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ENLARGEMENT OF OBSTACLES FOR THE SIMPLE
RANDOM WALK

BY PETER ANTAL
ETH Zurich

We consider a continuous time simple random walk moving among
obstacles, which are sites (resp., bonds) of the lattice Z¢. We derive in this
context a version of the technique of enlargement of obstacles developed
by Sznitman in the Brownian case. This method gives controls on expo-
nential moments of certain death times as well as good lower bounds for
certain principal eigenvalues. We give an application to recover an asymp-
totic result of Donsker and Varadhan on the number of sites visited by the
random walk and another application to the number of bonds visited by
the random walk.

Introduction. In this article we will derive the method of enlargement of
obstacles for the d-dimensional continuous time simple random walk (S;):>o.
This technique, developed by Sznitman [11, 13] in a Brownian motion context,
enables us to derive controls on exponential moments of certain killing times
as well as good lower bounds for certain principal Dirichlet eigenvalues of the
Laplacian. Here we develop and give some applications of the method in a
discrete setting. We consider for £ > 0 the lattice £Z¢ embedded in R¢ and
", an arbitrary open subset of R¢. We look at the rescaled continuous time
simple random walk &S;/,» which is killed when it enters a certain obstacle
set or when it leaves 7. We shall study two types of obstacles. In the first
case, the obstacles are sites of the lattice and the process will be killed when
it visits such a site. In the second case, the obstacles are bonds which kill the
process when it crosses one of them. We denote the obstacle set by #¢ (site
case) [resp., by #¢ (bond case)].

We are interested in certain estimates on exponential moments involving
the above-mentioned killing time. These estimates enable us as well to de-
rive interesting lower bounds for the lowest eigenvalue of the generator of
the contraction semigroup associated with the killed process. We denote this
eigenvalue by A*(#¢,7) in the site case [resp., by A¢(#F,.7 ) in the bond
case].

The idea of the method of enlargement of obstacles is to replace our true ob-
stacles by obstacles of a much larger size in order to produce a coarse-grained
picture of the obstacles which is easier to describe, and at the same time to
derive a lower bound for the principal Dirichlet eigenvalue appearing in the
true obstacle problem in terms of the principal Dirichlet eigenvalue in the
‘enlarged obstacle problem. The enlargement methods for the two situations
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[sites (resp., bonds)] differ only in some technical details and we can treat both
cases simultaneously.

Let us now briefly explain how the enlargement method works. We need
three parameters b, § and r to develop the method. First we introduce a
parameter b > 2 and associate with each obstacle a cube of side 2b¢ centered
at the obstacle (in the bond case, at one end vertex of the obstacle). We call
these cubes the enlarged obstacles.

We then chop R? into cubes of unit side. Observe that & will be chosen so
small that 2be, that is, the size of the enlarged obstacles, is much smaller than
1. In each cube we have “good” and “bad” obstacles. In order to derive our spec-
tral estimates, we have to discard certain bad obstacles, where an enlargement
would produce an increase of the corresponding principal eigenvalue on the
relevant scale. So for the construction of our coarse-grained picture we shall
only use the enlarged obstacles centered at the good true obstacles. Roughly
speaking, an obstacle is good if it is well surrounded by other obstacles. That
is, there is a nonvanishing fraction of volume of the enlarged obstacles in suc-
cessive concentric cubes with geometrically increasing sides going from the
size of one enlarged obstacle up to size 1. The parameter § shall measure if
an obstacle is good or bad.

Similarly as in [13] we also introduce the notion of clearing and forest
boxes. This is done by picking a small number r > 0 and asking that in
a box of forest type the total volume left unoccupied by the enlarged ob-
stacles centered at the good true obstacles is smaller than the volume of a
ball of radius r. The other boxes are said to be clearings. The main tool to
estimate probabilities that a box is a clearing when obstacles are random
is the covering Lemma 1.1. This lemma enables us to compare the volume
left unoccupied by the enlarged obstacles centered at the good true obsta-
cles to the volume left unoccupied by all enlarged obstacles. In fact, the set
left unoccupied by all enlarged obstacles is probabilistically easier to handle
and thanks to the covering lemma, a nondegenerate value of the volume left
unoccupied by enlarged good obstacles will imply a nondegenerate value of
the volume left unoccupied by all enlarged obstacles. This will be important
for the application of the method to random trapping problems treated in
Section 2.

We denote by »o7; the 1-neighborhood of the clearing boxes. Our coarse-
grained picture is the set ®,, defined as the open set complement in I N &7,
of the enlarged good obstacles. We look at the random walk killed when it
leaves @, and denote the lowest eigenvalue of the generator of the associ-
ated semigroup by A¢(0;). We let T (resp., T) stand for the killing time in
the true obstacle problem. Then the crucial estimate coming out of the en-
largement technique in Theorem 1.4 is that, for arbitrary M > 0 and p > 0,
we have

limsup sup limsup sup E{[exp{(A°(Oy) AM —p)T}]

r—0 b>2 &—0 2,H%,T
(Il) 0<d<1

< const(d, M, p) < oo,
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limsup sup limsup sup EZ[exp{(A°(®p) A M — )T}
2 HET

r—0 b>2 &e—0
(12) 0<6<1

< const(d, M, p) < oo.

As a consequence of these exponential estimates, we get the promised esti-
mates for the principal eigenvalues, namely, YV M > 0,
(I1.3) limsup sup limsup sup (A°(@p) AM — A(H#°,T)AM), =0,

r—0 b>2 e—0 He,T
0<b6<1

(I.4) limsup sup limsup sup (A*(@p) AM — A(HE,T)AM), =0,
r—0 b>2 e—0 HE,T
0<é6<1
so with a suitable choice of parameters, A(®,) A M is not really bigger than
A(H?, T )AM [resp. Ae(H2,T ) A M]; this yields the promised lower bound
on A (H#°,T ) [resp. A\e(HE,T)].
In Section 2 we give an application of the method (see also [4]). We consider
a random configuration of traps (bonds or sites) in Z<; more precisely we
assume that the obstacles are i.i.d. Bernoulli distributed sites or bonds with
parameter p := 1 — e ”. We denote by P the law of S, and by PP the law of the
obstacle configurations; T (resp., T* in the bond case) stands for the entrance
time in the obstacle set. We also introduce R; and R}, the number of distinct
sites (resp., bonds) visited by the random walk up to time ¢. Qur main result

in Theorem 2.1 is

lim ¢4+ 1og P, ® Po[ T, > ¢]

= lim ¢~ %@+ g Eo[exp(—vR})] = —c.(d,v),

t—o00

lim ¢~4@*2)1og P ® Po[ T, > t]

16 Ty ~d/(d+2)

= tl_lglot log Eo[exp(—vR;:)] = —c.(d,v),
where )
o ot = woa - (S32) ()
1.8) ci(d,v) = c(d,vd).

Here Ay and wg stand, respectively, for the principal Dirichlet eigenvalue of
—(1/2d)A in the unit ball of R? and the volume of this ball. In fact, the
constant c(d, v) comes out of the minimization problem

(1.9) c(d,v) = irl}f(lel + AU)),

(I.10) c(d,v) =irl}f(d1{|UI + A(U)),

where U runs over all bounded open subsets of R? with negligible boundary.
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Equation (1.6) recovers with a different approach a result originally due to
Donsker and Varadhan (see also [3]). One might think at first that (I.5) is an
easy consequence of (I.6); however, this is not the case. In fact, the ratio R;/R;
converges almost surely to a constant {(d) for ¢ - oo and {(d) tends to 1 for
large d. One could naively expect to obtain c,(d,v) from c(d, v) by replacing
v by (v, but as (1.8) shows, this is not the case.

We mention at this point that the problem studied in Section 2 gives only
one possible application of the technique developed in Section 1. The method
is, in fact, more general and for instance it could also be applied to derive
almost sure estimates about the survival probability of a random walk among
random obstacles.

Let us finally give some ideas of the proof of (I.5). The lower bound part
is classical. One simply uses that the survival probability of the process until
time ¢ is bigger than the probability that the process remains in a large open
ball centered at the origin and no obstacle falls in this ball.

The upper bound uses the enlargement technique of Section 1. First
we adopt #1/(@+2) and ?/(4+2) as new space and time units, that is, we
study a random walk on ¢~Y/(@+2Zd yuntil time s = ¢¥/(@+2. We choose
T :=[—N[s], N[s]], where N is a large number. Our strategy to derive an
upper bound on P® Py[T > s] is to write

P® Po[T > s] < Po[Ts < s]+ P[#(clearings in I) > n¢]

+ P ® Po[#(clearings in ) < ng and the
process survives in .7 up to time s].

Here n, is an arbitrary large number which we eventually let tend to infinity.
It is easy to see that the first term has exponential time decay and therefore
it is negligible for our purpose. The second term can be estimated with our
covering lemma and seen to be negligible for suitable choices of parameters.
In fact, this is one point where the already mentioned comparison of volumes
comes in. To estimate the third term, the enlargement technique is used.
In fact, with & := t~/(9+2) the exponential estimates (I.1) [resp., (I1.2)] give
good controls on the probability that the process survives in J up to time s
among the obstacles. Together with a lemma, which enables us to compare
the principal Dirichlet eigenvalue of the discrete Laplacian with those of the
usual Laplacian, this will imply the desired bound on the third term.

1. The enlargement technique.

1.1. Notation. In this section we derive uniform estimates which enable
us to replace the true obstacles (which are single bonds or sites) in an open
,set of RY by obstacles of a’larger size without really raising the principal
. Dirichlet eigenvalue of the part of the open set left unoccupied by the obstacles,
provided the principal Dirichlet eigenvalue for the initial configuration has a
reasonable value. Our methods are inspired by the work of Sznitman [13],
where the enlargement technique is applied to get estimates about the long
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time survival probability of d-dimensional Brownian motion among random
obstacles. Let us introduce some notation.

