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EIGENVALUES OF RANDOM WALKS ON GROUPS

BY RICHARD STONG

Rice University

In this paper we discuss and apply a novel method for bounding the
eigenvalues of a random walk on a group G (or equivalently on its Cayley
graph). This method works by looking at the action of an Abelian normal
subgroup H of G on G. We may then choose eigenvectors which fall into
representations of H. One is then left with a large number (one for each
representation of H) of easier problems to analyze. This analysis is
carried out by new geometric methods. This method allows us to give
bounds on the second largest eigenvalue of random walks on nilpotent
groups with low class number. The method also lets us treat certain very
easy solvable groups and to give better bounds for certain nice nilpotent
groups with large class number. For example, we will give sharp bounds
for two natural random walks on groups of upper triangular matrices.

1. Introduction. Random processes have been an active field of mathe-
matics over the last 10 years. A large number of interesting random processes
can be described in the following manner. Let G be a finite group and let S
be a symmetric generating set for G. This generating set induces a random
walk on G. That is, start at the identity element and at each step multiply on
the left by a (uniformly) randomly chosen element of S. Alternately let I' be
the Cayley graph of G with generating set S; that is, the vertex set of I' is G
and there is an edge joining g to g’ if and only if g’g~! € S. Then the
random walk is the usual random walk on the regular graph I'. Start at the
identity and at each step follow a randomly chosen edge out of the current
vertex. Let P be the transition probability matrix for this random walk. We
will find it convenient to regard P as the linear map P: L*(G) - L*(G)
defined by

1
(Py)(g) = Sl Y ¥(xg).

xS

Let 1=8,>B;=B,> " 2 By_; = —1 be the eigenvalues of P, where
N =Gl

We are interested in giving an upper bound on B; and a lower bound on
By_1- Such bounds give a bound on the rate of convergence of P* to the
uniform distribution, (e.g., [4], Proposition 3). A number of methods have
been used to give such bounds. If S is a union of conjugacy classes, one can
get the eigenvalues and eigenvectors from the representation theory of G [1].
More recently, techniques have been developed to give bounds on the eigen-
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values using geometric properties of a collection of paths in the graph.
Jerrum and Sinclair [6] give a path argument for bounding the Cheeger
constant of a graph. This in turn gives bounds on B;. Diaconis and Stroock
([4], Proposition 1) give a path argument for bounding B, directly and a cycle
argument ([4], Proposition 2) for supplying the lower bound on By _;. We will
present here a novel method which uses the group structure of G to reduce
the problem to a number of easier bounds which are then determined by
geometric methods. This method gives nice bounds on the second largest
eigenvalue B,. Typically they are of the form B, < 1 — C/(e®n), where n is
the number of generators and e is some measure of the exponent of elements
of G. We also get weak bounds on the smallest eigenvalue By_; in these
cases. These bounds will be of the same order as the bounds on the second
largest, which is ample for most applications. Usually stronger bounds on
By_1 will be available by other means, for example, [4], Proposition 2, or its
variant [9], Proposition 2.

We will be able to give nice bounds for a number of classes of groups. In
particular, we will derive results for random walks on nilpotent groups with
low class number. This result complements work of Diaconis and Saloff-Coste
[2, 3]. These two papers give bounds on the eigenvalues and rates of conver-
gence of random walks on groups satisfying certain growth conditions, includ-
ing nilpotent groups. In particular, suppose G is a nilpotent group with a
symmetric set of n generators (containing the identity), class number / and
diameter y. Let P be the transition probability matrix for the associated
random walk on G, and let U be the uniform distribution on G. Diaconis and
Saloff-Coste show ([3], Corollary 5.3) that there are constants B = B(l, n)
and C = C(l, n) such that

IP* — Ullyar <Be ¢ ifk=(1+c)y?nandc >0,
and
IP* — Ullvar = 3¢ if k = c¢y®/C.

These results show that for many families of nilpotent groups (ones with n
and [ fixed) order y? steps are necessary and sufficient to achieve random-
ness. However, for families of groups with n or [/ increasing, the bounds on
the constants B and C in [3] are insufficient to give good bounds on the
convergence. The results of this paper will include reasonable bounds on the
second largest eigenvalue for families of nilpotent groups with [/ small and
fixed and n increasing.

2. The group theoretic argument. For this method, we need the
following observation. Let H € G be an Abelian normal subgroup of G. We
chose the random walk to be given by left multiplication by generators;
therefore, H acts on the Cayley graph I' by right multiplication. Hence the
eigenfunctions of P may be chosen to lie in irreducible representations of H,
which are of course one-dimensional since H is Abelian. (This method might
still work in special cases even if H is non-Abelian. One would have to know
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the representation theory of H in detail and make other adjustments.) Pick
one such representation p: H — C and let ¢ be an eigenfunction of P which
lies in that representation; that is, ¢(gh) = ¢(g)p(h) for all g € G and
h € H. If we fix coset representatives for G/H, then ¢ is determined by its
values on the coset representatives. That is, we can view ¢ as a function on
G/H.

Explicitly, let [g] denote the coset containing g and let ¢, be the coset
representative. Define ¥: G/H - C by ¢(g) = ¥(t ;). We can recover ¢
from i by the identity y(g) = ¥(g]) p(t;, g]g) In terms of ¥, the equation
Py = Ay becomes

(L)) = (1) = 157 T w1
(1) 1
|S| Z W (treg) Pt ¥t ) = @JESE([xg])p(t[‘xlg]xt[g])~

That is, ¢ is  an eigenfunction of a “random walk on G/H with phases on the
edges.” Let P denote the corresponding matrix. Note that the phases are all
values of p. If p is the trivial representation of H, then all the phases are 1.
Thus in this case ¢ is an eigenfunction of the usual random walk on G/H as
encountered above. In particular, these include the unique eigenfunction with
eigenvalue 1. In other words, if we wish to bound B; and By_; it suffices to
bound the second largest and the smallest eigenvalues of the induced random
walk on G/H and to bound the eigenvalues of P away from +1 for all
nontrivial representations p of H. We have reduced the original problem to a
large number of smaller problems. This result is summarized by the following
theorem.

THEOREM 1. Let G be a finite group and let S be a symmetric generating
set for G. Let P be the transition probability matrix for the associated random
walkon Gandlet 1 = By > By = By > -+ = By_1 = — 1 be the eigenvalues of
P, where N = |G|. Suppose H C G is an Abelian normal subgroup and t,; € G
are coset representatives for H. Then the eigenvalues of P are exactly the
eigenvalues of the induced random walk on G/H and the eigenvalues of the
matrices P on L>(G/H) given by

(2) Py([g]) = ISI Z t//([xg])p(t[xg]xt[g])

for p some nontrivial character of H. In particular, B, and By_, must arise
in one of these two ways.

