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EXACT ASYMPTOTICS FOR THE PROBABILITY OF EXIT
FROM A DOMAIN AND APPLICATIONS TO SIMULATION

By PaoLo BALDI

II Universita di Roma

We study the asymptotics of the exit probability P, {r < T}, where 7
is the exit time from an open set and P, is the law of a diffusion process
with a small parameter ¢ multiplying the diffusion coefficient. We con-
sider the case of the Brownian bridge in many dimensions, this choice
being motivated by applications to numerical simulation. The method uses
recent results reducing the problem to the solution of a system of linear
first-order PDE’s.

1. Introduction. Let D c R" be an open set, and let us consider the
diffusion process X° which is associated with the stochastic differential
equation
(11) dX7 = b(X7,t)dt + Veo(XF,t) dB,,

o Xf=x€D.

Let 7 denote the exit time of X* from D. In this paper we are concerned with
the problem of finding the exact asymptotics of

(1.2) P; (r<T},

where T' > 0 and P?, is the law of X°. Of course this quantity tends to 1 if

the solution of the deterministic ODE

%, =b(x,,t),

X, =x
exits from D before (<) time T. In any case the Ventsel-Freidlin theory of
large deviations states that

1
(1.3) logP? {r< T} ~ ——u(x,s),
&

where the function u is defined in the following way. Define the action
functional I on the set of all continuous paths y by

(14)  I(y) = %/f<a(yt,t)‘1(y; — b(7,,8)), 7, — b(v,, 1)) dt

if v is absolutely continuous and I,(y) = + otherwise (here a = oo *). Then
u(x, s) is the infimum of I, taken on the set of all paths starting at x at time
s and such that y(¢) € D¢ for some ¢ < T.

Received March 1994; revised March 1995.
AMS 1991 subject classifications. Primary 60F10; secondary 60J60, 60J65.
Key words and phrases. Large deviations, exact asymptotics, Brownian bridge.

1644

I8
]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Probability. RIK®RN

WWW.jstor.org



ASYMPTOTICS FOR THE EXIT PROBABILITY 1645

The theory of large deviations, more precisely, states that if the minimiz-
ing path y for I, is unique, then the asymptotics of the quantity in (1.2) are
the same as

(1.5) P?{r<T, X° € Bs(v)},

where by B;(y) we denote the neighborhood (a tube) of radius & of y. This
suggests that the requested asymptotics should depend only on the behavior
(curvature?) of the boundary near the point ¢ at which the minimizer y
reaches dD.

The goal of this paper is to give an exact equivalent for P? {r < T}, that is,
to remove the log in (1.3). More precisely, we deal with the situation in which
X°¢ is a Brownian bridge with a small parameter multiplying the diffusion
coefficient.

The interest for this particular situation, besides the natural question of
determining how the boundary near the exit point affects the asymptotics, is
motivated by the following application. Let W be an n-dimensional Brownian
motion, and let f: D — R be a function on the open set D. Suppose we want
to evaluate numerically the quantity

(1.6) [E"[f(:f(Ws)ds].

Such quantities appear naturally in the stochastic representation of the
solutions of second-order linear PDE’s. One way to do that is to fix a step ¢
and to simulate the subsequent positions of a path W, = x, W,
Wyereoos W, y... . If N is the first index such that Wy, & D, one then approxi-

mates the functional

(W) = ['F(W,) ds
by the sum

N-1
Is(W) =é¢& Z f(Wks)
k=0

Then, averaging the functional I, over many independently simulated paths,
one has the desired approximation of the expectation in (1.6).

The drawback to this procedure is that one implicitly assumes that Ne is a
good approximation of the exit time 7. Indeed this is not the case, since, if
k <N, we know that W, _,,, and W, are still in D, but there is a strictly
positive probability that the path has performed an excursion out of D in the
time interval [(k — 1)¢&, ke]. If f is nonnegative, this means that in the above
described procedure I, systematically overestimates the functional I.

One way to handle the problem is as follows: at each step (&, say), first
simulate W, . If W,,,, € D, then compute the probability p that the
process has gone out of D in the time interval [ke&,(k + 1)e], given the
positions W), and W, . ,,,, and with probability p kill the process and choose
(k + e as an approximation of the exit time 7, and with probability 1 — p
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continue the simulation of the path. The law of a Brownian motion on a given
time interval [k&,(k + 1)&] conditioned on its positions W, = x and W, . ),
= y is, up to a translation in the time scale, a Brownian bridge conditioned to
be in y at time £ and starting at x. Thus the killing probability p is the exit
probability from D of such a process.