We denote by Z¢ the d-dimensional lattice and by E¢ the set of all edges
between points of Z¢ with distance 1. We will think of the graph (Z<¢, E9)
as a graph embedded in R%, the edges being straight line segments between
their end vertices. E¢ can be identified with the set of the middle points of
the edges, that is, with %, 1e; + Z4, where e; is the ith basis vector of the
canonical basis of R¢. We also introduce a convenient metric on R% and the
balls w.r.t. this metric. We set, for x, y € R% and r > 0,

(1.1) d(x,y) := max |x; — yil,
1<i<d

(1.2) B(x,r):={ze R%|d(x,2) <r}, B(x,r):={ze R*|d(x,2) <r}.

We let ) stand for the set of all piecewise constant right continuous func-
tions on R* with finitely many jumps on finite intervals and values in R?,
& the canonical o-field on Q, (%;) the canonical right continuous filtration
and P, the probability measure on %, under which the canonical coordinate
process (S;):>o is a simple (nearest neighbor) random walk starting at x € Z¢
and having jump intensity 1.

We will also choose a small number £ > 0 and study the rescaled process
X?{ := &8;/,2, whose law we denote by P%. The obstacles we want to study in
this first section are deterministic subsets of £Z9 (resp., of ¢ E%), that is, sites
(resp., bonds) of the scaled lattice. We denote the obstacle set by -##¢ in the
site case and by 27 in the edge case.

If y is an edge in £E9, then there exist a well defined site y; € £Z% and e;,
an element of the canonical basis of R?, such that y; and ys := y; + se; are
the two end vertices of y. We define the “vertex of the obstacle A” by

_|h (site case),
(1.3) v(h) = { hi (edge case).

For a set A C R% we write A¢ for AN eZ% and A? for the set of edges of
E9 with middle point in A. The counting measure on £Z¢ is denoted by #°;
that on ¢ E? by #2. For A c R?, #° A stands for the cardinality of A® and #°A
for the cardinality of AZ.

Finally we define for each multiindex m € Z¢, the cube

(1.4) Cn:={zeR% mi<zi<m;+1,i=1,...,d}.

1.2. Enlarged obstacles. Let us now describe the enlarged obstacles. They
are defined in the following fashion:

' Let £ > 0 and b > 2 be fixed. For each obstacle 4 (site or bond) we define the
‘corresponding enlarged obstacle as the ball B(v(h), £b). In the bond situation,
two distinct obstacles can give rise to the same enlarged obstacle.

In order to derive interesting bounds on eigenvalues dealing with the true
obstacles in terms of enlarged obstacles, we shall have to discard certain “bad
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obstacles” which are poorly surrounded. We choose a number § in (0, 1) which
will measure if an obstacle is good or bad. Indeed, we say that an obstacle
h e #¢NC, is good if for all balls C := B(v(h),(10/d)*1eb), I > 0 and
(10V/d)*1eb < —21-,

(1.5) #° (Cm ncn |J B(u(h), sb)) > (8/12H) #4(C,, N C).
ize#fr‘\Cm

In the bond case we define similarly an obstacle with middle point in C,, to
be good if (1.5) holds with the obvious modification that % runs over all bond
obstacles with middle point in C,,. In both cases we use the counting measure
on £Z¢%. We also chop each segment [%, %+ 1] into at most [1/((b—1)e)] +1
intervals of length (b — 1)& each, except perhaps the “last one.” This yields
closed subboxes of side less than (b — 1)&, with union C,,. The crucial point of
this construction is that if an obstacle A falls in a certain subbox (the meaning
of this in the bond case is that the middle point falls in the box), then the box
is entirely contained in the corresponding enlarged obstacle, since v(&) has at
most distance £/2 from the box.

We now set U, to be the open (in R%) subset of C,, obtained by taking the
complement in the interior of Cy, of the closed boxes where an obstacle of C,,
falls, and U,, to be the complement of the boxes where a good obstacle of C,,
falls. -

1.3. Two comparison lemmas. For our application of the method to random
trapping problems, a comparison between the volumes of U,, and U,, D U,, is
crucial. Indeed the natural probabilistic estimates are expressed in terms of
U ., whereas our spectral controls involve U,,. We are able to do this thanks
to the following covering argument, which says that we have a good control
on the volume (w.r.t. counting measure) of the enlarged “bad obstacles,” that
is, the union of balls of radius bs centered at the bad obstacles cover a small
fraction of the volume of C%,. So, for instance, a “sizable U,” implies the
occurrence of a “sizable U,,.”

LEMMA 1.1.  Let #},; be the set of bad obstacles. Then we have, for m € Z a

(1.6) #° (Cm n ( U E(v(h),sb))> < 8#°Chp.

heéfb”adﬂcm

PROOF. We treat the two cases (sites, resp. bonds) simultaneously. Let A
be a bad obstacle (with no loss of generality, we can assume that #; ; is not

émpty). Then there is [ > 0, £b(10v/d)"*! < 1, such that

#E(Cm nDN ( U B(u(h), ab))) < (8/12%) #°(C, N D),
obstacles
hin Cp
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where D := B(v(h), (10v/d)"*1eb) and C,, is the cube containing A (site case)
[resp., the middle point of A (bond case)]. Observe that in the bond case, v(h)
is not necessarily an element of CZ,. Take A; € H,q With maximal [ :=/; and
set

D1 = B(u(h), (10vd)" ' eb),
G1:= |he #{,y, Bo(v(h), eb) ¢ D5).
Define A9 to be an element of G; with maximal [ := /s and set
Gs = |h e #{y, B*(v(h), eb) ¢ DU Dj).
Continue like this with Dq, Do, ..., Dy, with G = &. So we have

#(enn( U Buthnen))

he;fgadﬁcm

< ké#s (Cm N DN ( U B(n), eb)))

hlelfadﬂCm

L
< (8/12%) Y #°(Dp N Cp).
k=1
We now define the set Dy, := B(v(hy), %(10«/3)’”131)). Our claim will follow
if we show that the balls D, 1 < k < L, are disjoint and

(1.7) #(DpNC,) < 12%4#5(Dp N C,p).

First we show (1.7). We have D, N C,, = ]'[f=1 I;, where the I; are closed or
semiopen intervals in R. For the (Euclidean) length of these intervals we have

L= o2

and, therefore, there exist 7i; € N, fi; > 2 and 0 < 7; < & such that 1I;| =
n;e+r;. We also have D, NC,, = ]'[?:1 I; with |I;| =n;e+r;and n; <37;+5,
since |I;| < 3(|1;| + £/2).

We now give a counting argument in a more general form than needed in
the present proof, since we shall use it at several points in the sequel.

For any interval I (open, semiopen or closed) with |I| =ne+r, 0 <r < g,
we have

(1.8) n—-1<#I<n+1

This implies

: d
#(DpNCr) > [[(A: - 1),
i=1
d ’ d
#°(Dp N Cp) < [[(ni +1) < [[(37; +6).

i=1 i=1
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Therefore, we have

#(DiNCm) _ TE41(37: +6) _

= < <12¢
#D,NCp ni=1(ni -1)

(1.9)

since n; > 2. .
The last step is to show that the balls Dy, 1 < k < L, are disjoint. For this
we pick 1 < &k < k' < L. Then B¢(hy,eb) ¢ D}, and so

d(hr, hir) > (108/A) " 6b — £b > 95bv/d(10Vd)™.

Since (10/3)ebv/d(10/d)% + (10/3)ebv/d(10V/d)¥ < (20/3)ebv/d(10/d)* <
d(hy, hy), it follows that the balls with radius (1/3)(10+/d)%*1¢b centered at
hi and Ay, respectively, are in fact disjoint and this proves our claim. O

The following lemma is useful for the comparison of the volumes of certain
balls which we shall need later.

LEMMA 1.2. Let a be an arbitrary real number such that 10¢ < a, let I,
1 <i < d, be a collection of closed or semiopen intervals in R of length a and
let J;, 1 <i <d, be a collection of such intervals of length 2a. Then we have

d d d
(1.10) 474 ( I Ji) < #8(]‘[ I,-) < (2/3)‘1#8(]‘[ J,-).
i=1

i=1 i=1

PROOF. As in the proof of the preceding lemma, we set @ = ne + r with
n e N,0 <r < g, and therefore we have 2a = fie + 7 with 2n <7 < 2(n +1).
Using (1.8) we obtain

i=1

d
(n-1 <# (L) < (n+1)%
‘ d
(2n—1)4 < #8(]‘[ Ji> < (2n+3)%

i=1

Since n > 10, we have

n-1\"_(9\* 4d ang (PFL d<(Ed< _2_)d
on+3) =\23) 7 on—1). ~\19 3

and this yields our claim. O

- COROLLARY 1.3. Let 10¢ < a < % and m € Z% Then we have, for any
obstacle h in C,,,

(1.11) #(B(v(h),a) N Cy) > 4~ %4°B(v(h),a).
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PROOF. Since v(h) has at most distance £/2 from C,, and a < %, there is a
cubic box ]'[;i=1 I;, where the I; are semiopen intervals of length a — &, such that
]'[;i=1 I; is contained in C,, N B(v(k),a). On the other hand, B(v(h),a) is the
product of closed intervals of length 2a, so we obtain by the same calculation
as in the preceding lemma (with n replaced by n — 1),

#°B(v(h),a) < (2n +1)4,
#(B(v(h),a) N Cr) = (n — 2)%.
Since n > 10, our claim follows from ((n — 2)/(2n 4+ 1))¢ > (8/21)¢ > 479, O

1.4. Clearings and forests. When a cube C,, is of “clearing type” or “forest
type” we define it in the following way: We introduce a number r > 0 and say
that C,, is a clearing of size r if

(1.12) #U,, >4 %%°B(0,r).