3. The geometric argument. Theorem 1 constitutes the group-theo-
retic part of this paper. Techniques for bounding the second largest eigen-
value of the induced random walk on G/H are given in [1], [6], [4] and this
paper, and are briefly described in the Introduction. The bounds on the
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eigenvalues of P are somewhat simpler because we are bounding the largest
eigenvalue and not the second largest. To determine these bounds for the
nontrivial representations, it is convenient to have some terminology for
graphs with phases on the edges.

Following [9], consider the following data: a graph I' = (V, E), a positive
real number d, a function w from the directed edges to C with w([ y, x]) =
w([ =, y]) and a function s from the vertices to [0, d]. Call such a collection
ofdata I' = (I, d, w, s) a twisted graph. We will interpret this data as follows.
The graph I' is the underlying graph for our “random walk with phases on
the edges.” For now suppose I' is simple graph. If x and y are vertices of T,
let [x, y] denote the edge from x to y. This simplifies the notation and, as
discussed below, we can always reduce to this case. We will regard d as
roughly the degree of the graph. The function w we will regard as giving the
weight on the edge. Our weights will generally be in {z € C: |z| = 1} and in
this case we will also refer to them as the phases on the edge. We regard s(x)
as giving the weight for remaining stationary at x and s(x)/d as the
probability of remaining stationary. In our examples, we will always have
s(x) in the range [0,d — L,lw(x, yDI. We may regard a(x) =d —
L,lw(x, yDl — s(x) as the weight for a particle at x to disappear, or be
absorbed, and a(x)/d is the probability a particle at x will be absorbed.

To any twisted graph we associate a Hermitian matrix A by taking the
x,y entry of A to be w([x, y])/d if T contains an edge from x to y and 0
otherwise, and by taking the x, x entry of A to be s(x)/d. If I is a d-regular
graph, w = 1 and s = 0, then A is just the transition probability matrix for
the usual random walk on I'. We will call the eigenvalues of A the eigenval-
ues of the twisted graph as well. We will say a Hermitian matrix A’
dominates another A if v’Av < v'A’v for all v. Similarly we will say one
twisted graph dominates another if their vertex sets agree and the corre-
sponding Hermitian matrix of the first dominates that of the second.

We will use these definitions to give eigenvalue bounds as follows. Call a
twisted graph diagonal if the underlying graph has no edges (or each edge
has weight 0). Then we have the following obvious lemma.

LEMMA 2. If the twisted graph T is dominated by the diagonal twisted
graph T' ={",d',w',s") and X is any eigenvalue of T, then A <
max, . s'(v)/d’.

If I is not a simple graph, the definitions above need to be adapted slightly
and the notation becomes more cumbersome. For example, in the definition of
a(x) the sum over neighbors of x must be replaced by a sum over edges out of
x. In computing the associated Hermitian matrix A, the x,y entry of A
would be the sum over all edges e from x to y of the contribution w(e)/d.
Similarly the x, x entry of A would be the sum of the contribution of s(x)
and the contributions of all loops at x. Note that we may always reduce to the
case where the underlying graph is simple. Explicitly, suppose (I', d, w, s) is a
twisted graph with I' not simple. Let I’ be the simple graph one gets by
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removing any loops of I' and collapsing any multiple edges of I' to a single
edge. Define new weights on edges and vertices of I'' by

w'(lx,y]) = X w(e)

e an edge
from x to y

and
s'(x)=s(x)+ Y w(l).

! a loop
at x

Then (I'',d,w’, s') is a twisted graph with the same associated matrix A
(and the same absorption probabilities) as (T, d, w, s). For our purposes, a
twisted graph is really just a geometric way of encoding the matrix A.
Therefore, we may replace (I',d,w, s) by (I'',d,w’, s') without loss. Hence,
below we will always assume our underlying graph is simple and use the
resulting easier notation.

Suppose now that we have data as in Section 2. That is, G is a finite group
with symmetric generating set S, H is an Abelian normal subgroup of G, £,
are coset representatives for G/H and p is a nontrivial representation of H.
Then there is an obvious twisted graph (I', d, w, s) associated with this data.
Let I be the graph whose vertex set is G/H. For every [g] € G/H and every
element x € S, let I" have an edge from [g] to [ xg], and assign the weight
p(t 5 %t 1) to this edge. Let d = S| and s = 0. Note that T will have loops if
H N S # & and multiple edges if two elements of S are in the same coset of
G/H. If this occurs, reduce to a simple graph as described above. The
important fact to notice is that the Hermitian matrix A associated with the
twisted graph (T, d, w, s) is the matrix P associated with the data G, H, S,

¢ and p by (2). To apply Theorem 1 and Lemma 2, we wish to bound the
elgenvalues of the associated matrix A = P by finding a diagonal twisted
graph which dominates this one. Hence we need to understand how to build
dominating twisted graphs.

Note that we can build twisted graphs which dominate others by the
following basic construction. If X is a sub(twisted graph) of I', X’ dominates X
and I'’ is the twisted graph we get by replacing X in I' by X', then I’
dominates I'. This basic construction allows us to build up dominating
twisted graphs step by step using a few basic examples. It is not yet clear
what all the basic examples should be, but the ones below are certainly
among them.

The easiest example of this basic construction is the Cauchy-Schwarz
inequality applied to an edge. View an edge as the twisted graph

1

e« (s=0,d=1).

0
equivalently the quadratic form v'Av = 2Re(v,0,). By Cauchy—Schwarz or a

number of other standard inequalities, one has 2Re(v,v,) < (1 — a)lvllz
lvg|?/(1 — &) for any 0 < & < 1. The right-hand side of this inequality is the

This twisted graph corresponds to the 2 X 2 Hermitian matrix A = (0 1) or
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quadratic form associated with the twisted graph

s=1-¢ s=1/(1-¢)
e o

(d = 1).

Therefore, we see that .—1—. (s =0,d = 1) is dominated by the twisted graph

s=1 :: ;9—1/(1 £) (d _ 1)

for any 0 < ¢ < 1. Also note that, for any phase w, the quadratic form
2Re(wv,v,) associated with an edge with weight » satisfies the same upper
bound. Therefore, we may replace an edge (with weight any phase) by
stationary probabilities of 1 — ¢ and 1/(1 — &) at its endpoints to get a
dominating twisted graph. Notice that removing an edge symmetrically, that
is, with & = 0, with Cauchy—Schwarz leaves all the absorption weights a(x)
unchanged. This observation will be used extensively below (in fact, this
observation, if not this terminology, was used extensively in [8].)

