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PERCOLATION OF ARBITRARY WORDS IN {0,1}"

By ITAI BENJAMINI! AND HARRY KESTEN?

Cornell University

Let & be a (possibly directed) locally finite graph with countably infi-
nite vertex set 7. Let {X(v): v € 7} be an i.i.d. family of random variables
with P{X(v) = 1} = 1 — P{X(v) = 0} = p. Finally, let ¢ = (¢1,&2,...)
be a generic element of {0,1}"; such a ¢ is called a word. We say that
the word ¢ is seen from the vertex v if there exists a self-avoiding path
(v,v1,vg,...) on & starting at v and such that X (v,) = ¢, for i > 1. The
traditional problem in (site) percolation is whether P{(1,1,1,...) is seen
from v} > 0. So-called A B—percolation occurs if P{(1,0,1,0,1,0,...) is seen
from v} > 0. Here we investigate (a) whether P{all words are seen from
v} > 0 (for a fixed v) and (b) whether P{all words are seen from some
v} = 1. We show that both answers are positive if & = Z%, or even Z‘i with
all edges oriented in the “positive direction,” when d is sufficiently large.
We show that on the oriented Zi the answer to (a) is negative, but we

do not know the answer to (b) on Zi. Various graphs « are constructed
(almost all of them trees) for which the set of words ¢ which can be seen
from a given v (or from some v) is large, even though it is w.p.1 not the set
of all words.

1. Introduction. The traditional problem of (site) percolation on a count-
ably infinite, possibly directed, graph & can be formulated as follows. Let 7
be the vertex set of ; assume 7 is countably infinite. Assign independently
to each v € 7 a random variable X(v), which takes the value 1 or 0 with
probability p or 1 — p, respectively. Denote by P, the corresponding measure
on the space Q := {0,1}”, in which the configurations {X(v): v € 7'} take
their value. Hence P, is just the product over 7 of the measures which assign
masses p and 1 — p to the points 1 and 0, respectively. We denote a typical
point of Q) by w, and sometimes write X (v, w) for X(v) to indicate the depen-
dence of X(v) on the configuration. The event {X(v) = 1} ({X(v) = 0}) is
often interpreted as “v is oecupied” (“v is vacant,” respectively). A path on &
is a sequence (v1,vz,...) of vertices in 7 such that v; # v; for i # j and such
that there is an edge of & between v; and v;;1; in the directed case, this edge
has to be oriented from v; to v;;;. On a number of occasions we shall take for
& a rooted tree. Throughout we consider such a tree as being oriented away
from the root; that is, in any path (v1,vs,...) on such a tree, v;;1 has to be
one step further away from the root than v;. Note also that by our definition a
path on any graph is automatically self-avoiding throughout this paper. Now
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define the so—called percolation probability:

6(p,v) = Pp{3 infinite path (v, vy, vg,...) which starts

(L.1) at v and has all v; with i > 1 occupied}.

The first question in percolation theory was “When is 6(p,v) > 0?” In many
cases of interest it is easy to see from the FKG inequality that the answer is
independent of v [compare Kesten (1982), Section 4.1]. Furthermore, it is also
known in many cases that 6(p,v) > 0 is equivalent to

(1.2) p(p) := Pp{3 some path (vy,vg,...) on & with all vertices occupied}

Mai and Halley (1980) introduced A B—percolation as a model for certain
physical phenomena. Basically this investigates whether

P,{3 some path (vy,vs,...) on & with
X(vzi_l) =1, X(v2i) =0foralli> 1}
equals 1 or not. For some graphs such alternating sequences of ones and zeroes
do occur (for certain p), and for others they occur only with probability zero
(no matter what p is); see Wierman (1989) and its references and Wierman
and Appel (1987).

In this paper we study the occurrence or nonoccurrence of paths (v1, v, .. .)
with X(v;) = &, i > 1, for any prescribed sequence {£;};>1 € {0,1}N. (The
above-mentioned cases correspond to &; = 1 for all i and to &;-1 =1, é2; =0,
i > 1, respectively.) In particular we wish to know when the collection of
sequences ¢ which do occur is large in some sense. To make this more precise
we introduce some notation. Let

B =1{0,1}".

A generic element of E is denoted by & = (&1, £2,...) and is called a word. We
write 1 for the special word (1,1,...). We say that the word ¢ is seen from the
vertex v in the configuration o if there exists a path (v, vy, vg,...) on &, starting
from v and such that X (v;, w) = &;, i > 1. We shall also say on occasion that
the finite sequence (£1,...,&,) is seen along the path (v,v1,ve,...,Un) With
n<m<oo,if X(v;) = &, 1 <i < n. Note that X(v), at the initial point v,
plays no role here; the £;’s have to equal X (v;) for i > 1 only. We write

S(v) =8S(v,w)

= collection of words which are seen
from v (in the configuration w).

More generally, for distinct vertices vy, ..., Vs,

’ k
S(Ul, U2,..., Uk, w) = U S(Ui,a))
1

= collection of words which are seen
from at least one v;, 1<j<kt
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We also consider the collection of words seen from some vertex in &,
Seo = Soo(w) := U S(v, w).

ve?

Clearly the largest these random sets can be is all of Z. Dekking (1989) seems
to have been the first one to investigate when S(v) can equal all of E. Specif-
ically, Dekking asked when all words can be seen from the root of a regular
tree. Our principal results of a positive nature state that, somewhat surpris-
ingly, this also occurs when ¢ = Z? (undirected) for large d, or even when
& = Z‘i with all edges of Zﬁ oriented in the positive direction (that is, there
is a directed edge from v only to the vertices v+ej, 1 < j < d, where e, is the
Jth coordinate vector).

Before we can tackle these questions we derive some auxiliary results in
Section 2 which show that various events of interest are measurable. Let

% = o-field generated by {X(v,-): ve 7}

(4 is a o-field of subsets of (). Then the most important of the measurability
results is as follows.

PROPOSITION 2. If < is locally finite, then each of the events {S(v) = B},
{S(v1,...,vr) = B} and {Se = E} belongs to &.

(This is nontrivial only for {S., = E}.)

Even though all the problems below are meaningful for any value of p, and
some of the proofs even go through (with minor modifications) for general p,
we restrict ourselves to p = % This seems a natural restriction—it creates a
symmetry between the zeroes and ones and therefore rules out that a certain
word is not seen for the trivial reasons that its frequency of ones or zeroes is
too high. To simplify the notation we shall therefore simply write P instead of
Py,3. Throughout the paper all probabilities concerning the X (v) are therefore
calculated at p = %

Here is our most specific result.

THEOREM 1. Let & = Z‘i with all edges oriented in the positive direction,
as described above. Then for d > 10,

(1.3) P{Sw=E}=1,
and for d > 40,
(1.4) P{S(v) = E for some v} = 1

Thus, in Zﬁ with d > 40 there is a vertex from which one sees all words,
. and there is a strictly positive ‘probability that one sees all words from the
origin. Note that we do not claim that 10 and 40 are the best bounds on d for
(1.3) and (1.4), respectively. Presumably, (1.3) holds even for some d < 10, but
our proof is not sharp enough to decide this. A similar comment applies to the
restrictions we put on d in other places.
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Since it is more difficult to see a word on the oriented Zi than on the
undirected Z¢, the following corollary is immediate.

COROLLARY 1. If & = Z2 with undirected edges, then (1.3) remains valid
for d > 10 and (1.4) remains valid for d > 40.

In the unoriented case we can say more about the set on which one sees
all words: For large d this can be a rather narrow “tube.” Specifically we shall
indicate in Section 4 a proof of the following theorem.

THEOREM 2. For d > 132 and & = Z% (unoriented),

P{3 path (0,v1,vs,...) in [—1,1]2 x Z%2, starting
(1.5) from the origin and with Zf=3 v;(£) increasing in
i and such that one sees all words from the origin

in the tube {w: |w — v;| <2 for some i}} > 0.

Here and in the sequel v( j) stands for the jth coordinate of v, |v| = Z‘{l v(2)
and f(i) is increasing means f(i + 1) > f(i).

We do not know whether (1.5) remains valid when & is Zd with positively

oriented edges and d large.
' It also follows from (1.3) (and Remark 1 in Section 2) that for each £, there
is a smallest d for which on & = Zd with positively oriented edges there exists
a k-tuple (v1,vs,...,v;) with

(1.6) P{S(v1,...,vp) =E}>0.

Denote this smallest d by d(k). Then by (1.4), d(k) < d(1) < 40. We know
little also about these d(k), but we do prove in Corollary 3 in Section 6 that

wn d(1) = 4,

or equivalently, that on the positively oriented Zi one does not see all words
from one point. We prove this together with some similar results for the reg-
ular 3—tree. If # = oriented regular 3—tree, then one does see all words from
two points, but not from a single point, that is,

(1.8a) P{S(v) = E for some v} =0
but
(1.8b) P{S(v1,v9) = E for some pair vy,ve} = 1.

We prove (1.8) in Section 6. In addition this section contains the construction
of trees on which, for given k&,

(1.9a) P{S(vy,...,v;) = E for some vy,...,0x} =0
- but
(1.9b) P{S(vi,...,vp41) = E for some (k& + 1)-tuple v1,...,v0p41} = 1.

Thus there are examples which separate the events in (1.9a) and (1.9b).
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Even if one does not see all words, that is, if P{S,, = E} = 0, it is possible
that S(vy,...,v) or Sy consists of “almost all” words in the following sense.
Let u = []3° mi be the product measure on = in which each factor u; on {0,1}
is given by

(1.10) wi({0}) = wi({1}) = 3.

(Thus under pu, the &; are ii.d. symmetric binomial variables.) For & = Z¢ or
Zi or a locally finite tree, it is not hard to see (compare proof of Proposition 3)
that for each ¢,

(1.11) p(€) := P{¢{ is seen from some v}

equals 0 or 1. We shall say that & percolates if p(&¢) = 1. We shall see in Section
2 that ¢ — p(£) is measurable with respect to the standard o—field % on B
generated by the cyclinder sets. We shall also see that for many graphs p(¢)
does not depend on any finite number of coordinates ¢4, .. ., £&,. On such graphs
p is a tail variable, and by Kolmogorov’s zero—one law,

(1.12) u{é: p(¢) =1} equals O or 1.