Observe that for the definition of clearings in both cases [site (resp., bond)
obstacles] the counting measure on £Z% is used. We then set .7 to be the
closed union of all closed cubes C,, in R? which are of clearing type of size r.
We define &/ as the open set of points at distance less then 1 of &7. If &/ is
empty, so is .71

We can now define the operator semigroup which will be important in the
sequel. Let U ¢ R? be an arbitrary open set and T'y the entrance time in U°.
We set

(1.13) Ly ={f e L%(£Z%#°) | f(2) =0V z € (U°)*}
and define
(1.14) PY: sy - 2y, f+ PUf:=E:[f(X]); t<Tyl

IfU¢ # O, ( PtU)tzo is a Cy semigroup on .Zy. The generator L* of this semi-
group [with the convention that PV = exp(—¢L?)] is the bounded positive
operator —AU, where

1
—— Y (f(z+e) - f(2)), ifzelU?,
115) AU f(z) = | 29°° e
0, otherwise.

We denote by A°(U) > 0 the bottom of the spectrum of —AU (Dirichlet discrete
Laplacian in U N £¢Z%). We now introduce the entrance time into the obstacle
set. In the site case we set

' (1.16) T e = inf{t >0, X5 e #°}.

In the edge case we give the analogous definition as follows. For ¢ > 0 we set
X¢ :=lim,,; X¢ and say that the process crosses the edge % at time ¢ > 0,
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denoted by X§ ~ h, if X? and X? are the two different end vertices of 4. So
we define

(1.17) T y: :=inf{t > 0, X] ~ h for some h € #*}.

We shall investigate the effect of the obstacles in a nonempty open subset
T of R? on the principal eigenvalues. Neither the obstacles nor < should
be viewed as fixed. In fact, our estimates will be uniform on Z and on the
obstacle sets. For the application of Section 2 we shall pick, for instance, 7 =
(—N[td/(@+2) ] N[¢d/(@+2])d and ¢ = ¢t~1/@+2), for ¢ going to infinity.

Our coarse-grained picture O is now defined as the open set complement
in 7 N /! of the enlarged good obstacles, that is,

(1.18) Oy:=7 N\ |J B(v(h),be).

heéfgfm "

Finally we set T:=T 7 AT e and T, := Tg AT ye, where T stands for the

entrance time of X¢ in .77°.

L.5. The main result. The main result coming out of the enlargement tech-
nique is the following exponential estimate for T (resp., T\).
THEOREM 1.4. For M > 0 and p > 0 we have
limsup sup limsup sup E[exp{(A°(®y) AM —p)T}]
r—0 b>2 &e—>0 z2,#¢,T

(119) 0<é<1
<14 §C(d, M, p),

r—0 b>2 e—0

(120) 0<d<1
<1+ §C<d,‘M, o),

limsup sup limsup sup E[exp{(A*(®y) AM —p) T,}]
2, #E,T

where C(d, M, p) is defined below in (1.21).

In order to define the constant appearing in the r.h.s. of these inequalities,
we need the following result:

LEMMA 1.5. For M > 0, p > 0 we have
(1.21) sup sup Ef[exp{(M AA(U)—-p)Ty}lv1:=C(d,M,p) < .

0<e<1 UcR? open
zeeZ?

PROOF. Pick M > 0, p > 0, ¢ € (0,1), U an arbitrary open subset of R? and
z € eZ% We set p := M A A*(U) — p. With no loss of generality we assume
that u > 0, U? # O. Let r.(¢,2,-) be the density of PtU w.r.t. the counting
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measure on £Z<. Then we have
Eclexp(uTy)] =1+ ,lLfo PS[Ty > s]exp(us)ds

o0
=1+ uf > exp(us)ry(s,z,y)ds
0 yeU=

2
<14+ M [ 5 exp(us)re(s,z, y)ds

yeUs

+Mf2oo > exp(us)rs(s,z,y)ds

yeUs

2
< 1+M/ exp(Ms)ds
0

+M[:o Z exp(us)rs(s,z,y)ds.

yeUs

Therefore our claim will follow once we show that

(1.22) [:o S ebr,(s,2,y) ds < K(d, M, p) < co.

yeUs
The main tools of the proof of (1.22) are the following results:
PROPOSITION 1.6.  There is a constant K1(d) such that
(123) Vi>2, Va,yeZ%  ryta,y) < Kielexp(—A*(U)(t - 2)).
PROPOSITION 1.7.  There is a constant a > 0 such that
(1.24) Vee (0,“1), Ye>0,  PYT,<s]<2de® ),

where T's denotes the exit time from the box (—cs, cs)?.

Let us first show how these propositions imply (1.22). For this we define
¢:= M +a + 1, where a is the constant appearing in Proposition 1.7. We also
introduce the set .

Vsi={ye aZdId(z,y) < sc}.

" Then the Lh.s. of (1.22) is equal to

(1.25) /2 Z e*r.(s,z,y)ds +/2 Z e*r.(s,z,y)ds =11+ I.

yeVy yeV§
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Using (1.23) we see that

I

IA

K, /2°° exp(us) Y &% exp(—A*(U)(s — 2)) ds

yeVs

< K, /2°° exp(us) exp(— A5 (U)(s — 2))(2sc + 1)% dss

= K, /Oooexp(,u(t+2))exp(—)t€(U)t)(2ct+4c+l)d dt

IA

Kie2M /O°° exp(t(1e — A5(U)))(2ct + 4e + 1)¢ dt

(o]
< KM / exp(—pt)(2ct + dc + 1)¢ dt
0
= Ko(M, p,a) < oo.
It now remains to estimate Is. We have

I, 5/ " PE[d(X°,2) > cs]ds
2
5/ eMsPS[Ts <slds
2
< Zd/ e *ds=2d,
0

where we have used Proposition 1.7 and the definition of c.

We still have to give the proofs of the two propositions we have used. We be-
gin with Proposition 1.6. We denote by (-,-), the inner product on L%(£Z¢%,#°)
and by | -|l2;c the corresponding norm. Then we have, for all ¢ > 2 and x € ¢Z a

re(t, x,x) = (Pf’_z(rg(l,x,-)), re(l,x,-))e
< Irs(L, 2, )15, 1Pyl
< exp(—A*(U)(¢ —2))llrs(1,x,-)l3,
< exp(—=A°(U)(t - 2))Pgl X5 = 0],

(1.26)

where we have used that ||r‘9(1,3c,~)||§;‘9 = ry(2,x,x) = P§[X5 = 0]. The
asymptotic behavior of Po[S; = 0] can be obtained classically (e.g., [10],
page 78, Example 2) by integrating the characteristic function of S;, which
is given by

d
(1.27) b+(6) =exp{—¢+§2cos(0i)} (6 € RY)
' i=1
and consequently

2 2 ‘
Py[S;=0] = (27r)‘d/ /0 ¢:(0)d0y---dbg ~ const-t~¥2,  ast— oo.
0
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Applymg this result to X we can find a constant K;(d) with P§[ X5 =0] <
K1£% and so, thanks to (1 26),

(1.28) re(t,x,x) < K12 exp(—A°(U)(t - 2)).
This implies (1.23), indeed

re(t,x,y) = (m(%,x, -), re<%, ¥, ))6

< (re(t, %, x)Y2(r (¢, y, y))'/?

< supr.(tz,2).
zeUs

It now remains to prove Proposition 1.7. First we observe that
(1.29) P[Ts < s] <2dPg[T! < s],

where T! := inf{¢ > 0, Y? > cs}, Y? being the first coordinate of X?. The
process (Y ?);>¢ is a one-dimensional simple random walk with jump intensity
1/d. Therefore we know that

¢ (l/d)A (e*)

M, :=exp{Yf—/0 (Y%)du }

is a supermartingale (see [7]), where A, stands for the one-dimensional dis-
crete Laplacian. For twice differentiable functions f we have

Aef(x)=2—12(1‘"(x+a)—f(x)+f(x—a)—f(x))
(1.30) 1 11
=§/0/0f”(x—e+au+av)dudv

and therefore

(1.31) sup YD) _

0<e<1 e
xeR

2/ / exp(—&+ eu + ev)dudv :=a < oo.
0<a<1

Using this and the optional sampling theorem, we obtain
1> E§[M.q]
> Eg[exp{Y;gAs —a(T! As)}]
> Eglexp{Y],,, —as}]
> eose (Y3, > o]

> e s Pg[T? < s,

and together with (1.29) this implies our claim. O
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1.6. More notation. Let us now define some constants which will be needed
in the proof of Theorem 1.4. In what follows, P, stands for the law of the
discrete time random walk S, on Z¢ with starting point z € Z¢. For ¢ > 0 we
define

Hc = lnf{n > 0’ d(Sn’ SO) = C}’

(1.32)
H? :=inf{t >0, d(X}{, X{) > c}.
We set
1
(1.33) B(d,M,p) =

24C(d, M, p)+2°
As follows from Lemma 1.12 [see (1.60)], we have a strictly positive constant

(1.34) Ci(d) == %ilgf inf PolHa < Hygyql,

where A runs over all closed subsets of B(0,2!) with relative volume (w.r.t.
counting measure in Z¢!) > 4-9(1—(2/3)%) and H 4 denotes the entrance time
in A.
With the help of Lemma 1.13 [see (1.87)], we pick r € (0, %) small enough
so that
(1.85) (1-C)M®Vdl < g and  sup Ef[exp(MH®;)] <1+ p.
O<e<l
Let b > 2 and 0 < 6 < 1 be fixed. We denote by Hjo; the hitting time of zero
and by H; the first time when the process passes through the edge having
one end vertex in zero and the other one in the point (1,0,...,0). For u > 0
we denote by HY the exit time from the ball B(0, ). Then by Lemma 1.12 we
have strictly positive constants
a(8,b,C,d) :=inf inf P,[H, < H°
) ( ) 121 2eB(0,1+1) | Ha w012
(1.36) A
x inf PZ[H{O} < Hpogpe] (site case),
., 2eB(0,b)
a,(6,b,C,d) :=inf inf P,(Has<H
( ) 21 2eB(0,1+1) [Ha 10"/_]
(1.37) A
x inf P,[H, < Hpzay-] (edge case).
2eB(0,b)
In both cases, A runs over all closed subsets of B(0, ) with relative volume (for
the counting measure in Z%) bigger than 8/48% and z has integer coordinates.
We also set

(1.38) q=q(8,b,C,d) :=inf{n e N: (1—a)" <1/8C(d, M, p)}.