Unfortunately this is not an easy quantity to compute, so we suggest
replacing it with its asymptotics as & — 0. In the last section we produce
results of simulations showing that the overestimation above can actually
produce inaccurate results, which can be considerably improved by the
suggested correction with an acceptable price in terms of CPU time.

Of course it might be important to obtain the exact asymptotics also for
other conditioned processes, in order to apply the above described technique
to processes other than Brownian motion. We think that the argument
developed here, which relies on recent results of Fleming and James, might
be able to handle more general diffusion processes, but we do not know
whether the results would be explicit enough to be effectively implemented in
a computer program. Possibly these more general situations should be han-
dled by approximating the conditioned diffusion with the bridge arising from
the conditioning of the diffusion obtained by freezing its drift and diffusion
coefficients, a situation that should be reduced to the Brownian bridge.

The above described procedure might be useful in other problems in
numerical simulation. In particular, it should improve existing techniques of
simulation of diffusion processes with reflection, or other conditions, at the
boundary.

The table of contents is as follows. In Section 2 we recall the results of
Fleming and James, reducing the computation of the requested asymptotics
to the solution of a linear partial differential problem of the first order. In
Section 3 we study the geometry of the characteristics of this system for the
(multidimensional) Brownian bridge and show that the results of Fleming
and James are applicable in this situation. We compute the asymptotics in
Section 4 (Theorem 4.4), and its dependence on the geometry of D is made
explicit; also, some examples are given. Section 5 gives a geometric interpre-
tation of the asymptotics, whereas Section 6 contains the results of the
simulations and some related questions.

2. A general result. Let X° be the solution of (1.1). We shall assume
o = I (the identity matrix) and that the vector field 4: D X [0,T] - R" is
Lipschitz continuous in x uniformly in 2.

In this section we recall a result giving the asymptotics for the exit
probability (1.2) under suitable assumptions. Let us define the function u:
D x[0,T] - R by

u(x,s) =inf I (y),

where I, is as in (1.4), the infimum being taken on the set of all paths
starting at x at time s and such that y(¢) € D¢ for some ¢ < T. It can be
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shown that u solves the Hamilton-Jacobi equation

du 1 9
— +b-Du— —|Dul*=0 in D x]0,T|,
2.1) as 2
(2. u(x,s) =0 on ¢D X [0,T],
u(x,8) > +» ast »T,x €D.

The above described equation should be considered in the sense of viscosity
solutions [Fleming and Souganidis (1986)] and is intended in the classical
sense at each point at which u is differentiable.

The next result, due to Fleming and James (1992), gives an expansion for
the exit probability (1.2), at least for (x, s) in a set N ¢ D X [0, T'] satisfying
the following assumptions.

ASSUMPTION (A). (a) NcD X [0,T'],T' <T and N is an open set.
(b) u € Z*(N).
(c) Let us write

B(x,s) =b(x,s) — Du(x,s), (x,s) €N.
Let v, , be the solution of

’5/x,s(t) = B(t’ yx,s(t))?

(2.2)
Ye,s(8) =,

and let z, ; be the first point at which vy,  first reaches JN. If
l—‘1 = {zx,s? (x’ S) € N}’

then I'y € ¢D. Moreover I'; is a #"-manifold which is relatively open in N,
and v, , crosses N nontangentially.

Then one has [Fleming and James (1992)] the following theorem.

THEOREM 2.1. Let N c D X [0,T[ be such that Assumption (A) is satis-
fied. Then for (x,s) € N the following expansion holds:

u(x,s)

P{r<T) - exp(— )exp[—w(x,s)]

X(1+ gy(x,8)e+ - +i,(x,5)e™ +0(e™)),

where w: N - R™ is the solution of

i b — Du)D. ————lA in N
.__+ =
P ( u) Dw 5 Au inN,

w=0 ondDXxX[0,T[ NN,
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whereas the coefficients ; are defined by iteration by ¥, = 1 and

P 1
% + (b = Du) Dy, = —| 5 (1Dwl® — Aw)yy_; = (Dw, Dy _y)

1
+§A‘/’k—l inN,

¢, =0 on oD x[0,T[ N N.