~ In the former (latter) case almost no word (respectively, almost all words)
percolate. We note that, by Fubini’s theorem applied to the indicator function
of the set A := {(&, w): £ is seen for some v in the configuration w}, we have

(13) e p(&) =1} = {(1’ according as P{u(Sw) = 1} = [‘1) :

[Note that A, and hence p(-) and S, are measurable with respect to the
appropriate o—algebras; see Proposition 1.] Another way to formulate the pre-
ceding dichotomy is by picking ¢ at random according to u and then to see
whether for this random &, p(¢) equals 0 or 1. If u{é: p(¢) = 1} = 0, then
“the random word does not percolate,” while if u{&: p(¢) =1} = 1, then “the
random word percolates (almost surely).” It seems difficult to decide which of
these two cases prevails. The problem is most striking for graphs for which
the critical probability for site percolation equals % For instance, if ¢ is the
triangular lattice, then at p = % ordinary percolation does not occur, that is,
the word 1 is not seen in ¢ [Kesten (1982), Section 3.3], but A B—percolation
does occur [Wierman and Appel (1987)]. Another example is bond percola-
tion on Z2. For bond percolation on 7% one considers a family X(e) of i.i.d.
random variables, where e runs through the edge—set of Z%. Again we take
P{X(e) =0} = P{X(e) =1} = % The meaning of “¢ is seen from v” now
should be that there exists a self-avoiding path (vy = v,v1,...) on 7%, start-
ing at v, such that X(edge between v;,_; and v;) = &;, i > 1. There is some
ambiguity, though, in whether we should require the path (vo,v1,...) to be
self-avoiding in the sense described above, or whether the path merely should
not use the same edge more than once (the latter is a weaker restriction). Here
we adopt the former requirement. Thus, when we discuss bond percolation on
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7%, we want words to be seen along paths which do not contain the same
vertex more than once.

Both for site percolation on the triangular lattice and bond percolation on
72 we know [cf. Kesten (1982), Section 3.3] that the word 1 = (1,1,...) is
w.p.1 not in S, so that

(1.14) P{S,=E}=0.
This leads to the following problem.

OPEN PROBLEM 1. For site percolation on the triangular lattice, or bond
percolation on Z2, does the random word percolate?

We note that there is some hope that the answer to this problem is affirma-
tive, because at p = % the word 1 is the least likely to percolate in the sense
that for any £ € E and any v,

(1.15) P{¢ is seen from v} > P{ the word 1 is seen from v}.

This follows by a simple modification of the proof of Proposition 3.1 in Wierman
(1989), which proves (1.15) for ¢ = (1,0,1,0,...). We note in passing that this
implies that if p.(Z¢, site) := critical probability for site percolation on 7% < %,
then

(1.16) P{u(Sy) =1} = 1.

By Campanino and Russo (1985) this therefore holds on 7% with d > 3, but
formally it does not imply that

(1.17) P{S=E}=1.

As a special case, we have the following problem:
OPEN PROBLEM 2. Does (1.17) hold when & = Z??

On the other side, it is a priori not clear that there exists any graph on
which (1.14) holds, but still the random word percolates, or

(1.18) P{u(Ss) =1, but Spc # 5} = 1.

In Section 7 we construct a tree for which (1.18) holds.

This separates percolation of the random word from percolation of all words.
On the other side one may also wish to separate percolation of the random
word from standard percolation, that is, percolation of the word 1. In Section
8 we construct a graph & for which

(1.19) P{u(Sx) =1, but 1 ¢ So} =1.

© Basically, Open Problem 1 asks whether (1.19) occurs for bond percolation on
Z? or site percolation on the triangular lattice.

Finally, we discuss in Section 5 what happens when £ is taken to be the
random family tree of a Bienaymé—Galton—Watson process [see Harris (1963),
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Section 6.2, or Jagers (1975), Section 1.2] for a description of such trees; they
are rooted ordered trees, sometimes also called planted plane trees. Let the
offspring distribution be given by

(1.20) pr = P{a given individual has % children}

and have mean and generating function
[ ¢] [e.¢]

(1.21) m=3Y kp, and f(z)=) ppz*,
1 0

respectively. The following result holds [when X (v) and &; take the values 0
or 1 again].

THEOREM 3. Let & be the random family tree of a Bienaymé—Galton—
Watson process. If m > 2, then & has with probability 1 the property

(1.22) P{S(v1,...,v;) = E for some k and vy,...,v;} = 1.

We are not aware of any closely related articles, other than the ones cited
above. Somewhat loosely related are Dekking (1991), Dekking and Pakes
(1991), Evans (1992), Lyons (1992) and Menshikov and Zuyev (1992). Dekking
and Dekking and Pakes give the necessary and sufficient condition for a ran-
dom Bienaymé-Galton—Watson tree to contain a full binary or a full b-ary
subtree. Evans investigated for a set B ¢ E® := {0,1,...,b6—1}N and & a
regular c—ary tree when

P{some word in B is seen} = P{S,, N B # J}

is zero or strictly positive. This is generalized by Lyons when  is a more
general tree. Menshikov and Zuyev investigate so—called p—percolation on Z¢
or on homogeneous trees. They consider, in the case when X(v) and ¢; again
take values in {0, 1}, whether one sees any words whose frequency of ones is
at least p. Thus, if

' L1
B(p) = [g: llmlnf;;gi > p},

then they discuss, for & = Z? or a homogeneous tree, for which values of p
P,{Sx N B(p) # I} > 0.

We summarize the different percolation versions which we considered in
Figure 1. The implications shown are all trivial except for the one marked (x).
This implication follows from (1.15) on & = Z¢, Zﬁ with positive orientation or
a locally finite tree. If P{1 is seen from v} > 0, then by (1.15), P{¢ is seen from
v} > 0 for all £. On the above graphs Proposition 3 shows that p(¢) = P{¢
is seen somewhere on &} = 1 for all ¢. The letters in parentheses refer to
the examples (listed below) which show that in general the arrow cannot be
reversed:
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All words (a) All words
seen from seen from a

one point | ——3» | finite number

of points
ris seen
rom one
* ; (b) point)

Almost all words almost all (c)
seen from (bg words seen )
one point son;ewhere

ong.

FI1G. 1. (a) The converse fails when & = regular 3-tree; see Section 6. (b) The converse fails for &
equal to the trees in Section 7 [see (7.5)~(7.7) and Remark 1. (c) The converse fails for the graph
of Section 8.

2. Measurability and zero-one laws. We first prove a simple measur-
ability result about the set of pairs of words and configurations such that the
former is seen in the latter (somewhere, or from a specific point). This will
guarantee that (1.12) and (1.13) are meaningful and justify the application of
Fubini’s theorem to go from one to the other. After that we use Baire’s category
theorem to prove the measurability of the events {S(v) = E} and {S. = E}
in Q.

Let £ and % be the o—fields in () and E, respectively, generated by the
cylinder sets. Define

A) = {(¢&,w) € E x Q: £ is seen from v in the configuration w}
and

A ={(§,0) € B x Q: §is seen somewhere on  in the configuration w}.

PROPOSITION 1. Let & be locally finite. Then, for each v, A(v) € F x AB.
Also A € & x AB.

PrROOF. Clearly

A= U A(U),
ve?
so that we only need to prove the first statement. Fix v and an (71,...,7,) €

{0,1}". Define

' Bu(n1,...,Mn) = Ba(n1,.. ., M3 0)

2.1) = {w € Q: T path (v,v1,...,0,) of R +1
vertices on ¢, which starts at v and
has X(v;) =n; for 1 <i <n}.
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Also let

(2.2) Co(m,...,mn) ={éeB: & =m;, 1<i<n}
[“the cylinder with base (71,...,m,)"]. Then

(2.3) A)= U Calni,...;m) x Ba(n1,...,Mn).

o (M1yesMn)

Clearly C,(n1,...,mn) € F. Also B,(n1,...,m,) € %, because there exist at
most finitely many paths (v,v1,...,v,) on & which start at v. The required
result is immediate from (2.3). O

We turn to the proof of Proposition 2 stated in the Introduction.

PROOF OF PROPOSITION 2. The fact that {S(v) = E} € # follows from
{S(v)=E =ﬂ ﬂ Bn("llvw,'rln)

in the notation of (2.1). A similar argument works for {S(vy,...,vz) = E} and
we therefore only need to prove that

(2.4) {Seo =E} € %.

To do this we apply the Baire category theorem [see Rudin (1987), Theo-
rem 5.6]. For fixed o, the set S(v) = {¢: £ is seen from v} is closed in E in
the product topology, which is also the topology induced by the metric

(2.5) d(g, &)=Y 27%¢&, - &l
1

Indeed, if €™ € S(v), n =1,2,...,and (™ — & as n — oo, then §§.n) = ¢; for
n sufficiently large. Moreover, because  is locally finite, there must for each
k be a path (v, v1, v, ..., v;) with distinct vertices such that X (v;) = fgn) =&,
1 < i < k, for infinitely many n. A standard selection argument then shows
the existence of an infinite path (v, v1,vs,...) such that X(v;) = &;,i > 1, so
that & € S(v). Thus S(v) is closed, as claimed.

Now if

Se=|J S(v) =E,
v

then, since = with the metric (2.5) is complete, one of the S(v) must contain
an open set, and in particular some C,(n1,...,7x). In the opposite direction,
C.(n1,...,mm) C S(v) shows that each word ¢ which begins with & = n;,
1 < i < n, is seen from v, no matter what &,.1,&n+2,... are. However, then
. "every word is seen from some vertex. Thus

2.6) Sw=Et=UU U {Culns,...,m) c S}

UV M Mn

(2.4) now follows easily. O



PERCOLATION OF ARBITRARY WORDS IN {0,1}" 1033

REMARK 1. Let & be locally finite. If all words are seen somewhere on <,
then from some point v a whole cylinder C,(n1,...,7,) is seen. [This is the
content of (2.6).] In turn this implies that all words are seen from the finite
set

{w: 3 a path (v,vy,...,v, = w) of (n + 1) vertices from v to w}
[since all continuations of (11,...,n,) have to be seen from this set]. Thus

{Se = E} = {all words are seen somewhere on &}
C {for some finite set {vy,...,v;}

all words are seen from vq,...,v;}

= U {S(U]_,...,Uk)=E}.
k,v1,...,Uk
The analogous statement with “all words” replaced by “almost all words” is
false. That is, it is possible that almost all words are seen on «#, but from
no finite set does one see almost all words. An example of this is provided in
Theorem 5 [see (7.6) and (7.7)].