In the case of bonds, « is of course replaced by a,. Finally we pick 0 < ¢ < 1,
so that

(1.39) (10Vd)*eb+eb <1 < 1.



OBSTACLES FOR THE SIMPLE RANDOM WALK 1075

We recall that now we have fixed b > 2,0 <8 <landre(0,3),0<s<1
satisfying (1.35) and (1.39), respectively.

1.7. More lemmas. For the proof of Theorem 1.4, we need several lemmas
which we are now going to prove. We formulate the statements for the site case;
by consistent use of the notation * for bonds, we can see that the calculations
in the bond case are exactly the same. In fact, there is only one point where
the nature of the obstacles comes in, namely, the different definitions of the
constants a and a* in (1.36) [resp., (1.37)] which are used to estimate the
probability appearing in (1.42) below.

LEMMA 1.8. Let x be a good obstacle. Then we have for z € B(v(x), eb)NT,
(1.40) Pi[H:>T]=> 1.

PrOOF. Thanks to the choice of £ we have

P;[H; > 7~1] = Pg[Hfm«/&)wbee >

= PULH G fayesspe > T

T]

with H oF 1= inf{u > 0, d(X¢,v(x)) > p}. Using the strong Markov property,
we see that

Pi[H fif)ﬁ)”%a <T]

(1.41) Eg I Pé‘ Hé’;x T
=8 {Hf;;ﬁ)qbs<T} X;szx [ (10V/d)a+1be < ] .
(10v/d)9be
o— £;% . .
We set 7o = H (10v@)be and denote by T, the entrance time in #° N

B(v(x),(104/d)%be). We shall give an upper bound on P%. [T > 7g4+1] by
getting a lower bound on

Panq[Tq+1 >T]> nggq[7q+1 > Tq]
(1.42) .
> B, [Liryu>ma Py, [Hy < Hoyor 1]

In the last term A denotes the set Ujc - B(v(h),be) N E(v(_gc),(lO«/E)qba)
and y := y(X§, ) stands for a true obstacle such that X% € B(v(y),be). Let
C,, be the cube containing x. Since x is a good obstacle, we know that

#A> #€<§(v(x), (10vd)ie)n ) Blo(h),eb)N C,,,)

heCnpNH*

> Ig—#e(ﬁ(v(xx (105/d)?bs) N Cra)

> Zg—d#@(v(x),(loﬁ)%s),
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where the last inequality follows by (1.11) and (1.39). Now using scaling, trans-
lation invariance and the definition of the constant « in (1.36), we see that
the expression on the r.h.s. of (1.42) is bigger than «a. Iterating this in (1.41)
we have

& £;X S _ q
P [H(lof)q+1b ] <(1-a)=< 8C(d, M, p) [by (1.38)]
and therefore
£ &% T 1 1
P [H(IO«/_)"“ba >T]>1- 8C(d.M.p) 2

since C < 1 by definition [see (1.21)]. O
The next result we need is the following corollary.

COROLLARY 1.9. Forall z € &/°N £Z% we have

(1.43) PiT <H;, -1>C

PROOF._Pick z € C¢, N o7¢ (forest). Then we have #° ﬁm < 49 #¢B(0, r).
Set V := B(z,2r) N C,, NU¢,. Using (1.10), (1.11), (1.12) and 10e < r < 1, we
obtain

#V > 47 B(z,2r) — 4 %#°B(0, r)
> 4791 - (2/3)%)#°B(z,2r).

So by the definition of C; in (1.34) and using Lemma 1.8 we obtain

Pi[T < H, )= Pi[{Hv < H o} {T 06w, < HE ;006m,}]
1
Z2Cl§=01 O

We are now going to show the following lemma.

LEMMA 1.10. For z € £Z% we have
1

(1.44) Elexp(M(Ho n T =1+ oot oy

PROOF. With no loss of generality we assume z ¢ &/ U “U#*. We denote
the successive times of travel of X¢ at distance /r by

(1.45) H®:=o0, Hitl.— H + H® 0 0mi, i>0.
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Thanks to our assumption on z, H A T>0 P:-a.s. and we have

EZ[exp(M(H A T))]

=Y E[exp(M(H AT)); H* < Hyy AT < H*']
k>0

(1.46) <> Eslexp(MH) Iy 5. sy - By exp(MH?;)]]
k=0

=Y Ei[exp(MH*); Hoy AT > H*] . Eglexp(MH?)].
k>0

We now look at the first factor in the last sum. We have, for 2 > 1,
E:[exp(MH*); H, AT > H*]
= EZ[exp(MH*™") exp(MH®; 0 0pp1); Hor A T > H*]
(147 < Ef[exp(MH*')(E%,, ,[H; < Ho A T]
+E%,, [exp(MH?)]-1); Hy AT > H*].
On the set {H;_1 < H,, A T} we have X i1 € &/¢, so using (1.43) and the

strong Markov property at the successive times of travel at distance 21r+/d
we find

(148)  E%,, [H%; < Hy AT] < (1—-C)M@V] < g [by 1.35]

since d(X§, X5 f) < 21rvd + ¢ and [J7/(21rv/d + &)] > [1/(22V/dr)].
21rvd

Using (1.48) and (1.35) we see that the r.h.s. of the last inequality in (1.47) is

smaller than

2BE:[exp(MH*™'); H*' < H,, nT]< (2B)".

Substituting this in (1.46) and using (1.35) as well as the definition of B in
(1.33) we finally have

Eflexp(M(Ho AT)] < (14 B8) 3 (28)*
k=0
38
1-28

<14
=" 8Cd, M, p)

=1+

1.8. The proof of Theorem 1.4. We now apply the results of the previous
subsection to give the promised bound on E¢[exp{(A¢(®p) A M — p)T}] for
z € RY%. As before, we use the notation for the site case. It is enough to study
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the case where A := A*(®y) A M — p > 0. In this case we introduce the stopping
time
e He AT, if Xoe o1,
T V\H AT, if Xog ot
We denote by T, the exit time from @, and set
So =0, S1:=710607,+ Ty, Sp+1=S8r+ S106s,, k>1,

J:=inf{k >0, X5, € 7°U#*}.

The S, are a.s. finite, thanks to Lemmas 1.10 and 1.5. We shall see that we
have

(1.49) Eslexp(ASy); {J >k} 1< (3)*, k>0,

from which it follows that ¢/ is finite almost surely, since A > 0. We now see
that

Ej[exp()tf‘)]

< Ef[exp(AS.)] = 3 Eslexp(ASy); J = k]
k=0

<1+ ) Ei[exp(ASy; {J > k—1}]
k=1

<1+ Ei[eXp(ASk_ﬂE’“’; [exp(ATb)Eg :, [exp(/\f)]];
k=1 k-1

{J > k—l}].

Using Lemma 1.10, Lemma 1.5 and (1.49) we see that the right member of
the last inequality is smaller than

T142e3 (2 148
—o\4 - 3

and this yields the claim of Theorem 1.4.
We still have to give the proof of (1.49). Let & be the set {J > k}. Then for
k>1,

EZ[exp(ASt); €]

= E [expusk_nEs . [exp(ASY); &1); efk_l]
(1.50)

< Be[exp0Si0 By [exp(ATh) B FexpOr) xzgrvrn

éok-1i|
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Observe that

E%: [eXp(/\Tb)Es; [exP(AT)I{XingcUJfS}]]

(151 ’

< E?{g I:exp()\Tb)(ESXsT [exp(AT)] -1+ E%- [I{ng_(ycudys}])].
[ 3 Ty

To estimate the r.h.s. of (1.51) we first show

(1.52) B, 7] - 1< 1

= 8C’
If X7, ¢ o 1 our claim follows from (1.44). In the other case we have

&;, Lexp(A7)] = B [exp(A(H] A )]

<E ;b[eXP(AHf/;)]
1

1 1+ —.
s1+B=1l+g5

The other estimate we need is
1

(1.53) E%; [Iixweovra] < g5
To see this we have to distinguish three cases: If X, T, € ¢, then the left-hand
side of (1.53) is equal to 0. If X7, € o/ 1y 7, we have, by the same argument
as in the proof of Lemma 1.8,
E%, [ixsggevmy) = Py, [HY < T
b b

< Py, [H; <T]

(10v/d )‘7+1ba+bs

<(l-a) <4

8C
If X7, € (o Hen g, we see, using (1.43) and the strong Markov property,

B, [xiggeor] = Py, [T > Ho
<(1- Cl)[1/22r\/3]
1
<B< aC [by (1.35)].