In this paper we will also make fundamental use of the following basic
example. Suppose the twisted graph I' = (I', 2, w, 0) has as its underlying
graph I' a cycle of length L (L > 3), d = 2, s = 0 and all weights of norm 1.
Suppose v is any vertex of I' and 7 is any phase. Consider the twisted graph
Ir=T,2,w’,0), where w'((x,y]) = w(x,y] if neither x nor y is v,
w'((x,v]) = nw(x,v]) and w'((v, yD) = n 'w(v, yD. This is equivalent to
conjugating the associated Hermitian matrix A by the diagonal matrix with
one 7 on the diagonal and all other diagonal entries 1. In particular the
eigenvalues of A and A’ agree. Using this operation repeatedly, we see that
the eigenvalues of A, or equivalently of I', are determined by L and the
product of the phases as one goes around the cycle (forward). Let e**") denote
this phase, where — 7 < 6(I') < =. Since the eigenvalues only depend on the
product, we may assume each forward edge has weight e‘*"/L, Therefore,
the resulting matrix A is cyclic and the eigenvalues are cos((6(T') + 27k) /L).
The largest of these is cos(6(I')/L). Therefore, we have proven the following
lemma.

LEMMA 3. Let T = (I',2,w, 0) be a twisted graph with underlying graph T
a cycle of length L and all weights of unit norm. Let e!*™), — 7 < 0(T") < 7, be
the product of the phases as one goes around the cycle. Then T is dominated
by the twisted graph I'' = (I'',2,0,2 cos(0(I') /L)) whose underlying graph is
L vertices with no edges and where each vertex has stationary weight s =
2cos(6(T)/L).

Cycles are particularly relevant to giving bounds for the twisted graphs
arising from Theorem 1. To see how cycles get involved suppose I' =
(', |S],w, 0) is the twisted graph associated with the data H,G, S, t g and p
is a nontrivial representation of H. Suppose y,y, - ¥, is a word in the
elements of S which represents a nonidentity element of H. Then for each
coset [g] of G/H this word determines a cycle in I', namely, the cycle

lglly,glly,_1yrgl,-. . [ys = y,8)[y152 - y,8] =[g]. The product of
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the phases w as one goes around this cycle is

Pt Y1ty 300) P(Eo - a1 Yotiyg ) P(Ehe1 Vatie))
(3) = P(t[_gl]y1y2 ykt[g])
=p(g 9192 V28)-

[The existence of such a cycle and the first equality in (3) are derived using
only the assumption that H is a normal subgroup of G. Furthermore, under
this assumption the last equality holds up to conjugation. This is one of the
reasons it may be possible in certain circumstances to apply the methods of
this paper to cases where H is non-Abelian.] If furthermore H is contained in
the center Z(G) of G, then (3) says that the phase around the cycle is
independent of [g]. Each such cycle gives us a slight gain in bounding
eigenvalues of P; thus we have the following proposition.

PROPOSITION 4. Suppose H c Z(Q) is a subgroup of the finite group G, S is
an n element symmetric generating set for G, p: H — C is a nontrivial
representation of H and P is the associated matrix. Let A be the largest
eigenvalue of P and A, the smallest. Suppose y,y, - v, is a word in the
elements of S which represents an element of H with p(y,y, ==+ v,) = e® # 1.
Let m be the maximum over x € S of the number of pairs (i, + 1) with
l1<i<kandy,=x*' Then A <1 — 2k(1 — cos(8/k))/(mn). If k is even,
then Ay, > —1+ 2k(1 — cos(6/k))/(mn) and if k is odd, then A, > —1 +
2k — cos((7 — |6D/R))/(mn).

PrROOF. Let I' be the twisted graph associated with P and consider the
cycles in I' given by the word y,y, - ¥,. Every edge is in at most m such
cycles. Therefore, if we take every cycle with weight 1/m, we use each edge
with total weight at most 1. By (3), as one goes around any of these cycles, the
phase one gets is p(g ™y, v, -+ ¥, ). Since H is contained in the center of G,
this is just p(y,y, --* ;) = e'’. Therefore, by Lemma 3 each cycle is domi-
nated by the twisted graph with no edges and s = 2 cos(6/k) on every vertex.
Each vertex is in 2/m such cycles counted with weights. Hence I' is domi-
nated by the twisted graph with these cycles removed and s = 2k cos(68/k)/m
at every vertex. There are (counted with weights) n — 2k /m edges remaining
into every vertex. Remove them with Cauchy—Schwarz (symmetrically). Thus
we see that I' is dominated by the diagonal twisted graph with d = n and
s =n — 2k(1 — cos(6/k))/m at every vertex. Hence by Lemma 2 we have
A<1—2k(1 — cos(8/k))/(mn).

For the lower bound on A,;, apply the above argument to the matrix —P.
If £ is even, the phase around the cycle is unchanged and we get —A_;, <
1 — 2k(1 — cos(8/k))/(mn), as claimed. If % is odd, then the phase around
the cycle is —e’® = e *¥™~19D Thus we get

—Apin <1 —2k(1 — cos((m—16l)/k))/(mn). o
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REMARK. If H c Z(G) as in Proposition 4 and one can find two or more
words in S which represent elements of H with p(-) # 1, then one can
improve the bound. This bound is easy to derive but tedious to state since it
depends heavily on how the cycles overlap. For example, if we have disjoint
words (no generator or its inverse is used in two different words) with lengths
k;, maximum multiplicities m; and phases 6;, then

2 k, 0,
A<1--Y% L(l—cos(—l)).
n k

m; i
If H is not central but H is cyclic, then one gets an interesting variant of
this proposition.

PROPOSITION 5.  Suppose H C G is a cyclic normal subgroup of order q of
the finite group G, S is an n-element symmetric generating set for G, p:
H — C is a nontrivial representation of H and P is the associated matrix. Let
A be the largest eigenvalue of P and A, the smallest. Suppose y, Yo YL lsa
word in the elements of S which represents a generator of H. Let m be the
maximum over x € S of the number of pairs (i,+ 1) with 1 <i <k and
y;=x*'. Then A <1 — 2k(1 — cos(2m/qk))/(mn). If k is even, then A
-1+ 2k — cos(2m/qk))/(mn) and if k is odd and q # 2, then A
+ 2k(1 — cos(w/qk))/(mn).

min =

> -1

min =

PROOF. Proceed as in the proof of Proposition 4. Take each of the cycles
generated by y,y, - y, with weight 1/m. The phase as one goes around the
cycle is p(g 'y, y, -+ ¥,8). Since H is cyclic and normal, g 'Yy, -y, 8 is
also a generator of H. Since p is nontrivial, p(g 'y, y, - y,8) # 1. Since H
is of order ¢, the argument of p(g 'y,y, -** ¥,8) must be at least 27/q.
Therefore, by Lemma 3 each cycle is dominated by the twisted graph with no
edges and s = 2cos(27/qk) on every vertex. Each vertex is in k/m such
cycles counted with weights. Hence I' is dominated by the twisted graph with
these cycles removed and s = 2cos(27/qk)/m at every vertex. There are
(counted with weights) n — 2k /m edges remaining into every vertex. Remove
them with Cauchy—Schwarz (symmetrically). Thus we see that I' is domi-
nated by the diagonal twisted graph with d =n and s=n — 2k(1 —
cos(27/qk))/m at every vertex. Hence by Lemma 2 we have A < 1 — 2k(1 —
cos(2m/qk))/(mn).

