper density d,(v) atr € I of v is defined in
the following way: :

(4.2.1) 9,(v) := limsup e 1v((¢ — &,1)).
el0 .
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In the following text, this notation will be applied to the marginal x* :=
x(- x C) of a measure y on I x C. Recall the definition (3.3.3) of the intensity
measures Qs as well as (3.8.8) of the Palm distributions @}w. Now we show
that the left upper densities blow up at Palm time points.

THEOREM 4.2.2 (Infinite left upper densities at Palm tlmes) Fixs el =
[0,T] and w € C**. For st-almost all pairs [r,w] € (s, T] x (Csw,

(4.2.3) QUE(d,(x*) = +o0) = L.

PrROOF. Given [r,w], it suffices to verify that
sw €Xp( X, (be) 11{(r — be,r) xC*}) — 0

along some sequence ¢, | 0 (depending on [r, w]), where we set b = r/2« (re-
call that & > 0 is the diffusion constant). However, according to the Palm rep-
resentation formula (3.3.10), the latter Laplace functional expression equals

exp[-2 [ Liw,dt) upo(t,w i, 7)),

where uy(-,-,T') > 0 is the unique bounded solution of our equation (3.1.3)
with ¢ = (be) 11{(r — be,r) x C**}. Because this ¢ is constant in the sec-
ond variable (belonging to C), by uniqueness of solutions we conclude that
uyc(-,-,T) =: v, only depends on the time variable and satisfies the (ordi-
nary) equation

T T
v () =ft dr p(r—,0)(be)  1{r —bs < < r} —ft dr p(r —1,0)v3(r),

s <t < T.Hencev.(t) =0for ¢t > r, and the upper limit in the integrals on the
right-hand side can be replaced by r. Setting now v, (¢) =: u.(r—t), s<t=<r,
we can easily verify that u, solves the simplified forward equation (4.1.1) on
[0, r — s]. Consequently, it suffices to prove that

-

(4.2.4) lim / Le(w, dt) us, (r —t) = 00
—>00 s

for some sequence &, | 0 (depending on [r,w]) for @;w-almost all [r,w]

[s,T]x C;y,

Recall that _according to (3.3.7), given r, such a c-bridge path w on [s,r]
has the law II7%,. In view of homogeneity there is no loss of generality in
setting s = 0 and ¢ = 0 in order to prove (4.2.4). By reversibility in law of the
0-Brownian bridge, the statement (4.2.4) will follow if, for 0 < r < T,

hmsup LO(w dt) u.(t) =
&0 4

for Ho O-almost all 0-Brownian bridge paths w on [0, ], where u, solves (4.1.1).
Restrict the domain of integration additionally to ¢ € [ea, eb] with a = r/5k
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(recall that b = r/2«). Then by Lemma 4.1.2 it suffices to show that

(4.2.5) limsup e Y2LO(W",[sa,eb]) =0 ass.,

&0
vyhoere W denotes a 0-Brownian bridge on [0, r] distributed according to
II5o-

Let {B;; t > 0} be a standard Brownian motion (i.e., the diffusion constant
k equals 1/2) starting at 0. Then the 0-Brownian bridge {W}; 0 < ¢ < r} has
the same law as {(1 — £/7)Baxt/(r—t); 0 < t < r} [cf, for instance, Revuz and
Yor (1991), Exercise 1.3.10]. Hence, for 0 < £ < k, in (4.2.5) we may replace
the 0-Brownian bridge local time

&b
LO(W’,[2a, eb]) = f dt 8o(W?)
by

&b
/ dt 8o(Baxt/(r-t))-
ea

(For convenience, we proceed formally with the §-functions setting.) Substitute
s = 2«kt/(r —t) and by recalling that £ < k, the latter integral can be bounded
below by

> 2:<r‘/‘¢2 ds (2« + 8)728¢(B;) > const L°(B,[£/2, ])
/!

(recall that r and « are fixed). Setting L(t) := L%(B,[0,¢]), for (4.2.5) now it
suffices to show that there exists a sequence ¢, | 0 of random times such that
a.s.

(4.2.6) e, 2[L(&n) — L(£n/2)] 5> 0©-

Recall that the standard Brownian local time (at 0) process {L(g); ¢ > 0}
has the same law as {maxo<y<1 Bx.; & > 0}; see, for instance, Revuz and Yor
(1991), Theorem 6.2.3.

Strassen’s law of the iterated logarithm says that with probability 1 the
set of limit points of {[2¢loglog(1/)] 12B(x¢); 0 < x < 1} in C (now with
T =1) as ¢ | 0 is given by the set of all absolutely continuous functions g on
[0, 1] satisfying g(0) = 0 and [y dx[g'(x)]? < 1.

In fact, this version (for £ tending to 0) can be concluded, for instance, from
Theorem 1 in Mueller (1981) by setting ¢ := 1/&, h(¢) := loglog ¢t and using
the single point set £(¢) := {(0,1/¢)}. (Note that then dA(¢) = t~1dt.)

Applying Strassen’s law for the identity function g(x) = x, we can find a
sequence ¢, | 0 of (random) times such that for 0 <s <1,

4.2.7) [2&, loglog(1/e,)]71/2 max By., — s asn— oo.
0 <xX<S

Exploiting this for s = 1 and s = 1/2, we see that the expressions in (4.2.6)
are of order [loglog(1/&,)]"2 ——> oc. This completes the proof. O

n—>oo
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4.8. Completion of the Proof of Theorem 1.1.4. Fix s € I = [0,T] and
w € C*°. According to Theorem 4.2.2,

/ Quw(d[r,w]) ] Q1(dx) 1{5,(x*) < 00} = 0.

Using the fact that the Palm canonical clusters y distributed by Q' related to
the Lévy—Khintchine measure @ concerning XE,T are stochastically smaller

than the Palm clusters y distributed by Pgy, say, related to the law of X;,T
itself [see Lemma 10.6 in Kallenberg (1983)], the previous statement implies
[recalling (3.3.4)]

Bow [ X p(dlr,w]) [ Pyis(dx) 1B, (x*) < o0} = 0.
From a disintegration formula analogous to (3.3.8),
By / X p(dr,©) 1D, (X 7)) < 00} =0,  sel,weC™

Consequently, we derived the following result, writing [0, ¢] instead of [s, w]
in the special case s = 0.

_ COROLLARY 4.3.1 (Infinite left upper densities at exceptional times). With
Py -probability 1, )tf,,T(~ x C) has infinite left upper density at Ay (- x C)-almost
every time.

Now it is very easy to verify Theorem 1.1.4: Recalling (2.5.8), combine the
previous corollary with the fact that the original super-Brownian local time
measure A 5 at the catalyst’s location is diffuse a.s. (Theorem 1.2.4 in DF),
and take into account that 7' > 0 is arbitrary. O
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