Combining (1.50), (1.51), (1.52) and (1.53) and using Lemma 1.5, we obtain
for k>1, '

ESlexp(AS)); {7 > kYl < Ez[expusk_nEXs [ exp(175) |

4C
< 1Bexp(ASy 1); T > k~1]

¥

and iterating this yields (1.49). O
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1.9. Lower bounds on eigenvalues. We shall now apply our result to derive
lower bounds on eigenvalues in the same spirit as in [13]. We introduce the
semigroups associated with the process killed by the true obstacles in 7. In
the site case, we let P; stand for this semigroup, that is, we define

Py f Pf:= EX[f(X?); t < T,

which is a Cy semigroup on the subspace of L2(£Z?, #¢) consisting of functions

which vanish on the set -#¢ and outside of .7 . The generator L¢ is the discrete

Laplacian [see (1.15)] and we denote its lowest eigenvalue by A¢(#¢,5 ) > 0.
In the edge case we define

Py f e Pif = EX[f(X{); t < T7],

which is a C semigroup on the subspace of L2(£Z?,#°) consisting of all func-
tions which vanish outside of 7. Its generator is L, where

1 1 )
~o73 Z f(Z+€)+—2f(z), ifzeT*®
Lif(e)= 248° i ¢
0, otherwise.

We denote the lowest eigenvalue of LZ by A2(H#F, ) = 0. We can also intro-
duce the corresponding Dirichlet forms. In fact we have, in the site case,

A58 G )= (L fof)e= 1gg 3 X (Flxte)— F(x))

xeeZd lel=¢

and similarly, in the edge case,

Eff) = (LIf, f)e

1
=4d2 Z Z (f(x+e)—f(x))2
(1.55) & yeezd le|=¢
(x,x+e)gHE

1 2
: > : le] = He).
503 2 f(x)*#{e: le| = &, (x,x +e) € H{}

For the principal eigenvalues we have the following variational formulae:
A(H®,T)

(1.56)
=inf{&(f,f): [ € L*(eZ,#°), supp [ C T N(H°)°, lIflze = 1},

MNAHE,T)
;, = inf{&.(f, ): f.€ L*(eZ%#°), supp [ C T, IIflze = 1}.
. 'We can now show that when r is small, for sufficiently small ¢ the principal
eigenvalue A*(#¢,T) [respectively AS(H#F,7 ) in the edge case] is not re-

ally bigger than the principal eigenvalue A¢(0;), provided A*(#¢,.9 ) [resp.
As(H#F,T )] has a reasonable value.

(1.57)
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COROLLARY 1.11. For M > 0 we have

(1.58) hn(l) sup limsup sup MO AM — A(H#°,T)AM), =0,
r— b>2 e—0 He,
0<d<1

(1.59) lm& sup limsup sup(/\g((@b)/\M MAHE,T)ANM),. =0.
r— b>2 &—>0 HE,
0<d6<1

PrROOF. We prove (1.58). The proof of (1.59) is completely analogous. Let
us assume that for some M > 0 the expression above is strictly positive. That
is,

@Ap>0@AM>0)(Vro>0)3r<rg)
3b>2,6)(Ver>0)1Te<ey)@H#°)3IT)
so that
MO AM—p > A(H?,T).

With no loss of generality, we can assume that there is a nonnegative function
f in L2(£Z%) with norm 1 and compact support in .7~ N (##)¢ such that

M(H,T)=&E(F,f) <A (Op) A M — p.

Let r(s,x,y) be the transition density of P, and E_ () a resolution of the
identity corresponding to this semigroup. We set E;,f(-) =(f,E.(-)f).. With
A= A%(0p) A M — p we see that

o0 o0
00 = /0 ds A exp({A — /0 rEf (du)}s)
< f ds Ae™ / e ES (du) (by Jensen’s inequality)
0 0 ’

= [Tdsae ¥ X rls,x,3) F(0) ()

x€Tc yeT*

- fo Tdsae® Y fx)Pof (x)

eT e

s/ow dsre® 3 £(x)flloo P T > 5]

€ege

E[ / Aers ds]f(x) 1F loose
xeT ¢

< sup Ea[eAT]||f||oos If 156

xeT ¢

By Theorem 1.4 we can assume that our parameters are chosen such that the
r.h.s. of the last inequality remains finite, which is a contradiction. O
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1.10. Two more lemmas. We now prove the two lemmas we used in the
definition of constants appearing in Section 1.5. The first one refers to the
discrete time random walk on Z<¢. Let us recall that for © > 0 we denote by
H g the exit time of this process from the ball B(0,u).

LEMMA 1.12. For s > 0 we have

. . 0 _ .
(1.60) 1;31{' zeBl(I(},fl.+1) P.[Hjs < HIO«/JI] =1v >0 (lis a real parameter),
Aest}

where o/} :={A C B(0,1): #A > s #B(0,1)}.
ProOF. For u € R* we denote by g(u,x,y) the Green’s function of S,

killed outside of B(0,u). That is, g(u,x,y) = X2, P:[S; = y, i < H%]. At
this point we remark that by translation invariance we have

(1.61) g(u,x,y) =g_y(u,x—y,0),

where g_,(u,-,-) denotes the Green’s function of the process killed outside of
the ball B(—y,u). We now have, for / > 1, z€ B(0,l+ 1) and A € &/},

P.[Ha<HY ] = fA 2(10vdl, z, y) e(dy)

= z,yellrsl(f;),zl) g(10Vdl, 2, y) Cap,y /g, (A).

(1.62)

Here e stands for the relative equilibrum measure of A to the ball B(0,10+/dl)
and Cap,, g (A) for the relative capacity of A in this ball. By Dirichlet’s
principle we know that

(163 (Capyoym(4)) " =inf [ g(10VdL,2,y) u(dz) u(dy),

where u runs over all probability measures on A.
Let us first treat the case of recurrent random walk (d < 2). Then the
potential kernel

(1.64) a(x) = Z Py[S; =0]— Py[S; = x]

i=0
exists for all x € Z%, and we have (see [8], Proposition 1.6.3)
(1.65) g(u,z,y) = E;[a(Sp — y)] —a(z— y).

" First we look at the case d = 1. Then we know that a(x) = |x|, x € Z.
"Pick I > 1. For z,y € B(0,2l) we have |Sg,, — y| > 8/ and |z — y| < 4] and,
therefore,

i l 4].
z,yel&%,zz) g(10l,z,y) >
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Pick A € o/} and x € A. Then the relative energy of the Dirac measure in x
is
I;(8,) =g(100,x,x) <111+ 1

since g(10,x,x) = |Sg,, — x| <111+ 1lifx € B(0,1). Thus by (1.63) we have
Cap;(A) > 1/(11] + 1) and using (1.62) we obtain

41 1
(1.66) P,[Hy < Hyy] > m > 3 > 0.

Consider now the case d = 2: For x, y € B(0,2l) we have, by (1.61),

g(]-O\/ilvx’ y) = g—y(lo“/il’x - y’O)

(1.67)

since B(0,10!) c B(—y,10+/21). Thus by (1.62) we have to show

(1.68) llI>1f zeg(l({‘il g(10Z, 2,0) Cap, . 5, (A) > 0.

It is a classical result (see [10], Chapter II1.12, Proposition 3) that
2
(1.69) a(z) = - log|z| + &+ 0(1) (|z] = 00),

where % is a constant, which can be explicitly calculated, but we will not need
the exact value of k. Let n > 0. Then we can find a number [/, € N, such that
for |z| > Iy,

(1.70) %log|z|+k—77§a(z) < %log|z|+k+n.

We now have

(1.71) %Ezg zeg(l()f‘il) Algg g(10Z,2,0) Cap,, 5;,(A) > const > 0

since we have only finitely many cases.

In the case I > [y we give separate estimates on the Green’s function and the
capacity. We will show that both are strictly positive. For the Green’s function
we obtain

1. f 1 0.
(1.72) }gﬁ zeg(l(flo £(101,2,0) > 1r(1o,lo)g( 0ly, z,0) >

Using (1.65) and (1.70) we see that we also have

inf inf g(10l,2,0) > inf inf —(log(lOl) —log|z|) — 29

1>1y zeB(0,41) . I>ly ze B(041) T
(1.73) lz1>Zo 21>1o
' 2 10
> —logl—}—-2n>0
T g(wﬁ) "

since n was arbitrary.
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To estimate the capacity we use again (1.63). Pick A € o] and let u be the
discrete uniform distribution on A. Then we have for the relative energy

I(p) = (#A)2 )" g(10v2l,x,y)

x,y€A

< sup (#A)™! Zg(le/_l x,y).

yeA

(1.74)

We can assume /y > 5 and so using (1.61) and (1.10), the last expression
becomes less than

1
g(11+/21,0, 2)
s #B(O ) ZGBX(O:?J)

< 16—_— Y g(11v21,0,2)
(0 2l) 2eB(0,21)

16
<=2__- 2(11v/21,0, 2)
s #B(O 21) Z;T;IO)

/\

(1.75)

1
cB 1 v savao,2).
s #B(0,21) ,. 1, 400.2)<21

The first term in the last expression is a finite sum and therefore less than
const(#B(0,21))"1g(11v/21,0,0),

which remains finite for I — oo thanks to (1.65) and (1.70).
To estimate the second term we remark that |S H | < V2(11/21+1) < 241,

so using (1.65), (1.70) and I > Iy we see that if |2| > lo,

(1.76) g(11v21,2,0) = E Ada(Sm )1-a(2)
.77 . < ;(log(24l) —log |z|) + 27
2 (25l>
< — log
12|

since we can assume that e”” < 25/24. Therefore the second term in the last
line of (1.75) is less than

16 1 251 k (251 )
- 1 —— ) < const
s #B(0,2) ,03(:0,2)52, g(l |) Z(21)2 08

since the cardinality of {z: % = d(0,2)} grows linearly with k. The last ex-
pression is a Riemann sum convergent to the finite integral

1
const/ xlog<§) dx < o0
0 2x
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and therefore uniformly bounded by some constant. We obtain sup,.; I;(n) <
oo and our claim follows by (1.63).
We now treat the case of transient random walk (d > 3): Using (1.61) we

obtain

1.7 inf  inf 10Vdl ' '
(178)  inf inf  g( 0vdl, x, ) >ipf inf g(8vdl, 2,0)

since for y € B(0,2l) we have B(0,8vdl) c B(—y,10+/dl). For transient
random walk the free Green’s function g(x,y) exists and we have (see [8],
Proposition 1.5.8)

(1.79) glu,x,y) = g(x,y) — Ex[g(Sgo,y)].