For the lower bound on A, apply the above argument to the matrix —P.
If k£ is even, the phase around the cycle is unchanged and we get —A_; <
1 - 2k — cos(2m/qk))/(mn), as claimed. If k£ is odd, then the phase around
the cycleis —p(g 'y, ¥, = y,8). If ¢ # 2, then the argument of this phase is
at least 7/q. Thus we get —A_;, <1 — 2k(1 — cos(w/qk))/(mn). O

4. The noncentral case. In the above discussion, if H is neither central
nor cyclic, then it is possible that only a fraction of the cycles will have
p() # 1. In this case one must work harder to give good bounds and the
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statements are more complicated. Very crudely, one needs to spread the
benefits from the cycles with p(:) # 1 to every vertex of the graph. In specific
examples this trick of spreading absorption around has proved to be a
powerful additional tool. For example, using the results of this section will
allow us to give eigenvalue bounds for certain solvable groups; see Proposi-
tions 12 and 13 in the next section. An interesting variant of this idea is used
in Section 6 for the specific examples of the upper triangular matrices and the
upper triangular matrices with ones on the diagonal. Also a quite pleasant
special case of this argument is given in [9] for the Burnside group B(3, n).
This section, therefore, contains a general discussion of this technique. Unfor-
tunately this section is rather technical. The reader is advised to skip to-
Section 5 on the first pass.

Suppose G is a finite group, S is an n-element symmetric generating set
for G, H c G is an Abelian normal subgroup of G, p: H — C is a nontrivial
representation of H, P is the associated matrix and I' = (T, n,w, s) is the
associated twisted graph. Let A be the largest eigenvalue of P. Suppose
¥1Yy - ¥, is a word in the elements of S which represents an element of H,
and let m be the maximum over x € S of the number of pairs (i, + 1) with
1<i<k and y, =x*L Suppose {I}} is a cover of I' by a vertex-disjoint
collection of isomorphic vertex transitive subgraphs. Suppose each I; has
degree d. We will use the I’s as follows. We will assume each I contains
some vertices where we gain from the cycle construction above. We then
spread that gain over all of I;. The most common cases in applications would
seem to be each T a vertex, an edge or a cycle.

Proceeding as in the proof of Proposition 4 take each of the cycles gener-
ated by the word y,y, - v, with weight 1/(2m). (Thus each edge is used
with total weight at most 1/2.) For each such cycle C let 7 > 6(C) > — 7 be
the argument of the phase one gets by going around the cycle. By the above
discussion, if the cycle C starts at [g], then p(g 1y, y, - y,8) = ¢'*©). By
Lemma 3, replacing each of these cycles by a stationary weight of
cos(8(C)/k)/m at every vertex on the cycle gives a dominating twisted
graph. Thus we get an absorption weight at the vertex v of

(4) a(v) = (1/m) 3 (1 - cos(6(C)/k)),
Csv

where the sum runs over all cycles containing v. This will be the only gain we
will exploit in this argument. Note that the largest eigenvalue of a Hermitian
matrix cannot decrease if we replace every entry by its absolute value. Hence
in our upper bound we may, without loss, replace the weight on every
remaining edge by its absolute value. Thus we may assume each edge has
real weight at least 1/2. In particular, we have a copy of each subgraph I
with weight 1/2 among the remaining edges. Replace all other edges and any
extra weight on the edges of the I, by a stationary weight at the vertices
using Cauchy-Schwarz symmetrically. This leaves the absorption at each
vertex unchanged. Thus we see that the largest eigenvalue of P is at most
the largest eigenvalue of the twisted graph I'' = (I'', n,w’, s') whose under-
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lying graph is the union of the I}, w’' =1/2 on every edge and s(v) =
(n — d/2) — a(v), where a(v) is given by (4) above. It suffices to find upper
bounds for the eigenvalues of each component of I'’ separately.

For each subgraph I; define the score of that subgraph to be

se(l) = X a(v) =(1/m) ¥ ¥ (1 - cos(6(C)/k)).
verl, vel; Cav

That is, the score is the total absorption weight at all the vertices of I}. For
each vertex v € I consider the following twisted graph I';(v). The underlying
graph is [}, the degree is d’ = da(v)/2sc(T}), the weight is a(v)/2sc(T}) on
each edge, s(v) = —a(v) and s(w) = 0 for w # v. The union over all vertices
in I} of the twisted graphs I';(v) and the twisted graph with no edges and a
stationary weight of (n — d/2) at every vertex of T is the component of I'’
with underlying graph I;. Let A be the adjacency matrix of the graph I}. The
Hermitian matrix associated with I'j(v) is (a(v)A/2sd(T}) — a(v)E,,)/d’,
where E,, denotes the matrix whose only nonzero entry is a 1 in the v,v
entry. The largest eigenvalue of this matrix is the largest root of

det(tI — (a(v) A/2s¢(T;) - a(v)E,,)/d’) = 0.

Thus the twisted graph I';(v) is dominated by the diagonal twisted graph of
degree d' with every stationary weight equal to the largest root of det(¢t —
a(v)A/2sc(T}) + a(v)E,,) = 0. Note that this root is

a(v)(d — {smallest root of det((d — t)I — A + 2s¢(T}) E,,) = 0})/2sc(T}).

Adding up all these contributions for all vertices v € I, we see that I'’ is

dominated by the diagonal twisted graph of degree n with stationary weight
s(v) = n — 1/2{the smallest root of det((d — t)I — A + 2s¢(T)E,,) = 0}.
Let g(z) = det((d — 2)I — A) and N be the number of vertices in I}. Then
det((d —t)I — A - 2sc¢(T)E,,) = g(¢) — 2sc¢(T,)g'(t)/N.

Note that in deriving this last formula we have used the fact that T is

13
vertex-transitive for the first time. Thus we get the following proposition.

PROPOSITION 6. Let G, S, H, p: H— C, P,T = (I, n,w, s), A, y155 *** ¥4,
m, {[}}, d, sc, A, N and g(z) be as above. Let ¢ = min; sc(T). Then A < 1 —
t/(2n), where t is the smallest root of g(t) = 2sg'(t)/N.

REMARK 1. One can get lower bounds on the smallest eigenvalue of P
from the same data exactly as in Proposition 4. If £ is even, then A, >
—1+¢/@2n). If k is odd, then we define a modified score sc’ by

sc'(l;) = (1/m) X X (1 = cos((m— 6(C))/k))
vel; Cav

and let 8 = min; sc'(I}). Then A_;, > —1 + ¢/(2n), where ¢ is the smallest
root of g(¢) = 28g'(¢)/N.
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REMARK 2. In many applications the cycle y;y, - ¥, and the I are edge
disjoint. In this case one can increase the weights in the proof by a factor of 2.
This gives the slightly stronger bound A <1 — ¢/n.