We end this section with some simple zero—one laws for the function p of
(1.11).

PROPOSITION 3. If 4 is locally finite, then p(-) is F-measurable. If & = 7°
(unoriented) or Zi (with positive orientation) or a locally finite tree, then p(-)
only takes the values 0 and 1 and (1.12) holds.

PrROOF. Note that p(¢) is the probability of the £é—section of A, that is, of the
set {w: (&, w) € A}. Since A € F x4, by Proposition 2, the ¥ —measurability of
p(-) is standard [see Rudin (1987), Theorem 8.6]. In the same way we see that
& — P{¢ is seen from v} is & —measurable for each fixed v. If this probability
vanishes for all v, then clearly p(¢) = 0. We next want to argue that if

2.7 P{¢ is seen from v} > 0 for some v,

then p(¢) = 1. For & = Z% or the oriented Zi or 4 a homogeneous tree, in
which all vertices play the same role, we can argue as in Harris (1960) or in
the proof of Theorem 4 below. For such « the probability in (2.7) is the same
for all v and if it is strictly positive, then the ergodic theorem shows that ¢ is
seen from infinitely many v w.p.1, so that p(¢) = 1.

For an inhomogeneous tree the proof only works for p = % It does, however,
apply equally well whether we consider an unoriented tree or a rooted tree
oriented away from the root. Assume that « is a tree and that the probability
jn (2.7) is greater than 0 for v = vg. Let 7, be the collection of vertices
. which can be reached from vy by a path containing at most (n + 1) vertices
(7o = {vo}). If £, is the o—field generated by {X(v): v € 7 ,}, then by the
martingale convergence theorem [see Corollary 5.22 in Breiman (1968)]

P{¢ is seen from vy | 4,} — 1 a.e. on the event {¢ is seen from vg}.
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In particular, for any £ > 0 and n large enough, there must exist a choice for
n(v), v € 7, such that

-

(2.8) P{¢ is seen from vg | X(v) =n(v), ve B,} >1—&.
However, because  is a tree, the probability on the left is at most

(2.9) P{3 path (v,vy,...) with v € ¥,/ ,_1 and
’ v; ¢ Vpfori>1, X(v;) =ényi, 0 > 1}

Moreover, because # is a tree and p = %, the last probability is independent
of £. To see this define

Y (w) = X(w), fwe?p\7i1and £, =1,

T 1-X(w), ifwe?7p\ 7,1 and &, =0.
Then the families { X(w): w € 7} and {Y(w): w € 7} have the same distri-
bution. Moreover, since any path (v,v1,...) withv e #,/%,_1 and v; ¢ ¥, for
i > 1 must have v; € 7 ,4;/? nyi—1, 1 > 1, it follows that

{X(vi) = €nyi, i 21} ={Y(v;) =1, i = 1}.
Thus the probability in (2.9) equals, independently of ¢,

P{3 path (v,vy,...) with v € ¥,,/% ,_1 and
vigV,fori>1, X(v;)=1, i>1}.

Since the prdbability in (2.9) is at least as large as the left-hand side of (2.8),
it follows that

p(é) = P{g.is seen from some v in £}
> P{3 path (v,v1,...) withv e #,/% ,_1 and
Vi ¢ Vo, X(vi) =1, i > 1}
= probability in (2.9) > 1 —&.

Since £ > 0 was arbitrary, this establishes our claim that p(¢) = 1. This shows
in particular that for our £’s, p(¢) can only take the values O or 1.

We now return to (2.7). Assume that (2.7) holds for a given &. Then for any
¢ which differs from ¢ in finitely many coordinates only, also P{¢’ is seen
from v} > 0 and by the preceding argument p(¢’) = 1. Thus p(¢) = 1 implies
p(¢') = 1 whenever ¢ and ¢’ differ in finitely many coordinates only. Similarly
p(£) = 0 implies p(¢’) = 0 for such ¢ and ¢'. Thus p(¢) is independent of
£1,...,&n. (1.12) now follows from the Kolmogorov zero—one law [Breiman
(1968), Theorem 3.12]. O
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3. Oriented percolation on Z¢. This section is devoted to the proof of
Theorem 1. Much of this section follows suggestions of R. Durrett and G.
Grimmett, for which we are grateful. As stated before we restrict ourselves
to p = %, but most of this section can be done for general p € (0,1) with
only minor modifications. Throughout this section we take & = Z¢ with all
edges oriented in the positive direction. The random variables X(v) and ¢;
take values in {0,1} and p = % In this case,

3.1) P{¢ is seen from v}

is trivially independent of v.
Define the lifetime of a word & = (&1, &2,...) as

(&) = max{k: 3 oriented path (0, vy,...,v;) with X(v;) = &;}.

Thus 7(¢) is the length of the largest initial segment of ¢ that is seen from
the origin and {7(£¢) = oo} is the event that ¢ itself is seen from the origin.
The same argument as used to prove the independence of (2.9) from ¢ shows
that the distribution of 7(¢) is independent of ¢£. We merely have to redefine
7, as

d
V= {v = (v(1),...,v(d) € 2¢: Y v(i) = n}
1
and to observe that for any oriented path (vq,vs,...), vj € 7, implies vjy; €
7 n+i- Similarly, the probability in (3.1) is the same for all £.
The following lemma contains the principal estimate of this section.

LEMMA 1. For each &,

2m+4
1/2|d/2]+1/4
b

32 P{»r(g)=m}5zl_

where u is the so—called connective constant for 72 [see Hammersley (1961) or
Madras and Slade (1993), Section 1.2].

with z = u2~

PROOF. As shown above we may take ¢ = 1. Abbreviate 7(1) to 7 and for
k+£>1,k>0,£>0 define x(%,£) as the indicator function of the event

{EI path (0,vy,...,v,) on fo_ from 0 to some v, =
(3.3) (vn(1),...,va(d)) with X(v;) =1, 1'< i < n, and
Y u=k Y vali)= z}.
' 1<j<d/2 d/2<j<d
If (vo =0, vy,...,v,) is an oriented path on fo_, then v;1 = v; + e; for some

1 < j < d (where ¢; is the jth coordinate vector). In particular, Z‘}l:l vi)=1i
and the event in (3.3) forces n = & + £. Note also that if 7 = m, then there
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exists some path (0,vy,...,0,) on Zi with X(v;) =1for 1 <i < m, but no
such path (0,vy,...,v,e1) exists. If, for v € Zﬂl_, we now define
)= ( T o ¥ o) ez,
1<j=d/2 d/2<j=d

then (0, 7(vy),...,7(vp)) is an oriented path on Zi with k(7w(v;)) =1, 0 <
i < m, but no such path of length (m + 1) exists on {7 = m}. This will allow
us to use the standard contour argument for oriented two—dimensional site
percolation to estimate (3.2).

Let ¢ be the “cluster of the origin” for the x—process; that is, (k,£) € ¢
if and only if there exists an oriented path (0, (k1,£1),...,(ERm,Em) = (k,£))
from O to (k,¢) on Z2 with k((k;,¢;)) = 1, 1 < i < m. From the preceding
observations we see that actually

(3.4) € ={(k,£) € Z2: K(k,£) =1}

and

{Tr = m} = {€ contains some point (%, £) with 2+ ¢ =m,

(35) but no points (%,£) with 2 +¢=m + 1}.

We can view ¢ as a connected set of Z2, ignoring the orientation. Then it is
well known [see Kesten (1982), Corollary 2.2, or Durrett (1988), Section 5al]
that if € is finite, then it is “surrounded by a dual circuit.” Specifically this
means that there exists a path 7* = (w}, w3, ..., w}) on the unoriented graph

72+ (%, %) with the following properties:

wi,...,wy are distinct vertices of Z? + (%, %) and w, is
(3.6) adjacent to w} (thus 7* may be called a self-avoiding

circuit);

if f7 is the edge between w; and wj ,, for 1 <i < p,

and between w; and wj for i = p, then each f7 bisects
an edge f; of Z2,1 < i < p, and if the endpoints of f;

3.7

3.7 are a; and b;, then for each 1 < i < p one vertex of the
pair {a;, b;} belongs to ¢, and the other vertex of the pair
{a;,b;} does not belong to ¢;
the circuit (w7, ..., w}) separates ¢ from oo; that is, any

(3.8 path on Z? from some vertex in € to co must cross one of

the edges f¥, 1 <i < p.

"

" On the event (3.5), € contains 0 as well as some point (%, £) with 2+£¢ = m.
This, together with the property (3.8), shows that the circuit 7* must satisfy

(3.9) p>2k+14+2+1)=2k+20+4=2m +4.
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Let us denote the endpoints in ¢ (outside ¢) of the edge of f; in (3.7) by a; (b;,
respectively). By (3.4) we must have k(b;) = 0. We are especially interested in
those (a;, b;) for which

(3.10) b =a; +(1,0) or b;=a;+(0,1),
for reasons which will become clear [see (3.12)]. We shall need that
(3.11) the number of i < p for which (3.10) holds equals p/2 > m + 2.

Basically the argument for (3.11) is given in Liggett [(1985), proof of Theo-
rem 3.19] or in Durrett [(1988), proof of (ii), page 79]. Let c¢* be the curve ob-
tained by successively traversing the edges f1, f3,..., . Then c* is a Jordan
curve, because the w; are distinct. Consider a horizontal line {(x,r): x € R},
with 7 an integer, which intersects c*. As one moves along this line from
x = —o0 to x = 400, one goes from the exterior of ¢* to the exterior of c*.
There are therefore as many intervals from (s,r) to (s+ 1,r), s € Z, on this
line with (s, r) in the exterior of ¢* and (s + 1, r) in the interior of c¢*, as there
are such intervals with (s, r) in the interior and (s+1, r) in the exterior. If the
interval from (s, r) to (s+ 1, r) goes from the interior of c¢* to its exterior, then
the segment (s,r) to (s + 1,r) is one of the edges from a; to b; = a; + (1,0),
which satisfies (3.10). The intervals which go from the exterior to the interior
of ¢* as one goes from (s,r) to (s+ 1,r) are edges f; with b; = a; — (1,0), and
do not satisfy (3.10). By varying r we find all the horizontal edges f;. There-
fore, there are as many horizontal edges f; for which (3.10) holds as there are
horizontal edges with b; = a; — (1, 0). Similarly for vertical edges f;. Since the
total number of edges f; equals p, (3.11) follows.