REMARK 2.2. The original result in Fleming and James (1992) deals with
a more general situation (b also depending on &, ¢ nonconstant etc.).

Assumption (A) also insures that the differential systems or w and ¢, can
actually be solved by characteristics (the characteristics of both systems are,
moreover, the same). Thus the solution of the differential system of Theorem
2.1 is simple: one has to solve the ordinary equation

. ¥: = B(2, Ye)s
Ys =X,
where 8 = b — Du, and then
1
(2.3) w(x,s) = exp([ — Au(y,,t) dt),
s 2

7 being the time at which y reaches JN.

REMARK 2.3. One might ask whether the expansion of Theorem 2.1 still
holds if Assumption (A) is not satisfied. To make this point clear, let us
consider the example of Brownian motion (i.e., & = 0). The exact asymptotics
for the exit time in this situation can be found in Baldi (1991) or in Bellaiche
[(1981), page 185], and they are of the form

u(x,s)
P; {r<T} ~clsexp(— - ),
for some constant ¢, > 0 (at least for “most” points x € D). Thus the first
term before the exponential is of order 1 in &, whereas in the asymptotics of
Theorem 2.1 the first term is a constant, that is, of order 0 in &.

These two situations show another difference: as pointed out in Fleming
and James (1992), under Assumption (A) the minimizing path joining a point
(x,s) € N to the boundary reaches dD at a time T’ < T'. In the case of the
Brownian motion, the boundary is always reached exactly at time T'. It seems
that for the asymptotics of the exit time two typical situations appear,
depending on whether the expansion begins with a term of order 1 or not, and
it might be interesting to classify these two situations. The time at which the
minimizers reach the boundary seems to make a difference.

A related result worth mentioning is given in Azencott (1985). He deals
with expansions of quantities of the type

p;{X*eT},
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I' being a set of paths, for which certain hypotheses of regularity of the
boundary (as an infinite-dimensional manifold) hold. In principle these re-
sults might be applicable to our situation with I' = {set of paths which reach
D€ before time T}. Although in general it is difficult to check Azencott’s
assumptions, they are certainly not satisfied in the range of application of
Theorem 2.1 because also Azencott’s expansion begins with a term of order 1
in &.

3. The geometry of the Brownian bridge. In this section we make
some remarks concerning the geometry of the minimizers of the action
functional I, for the Brownian bridge, which will allow us to determine for
which points (x, s) Theorem 2.1 can be applied. Most of this section consists
of the usual remarks connecting the uniqueness of the minimizers and the
regularity of the solution u« of the Hamilton-Jacobi equation.

We shall consider the following family of diffusion processes (Brownian
bridge with a small parameter):

8()_

dX*(t) = = ===

(3.1) dt + Ve dB,,

X°(s) =x,
where y is a fixed point in the open set D. If by I', . we denote the set of all

X, 8

absolutely continuous paths y such that y(s) =x and y(¢) € D for some
0 <t <1, and we write

y()er()— ’dr’

1—-r

T,.(7) = %fs

then
u(x,s) = 1nf J (7).

LEMMA 3.1. We have

L(lx—ol® ly—ol® |x—yl?
. = inf inf — + - .
(82)  u(x,s) ¢lenfDoi?<12{ t—s 1-—¢ 1-s

Proor. If yeT, ,,let 0 <¢ <1 and ¢ € JD be such that y(¢) = ¢. The
infimum of JJ; ; over such paths is a typical problem of calculus of variations
with fixed endpomts The Lagrange equation is

y(r) =0,
meaning that the minimum is attained by the line segment joining x to ¢ at
uniform speed. In order to minimize J, ;, ¥ will be chosen to be a solution of

y(r) -y

§(r) = -,

y(¢) = ¢
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on the time interval [¢, 1] (by the way, this gives the line segment from ¢ to y
driven at uniform speed). On this path the functional J, .1 takes the value

1 4 ¢ 1
T =5 [

+ d
t—s 1-r "

r—s
— + [—— -
[x y+ (e x)]
(the integrand vanishes on [, 1]). Integration gives the value

1( 1 1 1-
5{1—t 1—3}(¢_x)t—

=i{|x—¢>|2 . ly — ¢l ~ Ix—y|2}

2

s
+x—y
s

2 t—s 1-—1¢ 1-s

Of course the minimum of J ; over all paths startmg at x at time s and
reaching the boundary before time 1 is given by the minimum of this quantity
ingpgedDand t,s <t <1 O

It is easy to compute the infimum in ¢ of the left-hand side of (3.2) for fixed
¢. The minimum indeed is attained for

lx — ¢l
x— ¢l +|y — oI’

(3.3) t=t(x,s) ==s+(1—s)|
which gives

(84) u(x,s) = ¢me 2(—11—-—){(|x — ¢l +1y — o) - |x - yI?}.