REMARK 3. More complicated statements are possible, for example, using
several different types of I'’s or a collection of I;’s which cover every vertex
several times. One of these will be used below. If we have a number of
different disjoint words (as in Remark 1 after Proposition 4), then we may
regard each as contributing separately to the score. That is,

se(I}) = Z(1/m) £ T (1 cos(8(C) k1),

verl, Cov

Proposition 6 reduces the upper bound to studying an equation involving
the characteristic polynomial of the Laplacian on the graphs I. As such, it
may be a little tedious to apply directly. For vertices, edges and cycles one has
an explicit expression for g(z) and one can give acceptable answers. If each I}
is a vertex, then N =1 and g(z) = —z. Hence we get t =2¢ and A <1 —
g/n. If each T is an edge, then N = 2 and g(z) = (z — 1)* — 1. Hence we get

t=1+¢e—V1+ &% Ifeach I is a cycle of length N, then
g(2 —2cos §) = 2cos NO — 2.

Hence we get t =2 — 2cos 6, where cos N6 + 2¢ sin NO/sin 6 = 1. These
answers are still not transparent. The following weaker bounds may be more
useful in practice.

LEMMA 7. (a) Let g be as above and let K be the smallest root of g'(K) = 0
Then the smallest root t of g(t) =2¢eg'(¢)/N satisfies the bound t >
2eK/(KN + 2¢). In particular, with notation as in Proposition 6, A <1 —
eK/((KN + 2¢&)n).

(b) If a; < d is the second largest eigenvalue of the adjacency matrix A of
[}, then

2e(d — ay) e(d — ay)

> <1- .
L2 e v ™ AT G e T 2o

ProoF. Let d = ay > a; > =+ > ay_; = —d be the eigenvalues of the
adjacency matrix A of I, Then g(z) =TIYN (d —z — ;) and ¢ is the
smallest root of

g NP1 N
FOR A Cars TS

or equivalently

(#)
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By continuity this root must occur for some ¢ in the range 0 < ¢t < K < d — «a;.
The right-hand side of equation (#) will only increase if we replace ¢ by the
larger number K and since g'(K) = 0 at ¢ = K, the rightmost summand is
1/K. Therefore

< — + =,

1 N 1
t  2& K

which gives the bound claimed in part (a).

For part (b) note that for 0 <z < d — a; we have

g'(z) 1 N-1
> -+ —.
g(z) 2z z-(d-a)

Hence K > (d — a;)/N. Thus we get the bound claimed in part (b). O

COROLLARY 7.1. (a) If each T, is a vertex, then t = 2¢ and A <1 — ¢/n.

l

(b) Ifeach T, is an edge, thent > /(1 + ) and A <1 — ¢/(2(1 + &)n).

1

(©) If each T, is a cycle of length N >3, then t > 2¢/(N + eN?) and

l

A<1-¢g/((N+ eN>n).

ProOF. For a vertex K = o, for an edge K = 1 and for a cycle of length
N > 3,

K =2(1-cos(m/N)) 29(2-V3)N2>2N"2 m

It is worth noting that the bounds in Lemma 7 say something important
about the limits of Proposition 6. The bound in Lemma 7 is asymptotically
correct if ¢ is large. In this case the lemma says I controls our upper bound
and A is approximately bounded by 1 — K/(2n) <1 —(d — a;)/(2Nn). If ¢
is small compared to KN or d — a;, then A is approximately bounded by
1 — &/(Nn). Since &/N is the average absorption weight on I, we have
spread the gain over all vertices evenly with only negligible loss.

5. Applications. As a first application of the method above we have the
following result for nilpotent groups. To fix notation, recall that if G is any
finite group, we define a sequence of normal subgroups v,(G) of G (the lower
central series of G) by y,(G) = G, y,(@) = [G, G] is the commutator subgroup
of G and, inductively, v;, (G) =[G, y,(G)]. We say G is nilpotent if y,(G) =
{id} for some i. The largest [ for which y,(G) # {id} is called the class number
of G. If A is an Abelian group, let exp(A) be the least positive integer n such
that x" = id for all x € A. To simplify some of the bounds below we will use
the following lemma, whose proof is left as an exercise.

LEMMA 8. (a) If —m<x <, thencosx <1 —2x%/m2
() If —mr<x <, thencosx <1—x%/(2+ 3x2/m?2).
() If —m/3 <x < m/3, then cos x <1 — 9x2/(27?2).



EIGENVALUES OF RANDOM WALKS ON GROUPS 1973

THEOREM 9. Let G be a nilpotent group with class number l. Let S be an
n-element symmetric generating set for G. Let P be the transition probability
matrix for the associated random walk on G, and let 1= B, > B; = B,
> =+ = By_1 = —1 be the eigenvalues of P. Let

e = max {2_2(l_i)eXP(Yi(G)/7i+1(G))}~

1<i<l

Then By <1 — 47?/(3e%222'n). If no element of S has order 2 in G, then
By <1 —872/(3e22'n). If the underlying graph is not bipartite (i.e., By_,
# —1), then By_; = —1 + 472%/(3e%2%'n), and if no element of S has order 2
in G, then By_, > —1 + 87%/(3e222!n).

Proor. We will first prove the bounds on B;. We proceed by induction on
l. The case [ = 1, that is, G Abelian, is straightforward. If G is Abelian and
S ={xy, xy,..., x,}, then the eigenvalues are all of the form A =
(1/n)X}?, x(x;) for some character y: G — C. If x is nontrivial, that is,
A # 1, then there must be some generator x, with x(x;) = w # 1. If x; is not
of order 2 in G, then x;'! €S and hence A <(n —2 + 2Re w)/n. If e =
exp(G), then

Re w < cos(2m/e).

Therefore, A <1 — 2(1 — cos(27/e))/n. By Lemma 8(a), A < 1 — 16/(e?n). If
x; is of order 2, then x(x;,) = —1 and one gets instead A <1—-2/n <1 —
8/(en). In either event this completes the case [ = 1.

Suppose now that G is of class [ and S = {x, x,,..., x,}. Applying Theo-
rem 1 to the Abelian normal subgroup H = v,(G), we see that the inductive
hypothesis provides the desired bound on the second largest eigenvalue of the
associated random walk on G/H. Thus we need only show that the desired
bound also holds for every matrix P coming from (2) for a nontrivial charac-
ter p: H = vy,(G) — C. Fix p a nontrivial representation of H and let A be
the largest eigenvalue of the corresponding matrix P.