Next let ¢* = (wj3,..., wy) be a fixed self-avoiding dual circuit. We wish to
estimate the probability that c¢* is the outer boundary of € as described by
(3.6)~(3.8). The circuit c* determines the dual edges f as well as the edges f;
which intersect /7. The edge f; has endpoint a; and b; with a; € interior of c*,
b; € exterior of c*. Thus c* also determines the collection of pairs (a;,,b;,) €

7% x 72,1 < q < p/2, which satisfy (3.10). Thus, we can write

P{¢ has c¢* as outer boundary}
= P{¢ has c* as outer boundary, k(a;,) =1,k(b;,) =0 for 1 < q < p/2}.

We shall now prove that
(3.12) P{¢ has c* as outer boundary} < 27P/2l4/21+p/4,

Let us first fix the values of X (v) for v in the collection 2, say, of all v with
'ar(v) € interior of c*. Note that «(a;,) = 1 is possible only if there exists an
© oriented path (0,vy,...,v,) with X(v;) = 1,1 <i < n, and 7(v,) = a;,. In
this case k(7 (v;)) = 1, w(v;) € € and hence 7(v;) must lie in interior of c¢*.
There may be several choices for the path (0,v4,...,v,) but we arbitrarily
fix one of these choices and denote its endpoint by u, [so that 7(u,) = a;,,
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X(ug) = 11. The event A := {k(a;,) =1, 1 < g < p/2} depends therefore only
on {X(v): v e 2}. We now estimate

(3.13) P{k(b;,)=0,1<qg=<b/2]| X(v), ve 9}

on the event A. We define the set of vertices &, as the set {ug+e;: 1< j <
d/2} in case b;, = a;, +(1,0), and &, as {uy +e;: d/2 < j < d} in case
bi, = a;, +(0,1). Now on A, k(b;,) = 0 can occur only if

(3.14) X(ug+ej)=0 forug+ejedy,.

Indeed, given the path (0,vy,...,v, = u4) from 0 to u, with X(v;) = 1,
1<i <n,ifalso X(uq+e;) =1, then we can extend the path with the vertex
uqg +e; and k(7 (uq +ej)) = 1. This cannot be the case for any u, +e; € &,
because 7(uq + e;) = b;, for uy + e; € &,. Therefore «(b;,) = 0 forces (3.14).
In particular, on A the conditional probability in (3.13) is at most

P{X(uq+ej)=0forus+ejec &y, 1<q=<p/2}=27",

where

p/2
v = cardinality of | J &,.
1

Statement (3.12) will follow once we show that on A,

pld| p
(3.15) VZZ\_2J i
To obtain (3.15) we observe first that by definition the cardinality of & is
at least |d/2]. The &, are not necessarily disjoint. Clearly &, and &, are
disjoint if b; # b;,, because 7(v) = b;, for v € &y, m(v) = b;, for v € &,.
Our second observation is that for given g, b;, = b;, can occur for at most one
r # q. Indeed, if b;, = b;, = b, then either a;, = b — (1,0), a;, =6 —(0,1) or
a;, =b—(0,1), a;, = b—(1,0). There are therefore only two possibilities for
a;, and a;, if b;, = b;,, and b;, = b;, can indeed occur for only one r # gq. The
number of pairs (q,r) with q # r, b;, = b;, is at most p/4, since g takes only
p/2 values. Finally consider such a pair (q,r) with b; = b;,. Then &, N &
contains at most one vertex, since the vertices in € ;N &, have to be of the form
uy+ej and of the form u, +e;.. This forces ej —ej» = u, —uy which determines
J'and j” uniquely (once u, and u, have been chosen). These observations show
that

p/2
cardinality of U Eq> g\.gJ — (number of pairs (q,r) with b;, =b;,)
g=1
! . Pld|_p
: — 212 4

This proves (3.15), and hence (3.12). .
Now that (3.12) is proven, the lemma follows easily. Note that any circuit
= (wi,..., w’;,) which satisfies (3.6)—(3.8) must have the edge from (—%, —%)
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to (-21—, — %) as one of its edges . This is so, because 0 € €, but we can connect 0
to oo via the negative y—axis, and none of the edges from (0, —%) to (0,—%—1)
for £ > 0 goes from a point in ¢ to a point outside ¢, but the edge from (0, 0)
to (0, —1) does. Hence this latter edge crosses one of the f *. But then (—%, —%)
must be one of the w?, and without loss of generality we may number the wy
such that w} = —%, —%) and wj = (%, —% ). Moreover, all ¢* which satisfy (3.6)—
(3.8) must lie in [—%,oo) X [—%,oo), because ¢ itself lies in [0,00) x [0, 00).
Therefore, for given p, the number of possible choices for p is at most equal to
the number of self-avoiding closed polygons on (Z)2 + (—;—, %) with p vertices,
whose first two vertices are (—%, —%) and (%, —%) and whose bottom left vertex
is (—1,—1). This number is at most uP, where u is the connective constant
for Z2 [see Hammersley (1961), equation (7), or Madras and Slade (1993),
Theorem 3.2.3]. Thus, for given p the number of choices for c¢* is at most uP”.
By (3.9), p must be at least 2m + 4 on the event {r = m}. Therefore, by virtue

of (3.12),

0 22m+4
(316) P{r=m}< > pP2 pAld2p/4 - 1 for z = p2~1/21d/21+1/4,
p=2m+4 -

PROOF OF (1.3). It is known that u < 2.7 [see Madras and Slade (1993),
page 12]. Therefore, for d > 10, the z of (3.16) satisfies

2= M2—1/2Ld/2J+1/4 < (2’7)2—9/4 <0.6

and the right-hand side of (3.16) is at most
(3.17) §[(2.7)2—1/2Ld/2j+1/4]2m+4 < E[(2.7)2—9/4]2m+4‘
' 2 -2

Now, for any word ¢, let

EM = (&1, Emr1, 1,1,...).

Then for any k2 < m,

(3.18) {1(6) =k} = {7(§™) = &},

because both events occur if and only if there exists an oriented path
(0,v1,...,vx) with X(v;) = &;, but no such path (0,vy,...,vz,1) exists. Now
the number of choices for ¢ ™) is at most 2”+! and hence, by Lemma 1,

(3.19) i P{r(£ ™) = m for some £ ™} < i 2mHLCy[(2.71)27%472" < oo

m=0 m=0

. for d > 10 and a suitable constant Cj. Therefore, w.p.1, for only finitely many
m does there exist a ¢ ™ with 7(£ ™) = m. Then (3.18) shows that also,
w.p.1, :

(3.20) {7(£) = m for some &}
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happens only finitely often, say only for m < N (with N random). But then
take any path (0,v1,...,UN4+1) OD Zi and assume X(v;) = n; € {0,1} for
1 < i < N+1. Then, for any choice of nn42, NN 43, ... and with n = (91,72, ...),
we have 7(n) = oo, since 7(n) > N + 1 by choice of 7n1,...,nn+1, While (3.20)
with m > N + 1 fails. Thus 7 is seen from 0 and a fortiori (nn+2, IN+3;---)
is seen from some v with Z‘f v(i) = N + 1 for all choices of (nn+2, MN+35---)-
This means that S = 5. O

PROOF OF (1.4). Our first task is to make the estimate (3.19) somewhat
more precise. In particular we want to choose M such that

P{r(§™) = m for some Emy

(3.21) m=M

< Z 2m+1§[(2‘7)2—9/4]2m+4 <1
m=M

Some simple calculations show that M = 2 suffices for (3.21). Define
d .
vl =) v().
i=1
The argument following (3.19) now shows that for d = 10,
(3.22) P{every ¢ is seen from some v with |v| =2} > 0.
Now take D = 22 x 10 and define for 0 < j < 3, the subsets of Zf :

Bj ={v = (v(1),...,u(D)) e Zf: v(i)=0
foralli <10jandalli > 10(j+1)}.

Then each B; is a copy of Z'° and by (3.22) the event
F; = {all words ¢ are seen in B; from some vertex v € B; with |v| = 2}

has strictly positive probability. Since Bj, N Bj, = {0} for j; # j2, the events
Fj are independent and

(8.23) P{F; occurs for all 0 < j <3} > 0.
Next let G; be the event
G; = {for all v in B; with |v| = k, one has X(v) =7;(k), k= 1,2},

where 1; = (1;(1),7;(2)) runs through the four elements of {0, 1}2 (in some
order) as j varies from 0 to 3. Then also

(3.24) P{G; occurs for all 0 < j < 3} > 0,

and since G, and F; depend only on vertices v with |v] < 2 and |v| > 2,
respectively, the events in (3.23) and (3.24) are independent. It follows that

(3.25) P{F;NGj occurs for all 0 < j <3} > 0.
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Now assume F; N G, occurs for all j and let ¢ = (&1, &2,...) be some word.
Then (¢1, é2) equals some 7;, while (€3, £4,...) is seen from some 0 € B; with
|6| = 2. Thus, there exists an oriented path (0,v1,vs = 0,vs,...) in B}, from
the origin and passing through 0, such that X (v) = n;(k) = &, £ = 1,2, and
X (vg4e) = €244, £ > 1. Thus ¢ is seen from the origin. This holds for all £, so
that S(0) = =. Hence (3.25) implies P{S(0) = E} > 0 on Zf. As in Harris
(1960), the ergodic theorem now shows that (1.4) holds. O

4. Percolation of all words on tubes in Z%. In this section we outline
an alternative argument to that of the preceding section, which shows that
in the unoriented case all words may appear on a small set, and that this
already happens for d > 132.

Let H C Z2 be the set consisting of the seven vertices (0, 0), (+1,0), (0,+1),
+(1,1) (see Figure 2). The basis of our argument is the following deterministic
lemma, which gives a deterministic configuration on the “chimney” H x Z, C
72 in which all words are seen from the origin.

LEMMA 2. Assume X*(v) takes the following values on H x Z,:
4.1) X*(v) =0 if (v(1),v(2)) =(0,0),
4.2) X*(v)=1 if (v(1),v(2)) ==%(0,1) or +(1,1),

1, if (v(1),v(2)) =(1,0) and v(3) is even
or (v(1),v(2)) =(-1,0) and v(3) is odd,
0, if (v(1),v(2)) =(1,0) and v(3) is odd
or (v(1),v(2)) = (-1,0) and v(3) is even.