The asymptotic behavior of g(-,-) is well known; we have, in fact (see [8],
Theorem 1.5.4),

(1.80) g(0,2) ~aqlz/*?¢ as|z| > oo,
ag being a constant depending only on dimension. So there is a number [

such that for |z| > I,

9 2-d 11 2-d
(1.81) 10aozlzl sg(O,Z)sloadIzI .

By the same argument as in (1.71) it is enough to look at the case I > [y. As
in (1.72) we have

(1.82) inf inf g(8Vdl, z,0)> 0.
I>1y zeB(0,lp)

Using (1.79) and (1.81) we have, for [ > [,

(1.83) inf g(8Vdl,z,0)> iad[9(4l«/3)2_d —11(8IV/d)?* 4] > kg 121,
2eB(0,41) . 10
|2|>lo

where kg = (1/10)ag[9(4/d)2¢ - 11(8v/d)?~¢] > 0. Our claim will follow if
we show that there is a constant k45 > 0, such that for [ > [,

(1.84) sup Cap,g g (A) > kgl 2.
Ae.Ml3

We use the same strategy as in the recurrent case. We pick A € &7 ; and let u
be the discrete uniform distribution on A. Then we have for the energy

Ii(p)=(#A4)7% Y g(10Vdl,x,y)

x,yeA

<#A)2 Y glx, ).

x,y€A

(1.85)
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Assuming [y > 5 we see by (1.10) and and (1.81) that the last expression is
less than

1
8_14—d___—_. Z g(O’ z)
#B(0,20) , zoan

< const ¢ Z g(0, z) + const I ~¢ Z |z27¢.

2eB(0,ly) 253(0,21)
|z|>1o

Since the cardinality of the set {z € Z%, & = d(0,z)} grows with % as a
polynomial of degree d — 1, the right-hand side of the last inequality is less
than

21

(1.86) const [ ¢ Z E2-4pd-1 < congst [27¢
k=1

and by (1.63) our claim (1.84) is established. O

The next lemma justifies the choice of r in (1.35).

LEMMA 1.13. Let M be an arbitrary positive number. Then for every 8 > 0
there is r > 0 such that

(1.87) sup Eg[exp(MHf/;)] <1+p.

>0

PROOF. Since H 5 ~d rHY VT (1.87) is equivalent to
(1.88) sup Eg[exp(MrH{)] <1+ 8
&>0

for r sufficiently small. Observe that for r small enough we have

(1.89) sup Ej[exp(MrH{)]<1+pB

l<e<oo
since one exits after one jump. Therefore it is enough to show that for suffi-
ciently small r we have

(1.90) sup E[exp(MrHS)] <1+ B.

O<e<1

It is enough to treat the one-dimensional case. Then the generator of X¢ is
—A,, and for smooth functions f: R — R we have [see (1.30)]

1 1
Dof(x) =1 [0 [ f'(x — &+ su + ev) du dv.
, 0
We choose f(x) ;= cos(mx/9). Let g: R — R be a smooth function such that:

(i) g(x) = f(x) on the interval [-3,3].
(i) g(x)> 1 on R.
(iii) g is constant outside [—5,5].
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We know (see [7]) that M, := g(X?) exp{— [i A.8/g(X?)ds} is a martingale.
For the stopped martingale we have

1 1 pHiAt 72
Mgen > = -[ T
since for 0 < £ < 1 and |x| < 1+ £ we have g(x) > % and

1 72
> .,
-2 81

—g8"(x — e+ eu + ev)

(1.91) in
u,0e[0,1] g(x)

By the optional sampling theorem we have
1= E°[Minn:]

2

1
> E8[§ exp{ 162(Hf A t)}]

e . P°[HS > t]

Z

DN =

with ¢ := 72/162. Consequently
Eglexp(MrH?)] =1+ /0 ” Mrexp(Mrs)P°[HE > s]ds
<1+ /Ooo Mrexp(Mrs)2exp(—cs)ds.
The last expression converges to 1 as r — 0, and this yields our claim. O
2. Application to a trapping problem.

2.1. Definitions and statement of results. We shall now apply the results of
Section 1 to the trapping problem described in the Introduction. Our simple
random walk (S;);>o will now move among random killing obstacles which
are sites (resp., bonds) of the d-dimensional lattice. We assume that each site
(resp., bond) has the same probability p to be an obstacle, independently of the
other sites (resp., bonds). More formally, the law of the obstacle configuration
in the site case is described by the product measure P := /.L®Zd on!Q = {0,1}2*
(with the product o-algebra), where u is the Bernoulli probability measure on
{0,1} with u(1) = p and u(0) =1 — p. In the edge case we denote by P, the
analogous measure on {0, 1},

We denote the entrance time of S, into the obstacle set by T and T',, re-

, spectively. We also introduce R; (resp., R}), the number of distinct sites (resp.,
bonds) visited by the random walk up to time ¢. Finally we define v > 0 via

@.1) p=1-e".

Our main result is the following theorem.
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THEOREM 2.1. We have
lim ¢~%@+2) 1og P, @ Po[ T, > ¢]

(22) t—>o00
= tlim t=4/@+2 Jog Eo[exp(—vR})] = —c.(d,v),
lim t 4@+ ogP @ Po[T > ¢t]
(2.3) o
= lim t=4/(@+2) Jog Eolexp(—vRy)] = —c(d, v),
where
(2.4) c(d,v) =iI(}f{V|U|+/\(U)},
(2.5) c.(d,v) =ir(}f{dv|U| + A(U)}.

In both cases U runs over all open bounded subsets of R* with |9U| = 0 and
A(U) stands for the principal Dirichlet eigenvalue of —1/2dA in U.

Before giving the proof, we reformulate our results in a scaled form which
is more comfortable to handle. We adopt t1/(@+2 and #*(4+2) as new space
and time units. So we have to study a random walk on ¢~1/(4+2) Z4 yntil time
s = t4/(d+2) Let us introduce & := ¢~/(@+2) and denote by P¢ the law of the
rescaled process (i.e., we use the notation of Section 1) and by P° the law of
the corresponding obstacle configuration on £Z¢. So we have to show

(2.6) lim sllog P* ® P§[T > s] = —c(d,v),
2.7 lim sllog P2 ® P{[T, > s] = —c.(d,v).

2.2. The lower bound. We start with the lower bound part of the proof.
Let a > 0 and let B, be the Euclidean ball {x € R%: |x| < a}. Then we have

P°® P[T > s]= (#B,)™' Y. P°® P5[T > s]
zeB}

> (#°B,)™" ) Pi[Ts, > s]P°[N(B,) = 0]

z€B;

(2.8)

and for edge obstacles we obtain the same lower bound with P°[ N(B,) = 0]
replaced by PZ[ N.(B,) = 0], where N(B,) and N.(B,), respectively, denote
the number of obstacles in B,. We now consider L2(BZ, £9#¢) and the inner
product

29 (f,8)s =62 Y F(2)8(2).

zeBg

Observe that this inner product is different from that used in Section 1. Using
the semigroup P; := Pf" associated with the random walk killed outside of
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B, we obtain

—-d
P ® PE[T > s] > —— exp(—v#° Bo(P;1,1),
#B,
= exp(—v#°B,) Y (Pf,1)% exp(—sA?)
#B, .
-d
> exp(—v#° B,) exp(—sA§)(®F, 1)
#B,
-d
> #B. exp(—v#° B,) exp(—sAf).

Here ®¢ stands for the ith normalized eigenfunction of the generator of P,
and A{ stands for the corresponding eigenvalue. In the last inequality we have
used that ®§ > 0 and therefore

(2.10) (@1, 1) = 197136 = 1T ll2;e = 1.

In the edge case we obtain, similarly,

-d
exp(—v#. B, ) exp(—sAj).

&
(2.11) P ® P§[T, > s] > ¥ B,

We now need a comparison of the counting measure with the Euclidean vol-
ume. For z € B we set C, := [[%[2i,2; + ¢] and C := Ug,nps0 C2- Then
B,cCcB,,, /;and we have

#B, <& UCl <& %B,,, /51 and # B, <de?|C|<ds B, /4l

Therefore we obtain

-d

(2.12) P* ® P[T > s] > #iB exp{—(vs|B,, ,/al +sA°)},
. a

-d
(2.13) P* ® Pi[T, > s] > #iBa exp{—(vsd|B,,, /gl + 1)}
We shall prove [see (2.39) in Section 2.4] that
(2.14) limsup A°(B,) < A(Bg).

e—0

Since the infimum in (2.4) is attained if U is a béll, (2.12) and (2.13) together
with (2.14) imply the lower bound.