By induction on i one sees that y,(G) is normally generated by elements of

the form [le,[sz,[xjs,...,[le_l, le]] -+ ]] with x;_ # x;.In particular, H =
v,(G) is normally generated by elements of the form
Loy Lo, [xg,. .00, x;,11 -+ 1]. However, such I-fold commutators lie in the

center of G since G 1s nilpotent of class [. Therefore, in fact H must be
generated by these elements. In particular, since p is a nontrivial representa-
tion, there must be some choice of indices for which

p([le, [sz, [xjg,...,[le_l, le]] ]]) =ef £ 1.
Fix such a choice. This /-fold commutator is a word x; x; - (x J-l)‘1 e (x j2)‘1
of length L = 3-2'"! — 2 in the generators {x, x,,..., x,} which lies in H.
The most times any element of S or its inverse can occur in L is m = 2! — 2
if no element of S has order 2 in G or m = 2!*! — 4 otherwise. Assume no
element of S has order 2 in G. By Proposition 4 above we have

A<1-2L(1 - cos(0/L)) /((2! - 2)n).
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Furthermore, since » = e’ is a value of p on an element of H and e > exp(H)
we must have [0| > 27/e. Hence 1 — cos(0/L) = 1 — cos(2m/(eL)) >
272 /(e?L? + 6), where the last inequality follows by Lemma 8(b). Therefore,
A <1-—47%L/(eL? + 6X2' — 2)n). Combining this with the trivial bounds
20 —2 <2 and e2L? + 6 < e®L(L + 2) < 3-2/"1e?L gives A <1 —
87/(3e%22'n), as desired. If some x ; has order 2 in G, then we lose a factor of
2 in the upper bound and get the stated value.

For the bounds on By_; we use the same inductive argument. All the
cycles used in the above proof were of even length; hence, the argument for
the inductive step is exactly the same as the above. A new argument is
required only for the case [ = 1. If G is Abelian and S = {x,, x,,..., x,}, then
as above the eigenvalues are all of the form A = (1/n)Z}_; x(x;) for some
character y: G — C. If the underlying graph is not bipartite, the y(x;) cannot
all be — 1. Thus there must be some generator x; with y(x;,) = 0 # —1.If x;
is not of order 2 in G, then x;! € S and hence A > (—n + 2 + 2Re w)/n. If
x; has order m < e = exp(G), then

Re w = cos(2mk/m) = —cos(mw(2k — m)/m).
Since this is not —1, at least one must have Re w > —cos(7/m) > —cos(w/e).
Therefore, A > —1 + 2(1 — cos(/e))/n. By Lemma 8(c), A > —1 + 9/(e?n).
If x; is of order 2, then x(x;) = 1 and one gets instead A > -1+ 2/n > -1
+ 8/(e?n). O

The bound above relies on a cycle one has in any nilpotent group of class /.
This cycle is quite long for [ large and can contain one element inordinately
often. For a specific nilpotent group one can hope to greatly improve this
bound. For example, for p an odd prime, let U,(p) denote the group of upper
triangular matrices over Z/pZ with 1’s on the diagonal. Let E,, 1 <k <
n — 1, be the matrix all of whose off-diagonal entries are zero except the
k,k + 1 entry, which is 1. Then S ={E{!,..., E}*'} is a generating set for
U,(p). Sharp bounds on B; for the associated random walk on U,(p) are
given in [8] and in Section 6 below. It is shown that there are constants c,
and c, such that 1 — ¢;/(p%n) = B; = 1 — ¢,/(p2n). A direct application of
Proposition 4 gives the following weaker result. It should be noted that even
this weak result is stronger than can be obtained by path methods of [6] and
[4].

ProproSITION 10. Let B, be the second largest eigenvalue for the random
walk on U,(p) defined above. Then B; < cos(m/(2p(n — 1)).

Proor. The argument proceeds almost exactly as in the proof of Theorem
9 above. However, instead of the cycle coming from an iterated commutator
which we used in that proof, we use cycles of the form

-lp-1 .. -1
Ei+k—1Ei+k—2 Ei+1Ei Ei+1 Ei+k—1Ei+kEi+k—1
.. -1 p-1 | p-1
' Ei+1EiEi+1Ei+2 E'+k’

13
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forl<k<n—-2,1<i<n—k— 1. (These cycles were used by Ellenberg to
study the diameter of U,( p) [5].) This cycle represents the matrix all of whose
off-diagonal entries are zero except the i,i + k£ + 1 entry, which is 1 [5]. For
k fixed, these elements generate vy, (G)/ ;. 2(G). The inductive argument
goes as above except that the relevant cycle now has length L = 4%k and no
generator occurs more than m = 4 times in the cycle. Hence Proposition 4
gives A <1 — 2k(1 — cos(6/(4k))/(2n — 2). The exponent of
Yi+ 0@/ V14 2(@) is p; hence, A <1 — 2k(1 — cos(7/(2pk)))/(2n — 2). This
upper bound is weakest when k =n — 1, in which case it becomes A <
cos(m/@2p(n — 1)). O

Thus one sees that Theorem 1 and Proposition 4 above give a pleasant
method for bounding eigenvalues of random walks on nilpotent groups. Other
examples can be done using Proposition 5 instead. Following [3], let p be an
odd prime and let G be the set of polynomials with coefficients in the finite
field Z/pZ taken mod xV*1 of the form a,x + a,x? + -+ +ayx” with a, €
(Z/pZ)* and a; € Z/pZ for 2 < i < N. Then Gy is a group under composition
and if « is a multiplicative generator for (Z/pZ)*, then S = {ax, o 'x, x +
22, (x+x2) L x+x2..., 2 +xV,(x + x¥)"1} is a natural symmetric gener-
ating set. See [7] for more about these groups.

PROPOSITION 11. Let Gy and S be as above, and let 1 = B8y > B, = B, =
© 2 Big-1 = —1 be the eigenvalues of the associated transition probability
matrix P. Then

Bi=1-(1-cos(2n/(p —1)))/N <1-8/(p?N).

ProOF. We proceed by induction on N using the exact sequence

If N = 1, then Gy, is the group (Z/pZ)* = Z/(p — 1)Z and the second largest
eigenvalue is B; = cos(27/(p — 1)) <1 — 8/p? If N > 2, then we are re-
duced by Theorem 1 to bounding the eigenvalues of an induced random walk
on Gy _, and the twisted versions for all nontrivial representations of H. The
induced random walk on Gy_; has the identity occurring twice in the
generating set. Therefore, its second largest eigenvalue satisfies

A= (N = 1)/N-By(Gy_y) + 1/N = 1 = (1 - cos(2n/(p - 1)) /N
<1-8/(p®N).

If p is a nontrivial representation of H, then we apply Proposition 5 with the
word y, = (x + xV), which has & =m = 1. We conclude that the second
largest eigenvalue of P satisfies

A<1-(1-cos(27/p))/N<1~-(1~-cos(27/(p —1)))/N.

Therefore, the second largest eigenvalue for G, comes from the trivial
representation of H and is 1 — (1 — cos(2#w/(p — 1)))/N. O
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It is also possible to give nice bounds using Proposition 6. The following
two results are examples.

PROPOSITION 12. Suppose G = H X K for H and K Abelian and S is a
union of a generating set for K and one for H. Let P be the associated
transition probability matrix and let B, be its second largest eigenvalue. Let
e = max(exp(H), exp(K)) and n = |S|. Then B, <1 — 8/(e’n).