4.3 X*(v) =

Then fdr each word ¢ there is a path (0,v1,03,...) € H x Z, such that v;(3) >
v;_1(8) and X*(v;) = &; for i > 1. In particular, each word is seen from the
origin in such a configuration.

We do not give the proof of this lemma. A somewhat tedious induction on
n can be used to show for every (£4,...,¢&,) there is a path (0,v1,...,v,) C
H x Z, with X*(v;) = ¢; and v;(3) > v;_1(3),1<i <n.

(04) (1)

(©0)  (10)

FIG. 2. The set H in 7.
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THEOREM 2. If d is such that
4.4) p.(d — 2, site, oriented) < 27,
then
P{EI a path (vy = 0,v1,Vs,...) in H x Z%2 such that
d
(4.5) Z v;(£) is increasing in i and such that every & is
=3

seen in the tube {w: |w — v;| < 2 for some i}} > 0.

Therefore,

(4.6) P{8(0)=E}>0
and

(4.7) P{S, =E}=1

[Here p.(d,site,oriented) is the critical probability for oriented site percolation
on 22.] In particular, (4.5)4.7) hold for d > 132.

PROOF. We view H x Z%2 as a subset of Z? and for any configuration w we
color the vertices of Z?~2 white or black. The vertex w = (w(1),...,w(d — 2))
is colored white if all the conditions (4.8)—(4.10) below hold:

(4.8) X((0,0,w(1),...,w(d —2)) =0,

X(e1,82,w(1),...,w(d—-2))=1

(4.9) for (1, £2) = £(0,1) and for (ey, £3) = (1, 1),

- X(e1,82,w(1),...,w(d - 2)) = 1if (£1,£2) = (1,0)
(4.10a) and Y92 w(i) is even, and if (&1, £2) = (—1,0) and
chl—z w(i) is odd,

X(&1,82,w(1),...,w(d —2)) = 0if (&1,62) = (1,0)
(4.10b) and Y% %2 w(i) is odd, and if (&1, £2) = (—1,0) and
chl—z w(i) is even.

If any of (4.8)—(4.10) fails, then w is colored black. Conditions (4.8)—(4.10) are
obvious analogues of (4.1)—(4.3). Basically only v(3) in (4.3) has been replaced
by chl—z w(i). It follows that if (0, w1, we, . ..) is a path on Z¢~2 with all vertices
qdlored white and with Z;.iz'lz wy(i) = n for all n > 0, then X* defined on
H x 7, by X*(&1,e9,n) = X(&1,&2,w,) satisfies (4.1)—(4.3). Consequently,
by Lemma 2, each word is seen from 0 along some path (0, vy, vs,...) inside
H x {0,wy,ws,...} with Y¢ 5v;(¢) > Y 5 vi_1(£).
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It follows from the preceding that the probability in (4.5) is at least

4.11) P{3 oriented path (0, w;,ws,...) in Zi‘2
' with all vertices colored white}.

Since H x w' and H x w” are disjoint for w’ # w”, the colors of the vertices in
792 are independent. The probability of a particular vertex being white is 277,
because (4.8)—(4.10) prescribe the value of X (&1, £2,w(1),...,w(d—2)) for the
seven values of (g1, £2) in H. [Note that the values of X (v) for v ¢ H x 732
play no role at all in this argument.] If (4.4) holds, then the probability in
(4.11) is strictly positive, so that (4.5) follows. Clearly (4.5) is stronger than
(4.6). Finally (4.6) implies (4.7), again by the ergodic theorem as in Harris
(1960).

The fact that (4.4) and hence (4.5)—(4.7) hold for d > 132 follows from the
fact that [see Cox and Durrett (1983) with bond percolation replaced by site
percolation]

pc(d — 2, site, oriented)
(4.12) = critical probability for oriented site percolation on Z4~2
< P{two oriented simple random walks on
Zi'z (starting at 0) intersect at some time > 1}.

Imitating the proof of equation (2.2) in Cox and Durrett (1983), we find that
the right-hand side of (4.12) is at most

t 1 L S -2
d—2 (d—2)2_(d—2)3+,§3 e
o i(d —2))! .
+ Z (d - 2)(J((J¢?!T2))(d —9)Jd-2)
Jj=1
1 1 + 5 +24(d—5)

a2t @ ta—2p T a—2n

+(27)%(d - 2)3/2(i13)d_2(1 + i)
oY d-5

For d > 132 the last expression is less than 277 so that (4.4) holds. O

5. Words on branching process trees. In this section « will be a ran-
dom tree, which is the family tree of a Bienaymé—Galton—Watson process.
Readers unfamiliar with these trees can find a description in Harris [(1963),
Section 6.2] or Jagers [(1975), Section 1.2]. These trees will be taken as rooted,
ordered trees. That is, we think of the trees as imbedded in the plane, and
with one vertex (which is called the root) singled out. The root will be de-
noted by (0). The set of vertices v which can be reached from (0) by a path
((0), v1,...,v, = v) of (n + 1) vertices (including (0) and the endpoint v) are
called the vertices of the nth generation (the zeroth generation consists of (0)
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only, by convention). The above path ((0),v1,...,v, = v) from (0) to v is nec-
essarily unique. The vertex v,_; is called the parent of v,. Also v, is called a
child of v,_1, and a descendant of any of the vertices (0), v1,...,Un_1. A typical
vertex of the nth generation will be denoted as (0,i1,...,i,) with iy > 1. This
vertex is sometimes referred to as the i,th child of (0,i1,...,%,-1).

We write 7 for a generic tree and 7, for the subtree consisting of its ze-
roth through nth generation. We shall also write 7(v) or 7(0,i,...,i,) if v =
(0,i1,...,1i,) for the subtree of 7 consisting of v and its descendants. Finally,
any string (0,i1,...,1,) with i1 > 1,...,i, > 1 is a potential label of a vertex.
However, for a given 7, there may not be a vertex in 7 corresponding to this
label. For instance if (0) has only r children in 7, then only (0,i3,...,i,) with
1 < i; < r can be the label of a vertex in 7. Similarly if 0,i1,...,ip-1) is a
vertex of 7 with r children, then one must have 1 < i; < r for all vertices
0,i1,...,2k—1,ik,.--,in) Which actually label a vertex of 7. If (0,i1,...,i,) is
the label of an actual vertex of 7, we also say that (0,i1,...,i,) is realized in 7.

For the next section it is convenient to treat “periodic Bienaymé—Galton—
Watson processes” rather than the standard branching processes only. We as-
sume that there exist v distributions on Z,, pg) ,k>0,0<i<wv-1,such
that

(5.1) opY =1, 0<is<v-1,
k>0

and

the numbers of children of all the vertices are independent;

5.2) each vertex in generation £v + i, £ > 0,0 < i < v, has k
children with probability pg) .

We set
(5.3) m® =3" kp}.
k=0

This is the mean number of children of any vertex in generation ¢v +1i, £ > 0,
0 < i < v. We allow m(¥) to take the value +oc. Here is a slightly more general
version of Theorem 3 than stated in the Introduction.

THEOREM 3. Let & be the random family tree of a Bienaymé-Galton—
Watson process with period v, as above. If
(5.4) M :=mOmb ... mo-1 5 27,

then a.e. (with respect to the branching process) on the event {4 is infinite}, &
contains finitely many vertices vs,..., U, for which

- (5.5) P{S(vy,...,v,)=E}>0
and almost everywhere on {< is infinite}, & has the property
(5.6) P{S,=E}=1.
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PROOF. Without loss of generality we may assume that the distributions
{ pg)} have bounded support; that is, for some K < oo

(5.7) p)=0 fork>K, 0<i<v—1

Obviously we can always achieve this by a truncation at sufficiently high K,
so that (5.4) still holds for the truncated process. Moreover ¢ is always at
least as large as the family tree of the truncated process, so that (5.5) and
(5.6) for the truncated process imply (5.5) and (5.6) for the original process.

We also must take care of some simple measure—theoretic issues. Let I
be the space of all family trees (note that these are simply all locally finite
rooted, ordered trees). Since we shall be picking a random element of 7,
its vertex set is also random and we must therefore adopt a slightly more
complicated choice for our configuration space () than before. The simplest
way is to pick i.i.d. random variables X(v), one for each potential v = (0)
or (0,i1,...,i,), i > 1. We then simply use only those X (v) for which v is
realized in our tree. Therefore, we take in this section ) = {0,1}”, where
W =(0) U Up11(0,i1,...,2s): ix > 1,1 < k < n}. We then define

0={(r,w) € I x Q: 7 is infinite and every ¢ is
seen somewhere on 7 in the restriction of o to
the realized vertices on 7}.

We also introduce the obvious o—field ¢ say, in 7, namely, the smallest o—
field which contains all sets of the form {7, = 7} for 7 any finite tree of height
n (i.e., with exactly the zeroth through nth generation nonempty). As before
2 is the o—field in Q generated by X (0) and all X(0,i4,...,i,). One should
then first show that

(5.8) ' Oc¢xa.
However, by Remark 1 in Section 2,
©= |J {(r,0): 7is infinite, vy,..., v, are realized in
5.9 PV Vs
7 and S(vy,...,vr,w) =E on 7},

where the v; run through all the potential vertices, that is, the elements of
% . Each of the sets in braces in (5.9) is € x # measurable by an argument
very similar to the proof of Proposition 2, which we leave to the reader.

On ¢ we have the measure induced by the periodic branching process spec-
ified by the pg), 0<i<wv-1, k>0, while on # we have the measure (still
denoted by P) under which X (0) and X(0,i1,...,i,), n > 1, i > 1, are i.i.d.
and take the values 0 and 1 each with probability % For the remainder of this
proof we use PP for the product of these two measures on ¢ x #; E will denote
- expectation with respect to P. By Fubini’s theorem, (5.6) is then equivalent to

(5.10) P{{r is infinite} \ ®} = 0.

Moreover, (5.5) is an immediate consequence of (5.6) and (5.9).
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It therefore suffices to prove (5.10) and we shall do this now. Let £ > 0 be
such that

M > 27(1+2¢&)

[see (5.4) for M] and for each n > 1 and (71,...,M.,) € {0,1}", define the
event

H,(n1,...,Mm,) = {there are at least (1 + &)™ vertices

(5.11) (0,11,...,Iny) in the nvth generation
’ of 7 with X ((0,21,...,iz)) = n for all
k < nv}.