2.3. The upper bound. We now prove the upper bound in several steps.
We shall state our claims in the site case notation without mentioning each
time that in the bond case one has to replace c by c, and P by P,. The proofs
are of course given for both cases.
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With the help of Proposition 1.7 we set 7 := (—N[s], N[s])¢, where N is
a number large enough so that

(2.15) limsupstlog P§[Ts < s] < —c(d,v)— 1.

§—>00
We denote by  the set (—N[s]— 1, N[s]+ 1)¢. As already mentioned in the
Introduction, we derive the upper bound via the following inequality, which
holds for any positive number ny:

P*® Py[T > s]
(2.16) < Pi[Ty <s]+P°QP[TATy >s; | NI | <no]
+P°[l/ NG| > nol.

Thanks to (2.15), the first term is negligible for our purpose. The second term
will be estimated by the enlargement technique developed in Section 1 and we
shall use our covering Lemma 1.1 to estimate the third term. We begin with
the following lemma.

LEMMA 2.2.
(217 VYr>0, limsup limsup limsups 'logP*[|% N.J | > no] = —o0.
ng—00 b— 00 §—>00
80

PROOF. We use the notation of Section 1 and denote by U, U m) the com-
plement of all closed subboxes in C,, where an obstacle (a good obstacle) falls.
Then we have by Lemma 1.1,

(2.18) # U, < #°Up + 5#°Chp.

Therefore we see that

2.19) {C,, is a clearing} = {#°U,, > 4~ %#°B(0,r)}
 C{#°Un 247 B(0,r) - 5#°Cn}.

It now follows that P°[|.&/ N T | > no] is smaller than

#(choices of n( distinct boxes in )
(2.20) _
x 11»8[ () {#Um > 44°B(0,r) — a#scm}],
me.# .

where .# is a subset of [—-N[s] — 1, N[s]]¢ with n, elements. For each m
the number of possibilities for U, is at most 2("/¢-D+1" Therefore the
expression above is less than
(221)  (2Ns+2)dn [2<sl"’/<b-1>+1>‘i sup sup PIN(Up) = O]]”",

med Up

where, for fixed m € .#, U,, runs over the complement of union of subboxes in
the interior of C,, with volume bigger than 4-¢#¢B(0,r) — 6#°C,,. In the edge
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case we have the same upper bound with N replaced by N,. We now have in
the site case
limsup s tlogP’[|&/ N T | > no]

§—>00

< (log2)ng(b—1)"% — ligng)lf vs'ng(47¢#° B(0,r) — S sup #Cp).
- m

Observe that there is a positive constant %;(d) such that #°B(0,r) > klrds‘d
and we have sup,, #°C,, < %a‘d for £ small enough. Using s~! = ¢¢ we obtain

limsup limsup limsupstlogP°[|/ N | > no]
no—> 0o b—o0 §—00
60

< limsup limsup(log2)ny(b—1)"% — vno(4_drdk1 — §> = —00
ng—o0  booo 2
6—0

To treat the edge case we have to compare #:U,, with #°U,,. In a sufficiently
large box we have approximately d times more bonds than sites. As we shall
see later [see (2.35)], we have, in fact,

b—3 2d
(2.22) #U, > (——b—) d(#U,, — dbs'™),

where the last term in the bracket is a correction coming from the “last layer of
subboxes.” We mention at this point that for the following calculation a much
weaker estimate would be enough, but since we need this strong version later,
we also use it now. We now see by (2.22) that, for b big enough,

(2.23) P[N.(Un) = 0] = exp{—v#Un} < exp{—jvd(#°U,, — dbs'"%)}.
Similarly as in the site case we obtain

limsup s~ ' log P*[ |/ N .J7| > no]

§—>00
< (log2)no(b—1)~¢
— lim glf tvdsng(4?#°B(0,r) — §sup#°C,, — db&'™9)
S—> m

and by the same argument as above, our claim in the edge case also follows. O

The next lemma enables us to control the second term at the r.h.s. of (2.16).
Using the notation introduced in Section 1, we write T for TA T 5.

LEMMA 2.3.
limsup limsup limsup limsup{s~!
r—0 nog—oo b—oo s—>00
(2.24) 50

xlogP* ® P§[T > s, | NT| < nol} < —c(d,v).
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PROOF. We denote the limit appearing in (2.24) by lim. We pick M > 0
and p > 0. Then we have

lims™ 1logIP"9®P0[T >s, | NT|<ng]
=lims1ogE*[P§[T > s]; | NT| < no]
<Tims ' log E*[exp(—(A*(®) A M — p). s)

x sup E§[exp((A°(0p) A M — p). T)];

| NT| < nol

< fim s~ log(sup E§[exp((A°(0p) A M — p), T)])

+lim s log E°[exp(—(A°(O3) A M — p); 8); |/ N T| < no].

Using Theorem 1.4 we see that the first expression is zero, so it remains to
show

limsup lim s~ log E*[exp(—(A*(3) A M — p); s); |/ NT| < no]
p—>0
M—o00

—c(d,v) (site case),
- { —c.(d,v) (edge case).

(2.25)

For simplicity we set lim for the limit appearing in (2.25). We now introduce
the set D := 7 N (Ug,ny 40 C,.)°. That is, D is obtained by deleting in & all
closed boxes C,, which are not neighbors of 7. We also define U (resp., U) as
the complement in D of the union over m € Z¢ of closed subboxes intersecting
the interior of C,, and containing a point (resp., a good point) of C,,. We then
have, for a suitable constant ¢(d) > 0,

(2.26) #.0< Y #.Un+noc(d)e'™,
Cunot #D

where the second term arises because of the fact that the sites on the boundary
of C,, never belong to U ,; however, they could eventually belong to U. We now
have O, c U, |%/ N I | < ng and, thanks to Lemma 1.1,

(2.27) UcUcD, #U - < #U + 6n¢3% sup#°C,,, + noc(d) Pl
m

We see that the number of possibilities for D grows at most polynomially in s
for fixed ng, and for fixed D the number of possibilities for U and U is smaller
than 22703°(s"/(0-1+1? Observe that A¢(®,) > A*(U). Thus (2.25) will follow
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if we show

lim sup {—(A*(U)A M — p); + s logP*(N(U) = 0)}
(2.28) u,0,D
S —C‘(d, V),

—~

lim sup {~(A°(0) A M — p); + s L log P*(N,(U) = 0)}
(2.29) U,U,D
S —C*(d, V)’
where U, U and D satisfy (2.27). Using the fact that
P?(N(U) =0) = exp(—v#°U)

(2.30) < exp{—v(#sff — 83%ny sup#°C,, — noc(d)el_d)},
m
the left-hand side of (2.28) is less than

fim sup {—(AS(U) AM—p)s
U,U,D

- vs'l(#sff - §5n03ds - noc(d)sl'l/d)}

@2.31) _ 2
<lim sup{-A*(U)A M — vs 1§ U}
UcD
<lim sup{—((A*(0) +vs #°U) A M)},
UcD

where the supremum is taken over all open subsets lz C D obtained by taking
the complement in D of certain closed subboxes in D.

To treat the edge case we need a comparison of #(U) with #°(U). For each
box C,, we consider the set C ,ln, obtained by taking the union of the interior of
those closed subboxes of C,, which do not belong to the “last layer” of subboxes.
We then set

(2.32) uvl=Un{ C,.

meZd

So, U! is the finite union of disjoint open subboxes W; of size (b — 1). For
each subbox W; we have '

. d
(2.33) #(W,) ='# (Wi nU (%sej + aZd>>.
. j=1

Using (1.8) we see that
(2.34) ([6]1-2)% <#W; <[b]%,  ([b]—2)% <#W,; <[b]".
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Using these estimates and (2.33), we obtain
#U > #:U;
= Z #W
i

[6] -2\

=27 ) 7

1

(2.35) (6] —2\* —
22( %] ) W

b—3\*
. (T) d(#°U — #° (last layer))

b-3 2 dy 1-d
> (=5 ) d(#U - dno3%s').

Using (2.35) we obtain for U and U as in (2.27),
P.(N.(U)=0)

(%
< expy—v

b—3\% .
5exp{—v< 5 ) d(#BU—BnOSdsup#"Cm

) d(#U —dng 3db81_d)}

—dng3%bel~d — noc(d)sl‘d)}
3 b_ 3\
< exp{—vd#sU +vdsup#°C,, <1 - (-—b—> (1- 5n03d))
m
+vdnge~%(db3? + c(d))}.

By similar manipulations as in the site case we see that the left-hand side of
(2.29) is smaller than

(2.36) fim sup{—A°(T) — vds ' #0}.
UcD

To establish (2.28) and (2.29) it remains to prove that expression (2.31) is
smaller than —c(d, v). For this observe that for small & we have

(2.37) A(0)= inf AT ND)),
' D,NU#D

where the D; are the connected components of D. By construction each D;
is contained in a cubic box I' of size 2 - 3%n¢ and by Lemma 2.5 in the next
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subsection we have
(2.38) lim inf inf[/\s(ff) + &4v#°U] > inf [AMU)+»|U|],
e>0  QOcr UcR?

|oU|=0

and this yields our claim. O

Combining (2.16) and the estimates (2.15), (2.17) and (2.24) we immediately
obtain the desired upper bound.

2.4. Two approximation lemmas. We now prove the two lemmas which
we have used to compare expressions involving eigenvalues of the discrete
Laplacian to the corresponding continuous quantities.