Proor. Let S = Siy U Sj. By Theorem 1 it suffices to bound the eigenval-
ues of the induced random walk on K and the eigenvalues of the matrix P
associated with each nontrivial representation of H. The induced random
walk on K is the one generated by the n-element set consisting of Sy
together with the identity element with multiplicity |Sgl. Therefore, by
Theorem 8 (for the trivial case [ = 1) it has second largest eigenvalue
bounded above by 1 — 8/(e2n). (Note that here we have used the slightly
stronger bound contained in the proof of Theorem 9 for [ = 1.)

Next suppose p is a nontrivial representation of H and P is the associated
matrix. Apply Proposition 6, where we use several disjoint words. If
Sy ={xf!, xf, ..., x}"), then take the words to be x1, x,,..., x,. Suppose
g €K is viewed as a vertex of the quotient. Since the conjugates
g lx,8,8 'x,8,...,8 'x,g generate H, at least one of the phases p(g ™ 'x,g)
must be nontrivial. Additionally, since H has exponent at most e, its argu-
ment must be at least 277/e. Apply Proposition 6 (as generalized in Remark 3)
with each T a vertex. Since at least one of the terms in the score must have
argument at least 27/e, we have sc(I}) > (1 — cos(2m/e))/2 (the extra 2
since we may have an x; of order 2, hence m = 2). Therefore, A <1 — (1 —
cos(2m/e))/n < 1 — 8/(e?n) (where we have gained an extra factor of 2 since
the I, and the cycles are edge-disjoint). O

PROPOSITION 13. Suppose G = H X Z/NZ with H Abelian, N > 3 and
S ={x,, x5,..., x,} is a symmetric generating set for G for which x; = (x,)™*
is a generator of Z/NZ and {x,...,x,} € H. (Note that {xs,..., x,} are not
assumed to generate H.) Let B, be the second largest eigenvalue of the
associated transition probability matrix P. Let e = exp(H). Then B, <1 —
8/((e?2N + 4N?)n).

Proor. By Theorem 1 it suffices to bound the second largest eigenvalue
for the induced random walk on Z/NZ and the eigenvalues of the matrix P
associated with each nontrivial representation of H. The induced random
walk on Z/NZ has the identity occurring with multiplicity » — 2; hence, its
second largest eigenvalue is

(n — 2+ 2cos(27/N))/n <1 —27/(N?%n).

Let p be a nontrivial representation of H and P be the associated matrix.
To bound the largest eigenvalue A of P we will apply Proposition 6 (as
generalized in Remark 3). Take the cycles to be half of the x,’s,3 <i < n, one
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from each generator /inverse pair as in Proposition 12 and take I'; to be all of
Z/NZ. At the vertex [g] € G/H the phase on the cycle generated by x; is
p(g~'x,g). As the g7'x,g range over all g and all x,, they give a generating
set for H. Hence at least one of the phases p(g~'x;g) must be nontrivial and
since H has exponent e, it must have argument at least 27/e. Therefore, at
least one of the vertices must have absorption of at least (1 — cos(27/e))/2 >
4/e? (the extra 2 since we may have an x; of order 2). Thus the score of the
one I, is at least 4 /e?. By Corollary 7.1(c), A < 1 — 8/((eN + 4N?)n). (An
extra factor of 2 is added since the cycles and T, are edge-disjoint.) O

The bound in Proposition 13 is essentially sharp if G is a wreath product
(Z/eZ)N X Z/NZ, with the obvious four-element symmetric generating set.
However, since the argument assumes that the various conjugates of the x;’s
are independent, it is probably not very good for most extensions. Better
bounds in those cases will require more detailed information about the group.

6. More applications. In this section we give another argument
for using a noncentral Abelian subgroup. This argument can be reformulated
as using a cover by a collection of subgraphs as in Section 4. However, instead
of using the crude bounds given in Section 4, one uses bounds which depend
on which subset of the vertices has absorption. This argument is very closely
related to the one given in [8]. As in Proposition 10 above, let p be an odd
integer and let U,(p) € GL(n, p) be the group of upper triangular n X n
matrices over Z/pZ with 1’s on the diagonal. Let E,, 1 <k <n — 1, be the
n X n matrix with 1’s on the diagonal and in the k,k + 1 entry and 0’s
elsewhere. Then S = {E{%,..., E}')} is a natural generating set for U,(p). If
p is prime, let T,(p) € GL(n, p) be the group of upper triangular n X n
matrices over Z/pZ with nonzero entries on the diagonal. Let a be a
multiplicative generator of (Z/pZ)*. Let D,(y) denote the diagonal matrix
with a y in the i,i entry and 1’s in all other diagonal entries. Then
S’ ={Dy(a), Dy(a™V),...,D(a™ 1), E{t},..., E!} is a natural generating set
for T,(p). The goal of this section will be to prove the following bounds.

THEOREM 14. (a) Let B, be the second largest eigenvalue of the transition
probability matrix P, for the random walk on U, p) generated by S. Then
there is a constant C > 0 such that B, <1 — C/(p®n).

(b) Let B, be the second largest eigenvalue of the transition probability
matrix P, for the random walk on T,(p) generated by S'. Then there is a
constant C' > 0 such that B, <1 — C'/(p?n).

ProOF. The proofs of (a) and (b) are almost identical. We will give the
proof of (a) in its entirety and sketch the changes needed to extend it to
T,(p). We will proceed by induction on n, the case n = 2 being the usual
random walk on Z/pZ. Let H be the normal subgroup of U,( p) consisting of
all matrices whose only nonzero entries are the ones on the diagonal or are in
the nth column. Identify the quotient U,(p)/H with U,_(p) which we view
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as being contained in U,(p) as the matrices with zeros above the diagonal in
the nth column (in particular, this gives us our required coset representa-
tives.) By Theorem 1 it suffices to bound the second largest eigenvalue of the
induced random walk on U,_,(p) and the eigenvalues of the matrix P
associated with each nontrivial representation of H.

The induced random walk on U, _,(p) is just the random walk given by the
usual generating set for U,_,(p) together with the identity element with
multiplicity 2. Therefore, it is given by the matrix P’ = (n — 2)P,_, + I)/(n
— 1). The second largest eigenvalue of this matrix is

A=((r=2)B(U,-+(p)) + 1)/(n = 1) <1 - e(n —2)/(p*(n - 1)°)

<1l-c¢/(p%n).
Now we turn to the bounds on the eigenvalues of P for nontrivial repre-
sentations of H. Choose any nontrivial character p: H - C and view p as
also being a map

p: {(n — 1) X 1 column vectors over Z/pZ} — C.

If AeU,_( p) we may therefore evaluate p on any column of A. Let A,
denote the ith column of A. Since all the generators other than E*! lie 1n

._1(p), they map coset representatives to coset representatives. Hence the
edges they generate all have weight 1. Only the edges generated by E*
(which are loops) get nontrivial phases. In fact, if A € U,_,(p), then the loop
generated by E, , at A gets a phase of p(A™'E,_;A)=p((A™1).,_).
Therefore, the twisted graph I' associated with P has d=2(n-1), all
phases 1 and a stationary weight of s(A) = 2Re(p((A71).,_,)) or equiva-
lently an absorption weight of a(A) = 2(1 — Re(p((A~1).,_,))) at the ver-
tex A.