Thus H, is the event that (71,...,7,,) is seen along at least (1 + &)™ self-
avoiding paths on 7 starting at the root; these paths do not have to be disjoint,
but only have to have distinct final vertices. We shall show below that

[ee]
(5.12) Z 2"P{H,(1,...,1)\ H,41(1,...,1)} < co.

n=0

Before doing this we show that (5.12) implies (5.10). It is easy to see that
P{H» (N1, -+, Mnw) \ Hnt1(015 -, Mnt1yp) }

has the same value for all 71,...,n(n+1), [compare the argument following
(2.9)]. Therefore (5.12) shows that a.e. [[P] there exists an N = N(7,w) < 00
such that for all n > N and all n1,...,Mn+1)ps Ho(M1,. .5 M00) \ Hpp1(n1, ...,
N(n+1)») does not occur. However, it is well known [see Harris (1963), Remark
1.8.1.1] that, by virtue of (5.7), a.e. on {7 is infinite}, the number of vertices
in the nvth generation of 7 is at least WM™ > W2""(1 + 2¢)™ for all large
n and some (random) W > 0. In particular, there will eventually be at least
2"¥(1 + &)™ vertices in the nvth generation. Since there are 2" choices for

(n1,..., nn,,), H,(%4,...,7,,) must occur for some n > N and some choice of
15 .-, My, By definition of N then also Hp (71, ..., My Navtls - - - Mmw) OCCUTS
for any m > n and all continuations 1,41, ..., Nmy. Therefore every word is

seen from some vertex in the nvth generation. Thus (5.12) indeed implies
(5.10), and we now turn to the proof of (5.12).

Statement (5.12) follows almost immediately from standard large deviation
estimates. Assume that H, = H,(1,...,1) occurred, so that there exist at
least (1 4 &)™ vertices vy,...,v, in the nvth generation such that X(v) =1
on each vertex other than the root on the paths in 7 from (0) to (v;), 1 <i <r.
This event depends only on the first nv generations of 7 and the X (v) for v
in one of these first nv generations. Therefore, conditionally on H, and the
v1,..., U, the following random variables are independent of each other:

U, (v;) := {number of descendants w of v; in the (n + 1)vth
’ generation of 7 with the property that X(u) =1
for all u on the path from v; to w in 7}.

Moreover, .
(5.13) Up(v;)>0 and E{U,(v;)| H,,v1,...,0,} =2"7"M > (14 2¢)".
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Bernstein’s inequality [see Rényi (1970), Section 7.4] now implies that there
exists a constant C3 = C3(&) > 0 such that

(5.14) IP’{Z U,(v;) <r(1+¢&)” | Hn,vl,...,vr} < 2exp(—Cjsr).
1

[Note that the U, (v;) are bounded, because of (5.7).] However, if H, occurs,
and hence r > (1 + £)", and

(5.15) Z Un(v;) > r(1+¢)” > (1+8)(n+1)v’
1

then there are at least (1 + &)™tV vertices w in the (n + 1)vth generation of
7 such that X (u) = 1 for all u other than (0) on the path from (0) to w [these
are precisely the vertices counted by the U,(v;)]. Thus (5.15) implies H 1,
and (5.14) shows that

(5.16) ‘ P{H, fails | H,} < 2exp(—Cs(1+ &)"");

(5.12) is now immediate. O

6. Trees on which all words are seen from (& + 1), but not from k&
points. We use the notation of the preceding section. The trees in this section
are assumed to be deterministic, rooted and ordered and oriented away from
the root, with the following periodic form: for some v > 1, p > 1,

each vertex in the £th generation has exactly

(6.1) p children if » | £ and exactly 1 child if » ¥¢.

These are infinite trees and when v = 1, we obtain the regular p—ary tree.
The reader is advised to concentrate on the special case v =1, p =3, k=1
(the regular 3—tree) when reading the proofs of Lemmas 3 and 4 below. Let
k > 0 be given. We can then choose v and p such that '

6.2) Er1l_ o
k
(with the left-hand side interpreted as +oo if £ = 0), but also
,_ k+2
LEMMA 3. Let k > 0. If £ is a rooted tree for which (6.1) and (6.2) hold,
then for each k—tuple of vertices v1,...,Up,
(6.4) P{u(S(v1,...,vp)) =1} =0

and a fortiori

(6.5) P{S(vl,...,vk)=E}=0.
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PROOF. The lemma is vacuous for £ = 0, so that we assume %2 > 1. Let
wi,...,wg be k vertices of &. Assume w; belongs to the ¢;th generation of £.
Then, by (6.1) and (6.2),

k
Z (number of descendants of w; in the (¢#; + v)th generation)
i=1

=kp < (E+1)2".

Now consider the paths in  from the w; to their descendants in the (¢; +»)th
generation, 1 < i < k. Let (w;,u1,...,u,) be a typical path of this form. Then
(X(u1),...,X(u,)) is a word of length v. We have kp such paths, while there
exist 2" words of length v. Since kp < (k+ 1)2”, at least one word of length »
occurs on at most 2 paths.

We now start with w; o = v;, 1 < i < k. Write ¢; for the generation number
of w;o. By the above, there exists at least one string (71,...,7n,) € {0,1}”
which is seen at most % times on the paths of length v starting at the w; . If
this (n1,...,m,) is not seen on any such paths, then we do not see any word
in C,(m1,...,m,) from vy,..., v [see (2.2) for C,], that is,

(6.6) S(Ul"-"vk)nCV(nlwn,nV)=®'

In this case we make no further choices. If (6.6) fails, let w;;, 1 < j < r,
be all the descendants of wiy,..., w0 in the generations ¢;0 +v, 1 <i < k&,
respectively, for which 71,...,7, is seen in the last » generations of the path
from (0) to w;,; (such a path necessarily goes through one of the w; o). By our
choice of 71, ..., 7, we must have r < k. We now repeat our procedure starting
from the r < k vertices wi1,...,w, 1. There then must exist (9,11,...,72,) €
{0,1}” such that (9,+1,...,7m2,) is seen at most k times along the paths from
the w;1 to their descendants in the (¢;; + »)th generation (where ¢;; is the

generation number of w; ). Again, if (1,41,...,7m2,) is not seen at all on these
paths, then
(6.7 S(Ul,--~,Uk)ﬂczu("71,~~-,"72u)=Q~
We iterate this procedure. At each stage s, start from at most % vertices and
find (Mgy11,. .., N(s+1)») Which is seen at most k& times from these vertices. At
each stage there is a probability at least

27kr
that some string (7s,41,...,M(s+1)») 1S not seen at all and, consequently, a.e.

[P], there exists an s > 0 and 71, ..., N(s+1)» such that
S(vl’ ey Uk) N C(s+1)V(771, ey n(s+1)v) =.
Thus (6.4) holds. O

LEMMA 4. Let k > 0. If & is a rooted tree for which (6.1) and (6.3) hold,
and vi,...,Upy1 are k + 1 vertices of the svth generation for some s, then

(6.8) P{S(v1,...,vrs1) =E} > 0.
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PrROOF. We begin with a deterministic construction. If ws,...,w, are ¢
vertices in the tvth generation with £ > £+ 1 and 7y,..., 7, are the paths
in & from wy,...,w, to the (¢ + 1)vth generation, then we can choose values
X (u) € {0,1} for u on these paths (excluding the points wy,...,w,) such that
each (11,...,m,) is seen along at least [£p277| > (£ + 1) of the paths 4. To
prove this, let 7;,41,...,7(j+1), be the paths which start at w;. These paths
are of the form 7, = (wj,ug1,...,Uqy) for jp+1 < q < (j+ 1)p. Since
w; belongs to the ¢tvth generation, it has p children; these are the p vertices
ug1 and they are distinct. Thus 7, and g can at most have a vertex w;
in common, and all the values Y(uq,), 1<q<¢1<r <v,can be taken
arbitrarily. In particular, we can choose the Y(uq,,) such that for each of
the 2” possibilities for (n1,...,7,), there are at least [£p27”] of the g with
Y(uq,r) =1n,, 1 < r < v. This proves our claim, since [see (6.3)]

k
6.9) o= HLI(E+1)p2 k—}%(ﬁ+1)pz (£+1)2".

If the X (u)’s for u in the (¢v + 1)th to (¢ + 1)vth generation are chosen as
above, then for each 71,...,m, we can find £; := [£p27"| vertices wy,...,We,1
in the (¢ + 1)vth generation such that 71,...,7, is seen on the self-avoiding
path from one of the w; to w;; for 1 < j < ¢;. Repeating the above procedure
we can find for each 711,...,72,, 2 := [£1p27"] vertices wiy,...,We,2 in the

(t + 2)vth generation such that (71,.. ., n2,) is seen on the self-avoiding path
from one of the w; (and through one of the w; 1) to wpye, for 1 < k < £5. After

Jj iterations, we have for each 71,...,7;, at least £; vertices wy,; such that
M1,...,7M)» is seen on a self-avoiding path from some w; to we,j, 1 < k<.
Here ¢; is defined recursively by

(6.10) lo=Fk+1, £j = |_Zj_1p2_yj.

We apply the above procedure oJ times for some large J to be determined
below and with ¢ = & + 1 and with wi,..., w1 equal to (k + 1) given ver-
tices (v1,...,Vss1) in the svth generation. Then there is at least one choice of
the X (u) for u in the first (s + J)v generations of &, for which each string
(M1,...,mJ,) is seen at least £ times from one of vy, ..., Vp+1. Then also

P{each (n1,...,mJ,) is seen along at least £,

(6.11) paths starting at some v;,1 <i <k+1} > 0.

Now choose & > 0 such that
(6.12) p>2"(142¢)
and replace the H, of (5.11) by

ot

I:In(m, v oy N(J4n)w) = {there are at least £;(1 + &)™ vertices
(0,i1,...,i(s+J+n)) In the (s+J+n)vth
generation of & with (0,i1,...,is) €
{Ul’ sy Uk+1} and X(O’ il’ L isv+r) =
nr for 1 <r < (J+n)v}
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Then (6.11) says that
(6.13) P{FIO(”IL R 77JV) for all (7’1, R 77Ju)} > 0.