LEMMA 2.4.
(2.39) lim sup A%(B,) < A(By,).

e—>0

PROOF. Let L® be the generator of P/. Then we have
A*(Bg) =inf{(L°f,f)s; supp f C B, lIfllze = 1}

Let f > 0 be the normalized [w.r.t. the L2(R?, dx) norm] first Dirichlet eigen-
function of —(1/(2d))A in B, extended by 0 outside B,. We have

(2.40) (Lof, e = 336 T 3 (Fla+ee) = F(2)P.
x€B; ecz¢
le|l=1

It is classical that f has first derivatives on B, which have a continuous
extension to B,. Thus by the mean value theorem we have numbers 7., 0 <
ne < 1, such that

1
(LEF, f)e = Ead Yo Y (V(x +mege) - e)?
: xeBﬁ_i ecZd
le|=1

+ Ll S Y (fa o) - F2)2
4d xeBE\B:_, ecZ?
le|=1

Using the Lipschitz continuity of / we see that the second term goes to zero
for £ — 0. The first term is a convergent Riemann sum, so we see that

: & _ i 2 __
(2.41) limsup(L*f, f)e = g [, 1V/1* = A(Ba)

.and this yields our claim since A¢(B;) < (Lsf,f)g/llfllg;s and ||fllg;e = IIfll =
lase— 0. O

A little bit more care is needed in the proof of the next lemma.
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LEMMA 2.5. Let T := B(0,3%no + 1). Then we have

limsup inf[A*(0) + sv#°U]
e—0 Ucrl

(2.42) = inf [A(U)+vIUI] with the notation of (2.3)
CR
|9U|=0
PrROOF. Let C, := infy [A%( U) + &%v#¢U]. There is nothing to prove if

the left member of (2.42) is infinite. Otherwise there is a sequence &, in R*
with &, — 0 and a sequence of nonnegative functions f, defined on &, Z? with

(243)  VneN, |fali,=e2) f2(z)=1, supp fnCT,
z

@40) Sup(L* o fu)e, = sup 6072 2 3 [falzte) = Fal®)F =7y <00,

lel=€n
xel
(2.45) lim iorgf{veff#s( fn>0)+ (L fn,fn)s,} =lim iglf C,.

We now construct a new sequence o of functions defined on R? as follows. We
let f, = fn on £,Z% and f, is defined to be constant on each cube I"[?zl[xi -
En/2,%i +€n/2), x € £, Z%. With no loss of generality the f, are all supported
in I' := (2I')°. _ B

We first show that (£, )nen is a relatively compact subset of L2(I"). For this
it is enough to show (see [1], Theorem 2.21) that V n > 0 3 o > 0 such that

(246) VheR? |h<o, sup fRd oz +R) = Fu(x)2dx < 7.

It is enough to pick A = ue;. For notational convenience we treat e;. We can
also safely assume u > 0. We set u = le, +7r,0>0,0 <r < &,. Then we have

IFn(x+h) — Fu(®)l2
l ~
= Z | fn(x 4+ kener) — fn(x + (k= L)ener)ll2
k=1

+ 1 fn(x +R) = folx+h—re))ls
and by translation invariance this is equal to

¥

- ’ . 1/2
. l(/:|fn(x+el'9n)_fn(x)|2dx)
r
(2.47)

3 . 172
+ (/ Fu) = e — re1>|2dx) .
T
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The first term is smaller than

1/2
1(8‘3 > Ifn(2+618n)—fn(z)|2) < len/4dy
(2.48) S

< |h|\/4dy sincel < |h|/&n.
The second term is smaller than /4 dyr, so we obtain

@49)  sup [ Ifulxth) = Fu@)Pdx < (151 + VikDVAdy

and this is arbitrarily small if |4| is small. This proves (2.46). 3
It now follows Ehat there is a subsequence, which we also denote by f,
converging in L%(T') to a function f . Moreover, f € H 1(R?) and

(2.50) é’(fﬂf)=%f|vf~|2dxsv.

Indeed, by the same argument as before we have
13 7 7 2 2
(2.51) 20 2 [ e+ enei) = () dx < ey

and therefore the Fourier transforms f, of fu (resp., f, the Fourier transform
of f) satisfy

13 -2 . 207 (2112
(2.52) %;Ld &, °lexp(ienx;) — 1°|fn(x)|"dx <y

angl\ by Fatou’s lemma applied to a subsequence Fn , almost surely converging
to 7,

13 2 7 )2
(2.53) 2d 2 fp (P dx <7,

which yields (2.50). _
Thus, by (2.50) and the lower semicontinuity on L%(T') of g — [1{z-0)l it
follows that

(2.54) v{f > 0N +&(F,f) < lim inf C,.

Now the claim of the lemma can be obtained similarly as in [12, Lemma 3.5].
We give the argument for the reader’s convenience. Pick o > 0 with Hf =
a}| = 0 and let g5 be a sequence of functions in C* with compact support in
" and gz — f in H!. Then we have, by a “portmanteau” type technique,

1
: 1 Vo,
Jim g > ol gg [, IVenl'ds

(2.55)

- 1 -
=v{f>all+— . |VF?dx.
f } 2d {f>a} fl
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Thus we see, using Sard’s theorem, that for any 7 > 0 there exist a function
g € C®(T') and a > 0, such that g = « is a regular value of g and

1
(2.56) vi{g> a}l+— IVg2dx <liminf C, + 7,
2d {g>a} e—0
(2.57) / —a)?dx > .
{g>a}(g ) 1+m

Let V be the smooth open set {g > a} and & := u(g — a)ly, where u is
choosen such that ||A]|zz = 1. Then we have |VA|? = u?|Vg|%, h € H}(V) and
from (2.56),

1 1 9 ..
(2.58) v|V|+ %/V —E|Vh| dx < hl;lllglfcg + 7.

Since 1 < 1/(1+ n) < 1/u? it follows that
(2.59) [VIVI + &(h, )] < (liminf C, +7)(1+ 7).

Using the fact that £(h,h) > A(V), we obtain

(2.60) igf(wf]l + MO)) < [#IVI+ MV)]
(2.61) < (limi(r)1f C,+n)(1+n).

Since n was arbitrary, our claim (2.42) follows. O

We remark at this point for further use (not in this paper) that by the same
technique we also obtain the following result:

LEMMA 2.6. For all positive constants c1, cy we have

(2.62) lllgl_gglf sd;PUfscl AS(U) > 1r|1<f;1 AMV) = R2’

diam(U)<cy

where wgR® = c¢;. Here wq and Ay stand, respectively, for the volume of the
unit ball in R and the principal Dirichlet eigenvalue of —(1/2d)A in this ball.

PROOF. In the same way as in the proof of the preceding lemma, we can
.construct a function f (the condition on the diameter of U is needed for the
. relative compactness of the approximating sequence) with unit L?(dx) norm
and with |{f > 0}| < ¢1, such that the left member of (2.62) is bigger than
&(f, f). Using the same approximation technique as at the end of the proof
of Lemma 2.5, we obtain (2.62). O
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2.5. Some further comments. Let us give some comments on the result
proved in Theorem 2.1. The variational problem (2.4) has a well known so-
lution, in fact, Donsker and Varadhan [5] showed, using the isoperimetric
inequality, that the infimum is attained when U is a ball of radius Ry =
((2/d)Ag/vwg)Y(@*2) and its value is

d/(d+2)
(2.63) o(d,v) = (vaq)2/@n (12 (22
2 d
Consequently we have
(2.64) c.(d,v) = c(d,vd) = d¥*Dc(d,v).

Theorem 2.1 can be interpreted as an estimate on the long time survival
probability of the random walk among random obstacles or as an estimate
of the Laplace transform of the number of distinct sites (resp., bonds) visited
by the random walk. Let us give some more comments on this point. For
simplicity we assume d > 3. The asymptotic behavior of R; for large ¢ is well
known (see [6]). We have, in fact,

1
. _1 - =
(2.65) tll)rgt E[R;] = 2(0.0)
and so by the subadditive ergodic theorem (see [9], page 277)
R, 1
. — .8. in L!
(2.66) ; — 2(0.0) a.s. and in as t — oo,

and for bonds,
R; 1

By  andin Ll as £ s oo,
t  (1/2d)(g(0,0) + g(0,en)) +1 O EGm A asETm e

(2.67)

This result is certainly also classical; however, we did not find a precise refer-
ence and we sketch its proof for the reader’s convenience further below. Using
(2.66) and (2.67) we see that the ratio R} /R, converges almost surely to the
constant

{ = £(0,0)
"~ (1/(2d))(g(0,0) + g(0,1)) + 1’

which tends to 1 as d — oco. Naively one could expect that from (2.1) we can
obtain the analogous result for the bonds by replacing v by {v, but as (2.64)
shows, this is not the case.

Let us finally describe how (2.67) can be obtained. The replacement of con-
tinuous time by discrete time random walk is routine. Let R%, n € N, denote
the number of distinct bonds visited by the discrete time random walk be-
tween time 0 and n and let T’J*. denote the hitting time of the bond (0,0 + e;),
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e; being the jth basis vector of the canonical basis of R?. Then we can easily
see that

Zu”E[R*]— > ZE [gu”I{T;Sn}]

(2.68) xeZd j=1
- ¥ S E{u]
xeZd j= —u
We set
o0
(2.69) g, j(%,0) = Ex[ > unl{sn»v(o,e,)}]-
n=1

Using the strong Markov property at the time T we obtain

(2.70) g5 ;(x,0) = E.[u"i](g} ;(0,0) +1).
From (2.68) and (2.70) we deduce that

Z“nE[R*]_ d(1l— u)ZZ (0 0)+1

n= j=1 guj

and by Karamata’s Tauberian theorem for power series (see [2], Corol-
lary 1.7.3), we have

1

FLE;] nzl &1 ;(0, 0) +1~ " 1/2d(g(0,0)+ g0, 1) + 1’

So (2.67) follows by by the subadditive ergodic theorem.
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