We wish to spread this absorption over all the vertices. Instead of a cover
of U, ,(p) by graphs, we will use the following definition. Call a matrix
A € U,_,(p)of type k if k is the least positive integer with p((A~1),_,) # 1.
Note that since p is nontrivial and the diagonal entries of A are all 1’s, every
A must have some type between 1 and n — 1. The above says that a vertex A
has nonzero absorption if and only if it is of type 1. Also note that any vertex
of type 1 must have a(A) > 2(1 — cos(27/p)). Consider the p-cycles in
U,_(p) generated by E,_,. Since E, _, A means add the (n — 1)st row of A
to the (n — 2)nd row of A, (E,_, A)”! means subtract the (n — 2)nd column
of A™! from the (n — 1)st column of A~!. Suppose one of the p-cycles
generated by E, , contains an element of type 2. Then it must contain
exactly one element of type 2 and the remaining p — 1 elements are of type 1.
If a p-cycle generated by E, _, does not contain an element of type 2, remove
it by applying Cauchy—Schwarz symmetrically (leaving the absorption un-
changed). If it does contain an element of type 2, we wish to remove it using
Cauchy—-Schwarz asymmetrically. For this purpose we have the following
lemma whose proof is an easy exercise in applying Cauchy—Schwarz. For a
complete proof see [8], Lemma 4. (Note that this lemma really says a certain
asymmetric diagonal twisted graph dominates a cycle.)
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LEMMA 15. There is a function f(&) > 0 (depending on p) such that, for
any 0 < & < 1.5p~? and any real numbers ¢, ¢y,..., ¢,
p-1
Gody + b1y + - +¢p-2¢p—1 + ¢p-1¢o < (1 _f(a))¢§ + (1 + 8) Z ¢i2'
i=1
Furthermore (p — De > f(e) > (p — De — p%2/6.

Applying this lemma to a p-cycle with one element of type 2 and p — 1
elements of type 1, we see that we may remove the p-cycle, leaving an
absorption weight of a(A) > 2(1 — cos(27/p) — &) at the elements of type 1
and an absorption weight of 2 f(¢) at the vertex of type 2. Here ¢ will be fixed
for the time being and will be determined later.

Repeat this argument looking at the p-cycles generated by E,_ . If such a
p-cycle contains a matrix of type 3, then the remaining p — 1 matrices in the
cycle must all be of type 2. Remove the p-cycles that do not contain an
element of type 3 symmetrically with Cauchy—Schwarz (leaving absorptions
unchanged). Remove the p-cycles containing an element of type 3 asymmetri-
cally using Lemma 15. Doing so we may leave an absorption weight of
2(f(e) — &) at the vertices of type 2 and 2f(s) at the vertex of type 3.
Inductively one can remove all edges and spread the absorption over all the
vertices, leaving each with an absorption weight of at least

a(A) > 2(1 — cos(2m/p) — &) = 27/p% — 2¢
at the elements of type 1 and at least

a(A) >2(f(e) — &) 22(p—2)e—p%?/3
at all other vertices. Taking & = cp~® for some small constant ¢ > 0 gives
a(A) > c'p~? at all vertices for some other constant ¢’ > 0. Thus G is
dominated by the diagonal twisted graph with d = 2(n — 1) and a stationary
weight of at most 2(n — 1) — ¢'p~2 at every vertex. Thus the largest eigen-
value is bounded by 1 — C/(p2n), for some C > 0.

The proof of (b) is virtually identical. We let H be the normal subgroup of
T,(p) consisting of all matrices whose only nonzero entries are on the
diagonal or are in the nth column and which have 1’s on the diagonal except
possibly in the last column. Again the quotient 7,(p)/H can be identified
with T,,_,(p), which we view as being contained in 7,(p). By Theorem 1 it
again suffices to bound the second largest eigenvalue of the induced random
walk on T,_,(p) and the eigenvalues of the matrix P associated to each
nontrivial representation of H.

The induced random walk on T, _,(p) is just the random walk given by the
usual generating set for T,_,(p) together with the identity element with
multiplicity 4. Therefore, the bound goes through as before. Choose a nontriv-
ial character p: H — C and view p as ( p;, p,) with p; being viewed as a map

p1: {(n — 1) X 1 column vectors over Z/pZ} — C,

and p,: (Z/pZ)* — C.If p, is nontrivial, then we get nontrivial absorption at
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every vertex from the generators D,(a) and D,(a!). Thus we need only
consider the case where p, is trivial. In this case we proceed exactly as for
U.(p). Call a matrix A € T, _,(p) of type k if k is the least positive integer
with p,((A™"),,_,) # 1. Then a vertex A has nonzero absorption weight and
of at least 2(1 — cos(27/p)) if and only if it is of type 1. Remove the p-cycles
inductively, pushing the absorption to higher types using Lemma 15 exactly
as before. Then the bounds from before still apply but with different final
constants since we have more generators. O

7. Concluding remarks. It is worth noting that there is something very
differential geometric/topological about this method. In fact, geometric ideas
motivated several of the steps in this paper and may assist in generalizing
these results to non-Abelian H. The subgroup H acts on the Cayley graph I'’
of G and the map I'" — T is a covering map. We may view I'’ as sitting over
I' with each point having preimage a copy of H. We want to exploit the way
these copies of H twist as we go around loops to bound the eigenvalues. To
detect this twist, we choose a representation p: H — 8! c C of H. With this
representation fixed we get a complex line bundle E [or alternately a U(1)-
bundle] over I'. That is, over every point of I' we have a copy of C. The choice
of coset representatives is a choice of local trivialization of this U(1)-bundle,
that is, a concrete identification of this preimage with C. The phases on the
edges are then the gluing data describing the bundle. These data measure the
twisting of the bundle. For example, this picture motivated the discussion
that for a twisted graph with underlying graph a cycle only the product of all
the phases as one went around mattered. In topological terminology, since E
is induced by the bundle I', it is a flat bundle. Therefore, one gets a
monodromy representation (I') = U(1) as follows. If « is a cycle in T, that
is, a product of elements of S representing an element of H, then it has a
natural lift to a path in I'’, hence to a path in E. Since the final endpoint of
this lifted path projects to the same element of T' as the initial endpoint, the
difference between the initial and final values is an element e’ € U(1). This
element is an image of a under the map #,(I') » U(1). Thus the twist
around cycles we used to bound eigenvalues is also the twist of a certain
natural U(1) bundle over T.

The final step which is not as well understood is to turn this twist into a
global eigenvalue bound. There seems to be no way to do this other than the
somewhat ad hoc bounds given above. One would like to be able to say that
there is some global “characteristic class” that describes the twisting and that
the nontriviality of this global number gives a global bound on the absorption
and hence a bound on ;. This does not seem to be the case.
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