Furthermore, the same argument as used for (5.14) shows that on the event
Hy(n1,. s M(+npw )

P{H,1(n1, ..., 0(J4ns1)) Fails| X (u) for all u
in the first (s+¢J +n)v generations} < 2e~Csts(1+&)"™

Therefore,
P{fIn(m, <y M(J+n)v) fails for some n > 1 and
(M1 - > M(J4n)w) | X(w) for all u in the first
(6.14) (s + J)v generations}

o0
<} oWHnIrge—Cats(Lte)nt”
on the event
(6.15) {Ho(n1,...,mg,) for all (n1,...,m55)}.

Finally we fix J such that the right-hand side of (6.14) is less than % To see
that this is possible, note first that by (6.10) and (6.9) we have £; > £+ j +1
(by induction on j). Once ¢; is so large that

L;p27" = Lj(1+¢)" +1
[see (6.12)], it follows that
Liy1 = £;(1+ &),
Thus, there exists a jo such that for j > jo,
2> (k+ jo+1)(1+&)"U=00),

and one easily sees from this that the right-hand side of (6.14) will be less
than 1/2 for large J. For such a J it follows from (6.13) and (6.14) that

P{H,(m,..., N(J+n)y») occurs for all n > 0 and all (91,...,MJ+n)w)}
> %P{f[o(m,...,nh) occurs for all 11,...,m4,} > 0.

Since each (71,72,...) is seen from one of vy,..., v if I:In(nl,...,n(J+n),,)
occurs for all n and all 91,2, ..., N(J+n)w, this proves (6.8). O

Lemmas 3 and 4 together yield the following theorem.

. THEOREM 4. Let k > 0 be'given. Then if £ is a rooted tree for which (6.1)—
. (6.3) hold, it satisfies (6.4), (6.5) and (6.8), so that not all (not even almost all)
words can be seen from k vertices, but they are seen with probability 1 from
(k + 1) vertices; that is, ‘

(6.16) P{S(vi,...,vps1) = E for some (k + 1)-tuple of vertices} = 1.
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PROOF. Only (6.16) needs further proof. However, this is immediate from
the following ergodic considerations. Let v; = (0,i1,j,...,is,5), J =1,..., k+1
be k+ 1 vertices in the svth generation. Then (6.8) holds for these v1,...,Up41.
Consider the random sets

S™(vy,...,vp41) 1= S, ..., o),
where

"” =(0,1,..., 1,01, ien )

with nv ones between the 0 and i ;. Then v , 1 < j < k+1, have the
same relation to (0,1,...,1) (with nv ones) as v i 1 < j < n, have to the root
(0). Therefore, {S(”)(vl,...,vk+1)z n > 0} is a stationary ergodic sequence
[compare Harris (1960)] and each S (vy,..., V1) has the same distribution
as SO(vy,...,vp41) = S(v1,...,Vrs1). It therefore follows from (6.8) and the
ergodic theorem that w.p.1, S (vy,...,vr1) = E for infinitely many n (in fact
for a sequence of n’s of strictly positive density). O

COROLLARY 2. On the oriented regular 3-tree (each vertex other than the
root has degree 4) one does not see almost all words from one vertex, but one
does see all words from two vertices. On the oriented regular b-tree [each vertex
other than the root has degree (b+ 1)] with b > 4, one sees all words from one
vertex.

COROLLARY 3. On the positively oriented Zi one does not see almost all
words from one vertex, so that (1.7) holds.

Corollary 2 follows by taking » = 1, p = 3 or p > 4 in this section. Corol-
lary 3 does not follow directly, but the proof of Lemma 3 with » =1, p = 3,
k =1 goes through without changes for & = Zi.

7. A tree on which one sees almost all but not all words. To obtain
an example with the properties in the title of this section, we take % of the
following form: & is a rooted oriented tree and for sequences {n;};>1 and
{ri}i>1 to be determined below it holds that

number of children of any given vertex v
(7.1) _ | ni, if v belongs to the r;th generation,
~ 11, if the generation number of v is not one of the r;

(see Figure 3). We denote this tree by < (n;,r;).
THEOREM 5. Let 4 = 4 (n;,r;), £(i) =r;x1 —r; and

i
(7.2) v(i)= ]—[ ny = number of vertices in the (r; + 1)th generation of 4.
k=1
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r

Fi1G. 3. Illustration of < (n,,r,).

It is possible to choose {n;} and {r;} such that

(7.3) S{1-[1-(1—27 @i} < o
i=1

and

(7.4) Z{l —[1-(1- 2—£(i))u(i)]2em} — o
i=1

For such a choice of {n;} and {r;}, it holds on £ that

(7.5) P{Se =E}=0,

but

(7.6) P{u(Sx)=1} =1

Also

(7.7) P{u(S(vy1,...,vt)) = 1 for any finite number of vertices vy,...,v;} = 0.

PROOF. Denote by vy;,...,v,(;); the vertices of the (r; + 1)th generation.
Between the (r; 4 1)th generation and the r;,;th generation the only paths on
& (ni,r;) are the “straight line segments” starting from the v;;, 1 < j < »(i),
and consisting of £(i) := r; 1 — r; vertices. We also give a name to the parents
of the v;;, 1 < j < »v(i), that is, to the vertices in the r;th generation. If we
denote these vertices by ©1,...,u,._1);, then we can number the vertices v i
in such a way that the children of u; are precisely the vertices {v;;: (s—1)n; <
J<sn;}forl<s<w(i—1) Let mj;, 1 < j < (i), be the paths in & from
the up; in the r;th generation to the r; 1th generation. A typical such path
is )i = (Usi, W1 5. .., Wei,ji) With wy j; = vj; and us; equal to its parent
lie., (s = 1)n; < j < sn;] and with w;41,j; equal to the unique child in & of
we, ;i if 1 <k < £(i). Now define the following events:

Ki(m)=Ki(n,..., M)
= {for some 1 < s < (i — 1), the word 7 = (01, ..., m)) is not seen

along any of the péths mj; with (s — 1)n; < j < sn;},

L; = {there exists a word 77 = (01, ..., m;)) € {0, 1}*® which is

not seen along any of the paths 7;;, 1< j <wv(i)}.
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Then K; occurs if and only if 77 is not seen on some group of paths, descending
from one vertex in the r;th generation. Note that the = ;; for different j have
at most their initial points in common, and recall that for a word to be seen
along a path, the path’s initial vertex is ignored. Therefore, the words seen
along the 7;; for different j are independent. It follows that

(7.8) P{K;(m)}=1-[1-(1-2@ynpt-D,

We note in passing that we could complete the proof below by only estimating
the probability that % is not seen along any path 7;; descending from one
us i, say along the paths 7;; with 1 < j < n;. [Thus we would replace “for
1 < s <v(i —1)” in the definition of K; by “for s = 1.”] This would allow us to
drop the exponent »(i — 1) in (7.8) and (7.3). This would give a slightly better
theorem, but would complicate the proof, so we shall not pursue this.

Our aim is to make sure that K; happens for only finitely many i (for some
given 7’s), but that L; happens for infinitely many i. This will be possible,
because L; is a union over 7’s and there will be many choices for 7. To estimate
the probability of L;, note that along each path ;; some word of length £(i)
is seen, and the words seen along distinct paths are independent, each word
of length £(i) having probability 274 of being seen along a given =, ;. Thus,
if we interpret each of the 2¢¢) possible words as an urn and each of the (i)
paths as a ball which is to be put into the urns, each urn having probability
2-t0) of receiving the ball, then P{L;} is simply the probability of finding at
least one urn empty. Thus

P{L;} =1 — P{each urn contains at least one ball}
(7.9) > 1 — [ P{a given urn contains at least one ball}]2“”
=1-[1-(1- 2-Z(i))v(i)]2e(z>.

The inequality here can be found in Mallows (1968).

We first show how to choose n; and r; in such a way that (7.3) and (7.4) hold.
This is easy to do in a recursive way. Take r; = 0. Assume that ny,...,n;-1 and
ri,...,r; have already been chosen. Then £(1),...,£(i—1) and »(1),...,v(i—1)
are also determined. Recall also that »(i) = n;»(i — 1) and express (7.3) and
(7.4) as

(7.10) S{1-[1-p Y} <00
i=1
and
(7.11) Z{l _ [1 _ p;(i—l)]Qe(i)} = oo,
i=1

respectively, with

pi = (127,
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We now relate £(i) (and hence r;;1) and n; to each other such that

[1-p 6D > 1 4.
i
This will guarantee (7.10) and (7.3) and can be achieved by making p; suf-
ficiently small or n;2-49) sufficiently large. It still allows us to take 2¢¢) as
large as we wish, if we make n; correspondingly larger. In particular, we can
still take £(i) so large that

(i—1)72¢D 1

[1 - pi(L 1)] < 5

This will make the ith summand in (7.11) or (7.4) greater than %, and doing
this for all {, we obtain (7.4).

Now that we have shown that (7.3) and (7.4) can be satisfied, we show that

they imply (7.6) and (7.7). Equation (7.5) is implied by (7.7), by Remark 1 in

Section 2 and the fact that w(S(vy,...,vs)) < 1 implies S(vy,...,vr) # 5. We

first prove (7.7). Since there are only countably many k—tuples vy,..., v, it
suffices to show for any fixed vy, ..., v; that
(7.12) w(S(vy,...,vr)) <1 ae. [P]

However, a.e. [ P], L; occurs for infinitely many i, by virtue of (7.9) and (7.4)
and independence of the L; for i > 1. Thus, w.p.1 there exist i(1) < i(2) <---
and corresponding words

T = (N1,p5- -+ Meti(p)),p) € {0, 1))

so that 7, is not seen on any path starting in generation r;p) +1 and ending
in generation r;(,)41. In particular, if v, belongs to the y(q)th generation, then
one does not see from v, any infinite word ¢ = (&1, &2,...) with

(7.13) 5'i(p)+j—v(q) = Nj,p> 1< j<¢(i(p)),
for any r;p) > y(q). Therefore, if p(1),..., p(k) are such that
rip@) 2 v(q@), 1=q=k,
and
Fi(pla+1)-v(a+D) > Tilp(@)+l, 1 =g <k

(so that the intervals [7;(p(q)—y(q)+1> "i(p(q)+1)] for the various g are disjoint),
then one does not see from any v1,...,v; any word ¢ in the cylinder of words
~which satisfy (7.13) for p = p(1) and p = p(2)--- and p = p(k). Thus, this
whole cylinder in E is missing from S(v1,...,v:) and (7.12) follows.
'This proves (7.7). As we already observed in (1.13), by Fubini’s theorem and
Proposition 1, it suffices for (7.6) to show that for every £ € B,

(7.14) p(&)=P{€é € S} =P{fisseenon £} =1
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To prove (7.14), let £ > 0 be given and fix io so that

(7.15) fj (1-[1-(@—27 @]ty < 4

i=ip

Then, for any fixed ¢ = (&1, &9,...) take R =r;, and

;= (€rt1-Rs -5 €r-R), i > lp.
Then by (7.8) and (7.15),
(7.16) P{no K;(7;) with i > ij occurs} > 1 — &.

However, when none of the K;(%;) with i > i( occur, then for each u,;, there is
a path 7, descending from this u;, along which the word m; = (¢1,. - -, €eiiy))
is seen. The last vertex of this path is some vertex in the r;, . ith generation,
say, Us, i+1. Since K;;11(7; 1) does not occur, there is in turn a path 7;; 41
descending from this vertex along which 7; .1 = (€uig)+1>- - - » Etio)+e(io+1)) 18
seen, and so forth. Therefore, ¢ is seen from each u;, in the r; th generation.
In particular, by (7.16),

P{éeSy}t>1—e.
This holds for each & > 0, so that (7.14), and hence (7.6), follows. O

8. An example in which the random word percolates, but 1 does
not. To conclude, we construct a graph  with the property of the title of
this section, that is, a graph for which (1.19) holds. In fact, our graph is such
that it rules out percolation of any word ¢ which eventually omits a fixed finite
string of letters. More specifically, let

Ho={& 3m < ooand 7q,...,Mm € {0,1}, such
(8.1) that there exist only finitely many ¢ for
which &, j=17;,0<j<m}.

Then our & will satisfy
(8.2) P{un(Sx) =1, but Su NEo =} =1.

The graph ¢ will be a sequence of complete graphs connected successively
by strings of single edges. More precisely, let 7 = {v(1),v(2),...} be the vertex
set of & [in this section v(i) will no longer denote the ith component of v].
For two sequences of integers {N,},{M,} with

(8.3) 1§N1<M1<N2<M2---,

. & will have an edge between any pair {v(i’), v(i”)} for which either
(8.4a) i'#1” and N, <i,i" <M, forsomem,
or '

(8.4b) i"=i+1 and M,, <i,i”" < Ny, for some m.
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Thus, the part of . with vertices v(i), N, <i < M, is a copy of the complete
graph on

Nm =M, — N, +1

vertices. The only connection between v(M,) and v(N,,.1) is the path
(V(Mn), v(Mn +1),...,0(Npy1 = 1),0(Npy1)) (see Figure 4).

THEOREM 6. If
(8.5) Npyi—Mp,=m
and
(8.6) 2%, > 1 asm — oo,

then (8.2) holds.

PROOF. First we show that w.p.1, no word of 5 is seen on . This is
easy because any infinite path (v1,vg,...) on & must contain all the strings
v(Mp),v(Mpt1),...,0(Npy1) from some m on. In addition, each fixed word
N = (no,...,mr) of finite length occurs w.p.1 infinitely often on these strings,
that is,

8.7 P{X(v(M,+ j))=mnj, 0<j<Ek, occurs for infinitely many m} = 1.

If the event in braces in (8.7) occurs, then no word which contains 7 =
(M0, ...,mr) only finitely often is seen on &. Since there are only countably
many choices for 7, this shows that

P{SewNEy =T} = 1.

This proves part of (8.2). To show that almost all words are seen on £,
we consider the set of words, 51, in which the time of first occurrence of any
finite word is not “too large.” The precise definition of E; is as follows. For any
&= (&1,&2,...) € B\ Eo, £ =0, and any finite word 1 = (n0,...,7n), let

(88) V(§,1‘7,£)=inf{t> ¢ §t+j="lj, 05 .]Srn}_Z
Thus, v is the number of steps one has to move forward from ¢ until % occurs
in ¢. Now we take

Ei={¢& 3 m1 < oo such that for all m > m; and
(8.9) all  of length (m+1)andall0<¢ < M,, it
holds that v(&,%,£) < (m + 1)22m}:

' ! V(i) w(Ny) ) v(Ng)

Complete graph Complete graph Complete graph

FI1G. 4. Illustration of <.
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Our first task is to show that
(8.10) w(E1) =1
To see this, note that for any fixed % of length (m + 1) and any ¢,
pié: v(€,7,0) > (m+1)2°"}
< ulé: (Eevririmin+jlo<jem #nfor 0 <r < 2%m}
=(1- 2""'1)22'" < exp(—22m.27m71) = exp(—2™"1).

There are 2™+! possible choices for % of length (m + 1) and (M,, + 1) choices
for £ € [0, M,,]. Thus

My
20 Y wlEwEn > (m+ 128
(8.11) o i

<Y (Mp +1)2"  exp(—2™71).
However, by (8.5) and (8.6),

Mpy=Mi+) (Mp—Nip)+ ) (Np— Mp1)

k=2 k=2

m m
SMi+) np+ Yy (B—1)~82%,

k=2 k=2

so that the right-hand side of (8.11) is finite. This establishes (8.10).

Next we define a subcollection of configurations which has full measure
and in which all words of length at most (m + 1)22™ are represented among
the X(v(i)) with N,, < i < M,, for some m. The precise definition is the
following.

Q1 = {w: 3 mgy such that for all m > my and for all choices
of k(1);...,k((m + 1)22™) € {0,1} there exist distinct
v(ij) with N,, < ij < M,, and X(v(i;)) = «(j), 1 <
J < (m+1)22m},

For a given m, there are

(8.12)

2(m+1)22”‘

choices for {k(j): 1 < j < (m + 1)22™}. The probability that for at least one
of these choices one cannot find v(i;) with N,, < ij < M, and X(v(i;)) =
k(j),1< j<(m+1)2%", is at most

2(m+1)2"" Pfihere are fewer than (m + 1)22" zeroes
v or fewer than (m+1)2%™ ones among the
X(v(i)), Nm.<i < Mp}

< 2mtDE" L Pl B(n,, — 2,1) < (m +1)2°™},
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where B(n, %) is a binomial random variable corresponding to n trials with

success probability % Under (8.6), standard exponential bounds [see, for in-
stance, Grimmett and Stirzaker (1992), Theorem 2.2.1] show that

Z2(m+1)22'"+1P{B(nm -2 %) <(m+ 1)22m} < o0,

m

so that indeed
(8.13) P{O} =1

By virtue of (8.10) and (8.13) it now suffices for (8.2) to prove that in any
configuration @ from Q;, any word ¢ from 51 is seen in w. To this end, fix
€ O and € € B, and let mg < oo be such that for all m > my,

(8.14) v(&,7,¢) < (m+ 1)2?™  for any 5 = (no,...,Mm) and 0 < € < M,,,

and
there exists distinct v(i i) with N,, < ij < M, and
(8.15) X(v(ij)=«(j)l<j<(m+ 1)22™, for any choice
of (k(1),...,k((m +1)22™).
Such an mg < oo exists by definition of 5; and Q. To conclude, take v =
U(N,,) and define

(8.16) 7™ = (X(0(Mn)), X((Mpn+1)),..., X(0(Nmi1)))-

Note that this word depends only on @ and that it has length N,y1— My, +1 =
m+1 [by (8.5)]. We now choose the path (v, v1,vs,...) such that ¢ is seen from
v along this path. By (8.14),

po :=v(&,1™),0) < (mg + 1)2%™

[because 1(™0) has length (mgo + 1)]. By (8.15) we can therefore find vertices
v(ij) with N, < i; < M s such that

(8.17) X((i) =€), 1=<j<po—1

All these vertices are adjacent to each other and to v in . We can therefore
take v; = v(ij), 1 < j < po, and then take v,vy,...,Vp-1 as the first po
vertices of our path. The next (mg + 1) vertices will be v(My,), v(Mpy, +
1),...,0(Npys1). Note that v(M,,) is adjacent to v,,_1. Moreover, the X—
values on these vertices have the required value, since

— o (mo) —Zz .
. (818) X(v(Mpmytj)). = m; *’ [see (8.16)] = §,,i+,
' [by our choice of py = v(&,7(™),0) and (8.8)].

Furthermore, the vertices v,v1,...,Vp0-1,Vp, = U(Mpmy), Vppt1 = U(Mpm, +
1),...,Upgtmo = U(Nmy41) are all distinct.



PERCOLATION OF ARBITRARY WORDS IN {0,1}" 1059

To see how this procedure can be iterated, assume that we already have
found the path (v,vs,...,v,) with X(vj) = &j, 1 < j < £, vy = v(Npy41) for
some m > mg and

(8.19) {U,Ul,...,Uz}C {U(l),...,U(Nm+1)},
so that, in particular,
(8.20) E s Nm+1 + 1 S Mm+]_.

Then, because 7™*1 has length (m + 2), we have, by (8.14) with m replaced
by (m + 1),

v(€nY,0) < (m +2)22m+D,
Then, by (8.15), we can choose v(i;) with
Npi1 <ij <My and X(v(i)) = §_Z+j

(8.21) -
for 1 < .] < Pm+l-mo = V(§’ ”7(m+1),£)-

We then extend our path (v, vs,...,v¢) by the v(i;), 1 < j < pm+1-m,, followed
by the (m+2) vertices v(M 1), V(M pmi1+1),...,0(Npi2). We then are again
in the situation (8.19), (8.20) with m replaced by (m + 1) and £ by ¢’ = £ +
Pm+1-mo + m + 1. Moreover, we now have X (v;) = ¢; for j < ¢’ for the same
-reasons as in (8.17), (8.18). Indeed, by (8.21),

X(verj) = X((ij) = &g for 1< j < pmyr-mo
and by the definition (8.8) of ppi1-m, = (&, 7™+, 0),

X(Uz+pm+1_m0+j) = X(v(Mni1+7j)) = 775'”1) = gy(g’n(m+1)’£)+[+j’ 0<j=<m+l

Thus we can repeat the procedure and obtain a path (v,v1,vs,...) with
X(vj)=¢jforall j>1. O
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