REMARK 3.2. The quantity #(x, s) is the time at which the path Y, s» Which
minimizes the action functional starting at x at time s, reaches the bound-
ary. It is important to remark that #(x,s) is constant along Ve, s; OTE
precisely, ¢(y, ,(r),r) = t(x,s) for every s < r < t(x, s). It is also clear that
t(x,s) < 1 for every s < 1.

REMARK 3.3. The drift for the Brownian bridge is

x -y
b(x,8) = ———
(x,¢) T
and has a singularity at ¢ = 1. This does not present a real difficulty in
applying Theorem 2.1, where the drift is supposed to be Lipschitz continuous.
Indeed, as remarked in the Introduction, one has

Prdr<T} ~P;{r<T,X*€By(y)} ~ P {r=<m),

where 7 is the supremum of the exit times from D of the paths in B;(y). If &
is chosen smaller than d(y, dD)/2, then 7 is strictly smaller than 1 and only
the behavior of the process in the time interval [0, ] is relevant, where the
drift coefficient is regular.
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In the following we shall write

1 2 2
(3:5) I(x,¢) = 5((Ix = ol +1y = ¢)" = lx —»F),
ozl
(3.6) fo=to(x) = g Ty — gl

One should remark that the level sets of I are ellipsoids of revolution whose
foci are located at x and y.
Also, from (3.6) it follows that

(3.7) 3= 8(2)| = =1y - ()]

1—
If D is the set of all points x € D such that the infimum in (3.4) is attained
at only one point ¢ € 9D, then one can define a function ¢: D — 4D by

(3.8) ¢(x) = argminl(x, £) = argmin[|x — & + |y — €]
£€9D £€ oD

so that, for x € D,

(3.9) u(x,s) =

1
I .
TERECRIE)
Let ¥: R” — R be a smooth function, and let ¢, € D be a local minimum of
¥ on dD; ¢, is said to be nondegenerate if for some local system of
coordinates G: R""! > U — gD the Hessian of ¥ oG is positive definite at
G ().

DEFINITION 3.4. A point x € D is said to be regular if the following hold:

(a) The line segment joining x to y is entirely contained in D.

(b) The minimum of ¢ — I(x, ¢) on JD is attained at a unique point
¢y = ¢(x). Moreover, D is #” in a neighborhood of ¢,, and ¢, is a
nondegenerate minimum for ¢ — I(x, ¢).

PROPOSITION 3.5. Let x € D be a regular point. Then there exists a neigh-
borhood % of x such that if p € Z, then p is a regular point. Moreover, the
mapping p = ¢(p) is €° on ¥ and u is €°(% X [0, TD.

ProoF. Because of (3.9) we only need to prove that there exists a neigh-
borhood #Z of x such that if p € Z, then p is also a regular point and the
mapping p — ¢(p) is F(¥).

Let (U, G) be a local system of coordinates of dD near ¢, = ¢(x), and let
us consider the function F: D X U — R defined by F(x, z) = I(x, G(z)). One
has

D,F(x,G () =0

because G~ !(¢,) is a local minimum of z — F(x, z). Moreover, the assump-
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tion of nondegeneracy of the Hessian of z — F(x, z) at z = G~ '(¢,) allows us
to apply the implicit function theorem, obtaining that for p in a neighborhood
U, of x there exists a unique point z(p) in a neighborhood V; of G~1(¢,)
such that

D,F(p,z(p)) =0.
This means that z(p) is a critical point of z —» F(p, 2).

Now the assumption that ¢, is the unique minimum of ¢ — I(x, ¢) allows
us easily to deduce that for any neighborhood W of ¢, there exists a
neighborhood Uj, of x such that for every p € U, the minimum of ¢ — I(p, ¢)
is attained in W.

Thus for p € U, N U, the minimum of z — F(x, z) = I(x,G(2)) is at-
tained in V; N G~'(W). However, in this set z(p) is the unique critical point
of z > F(p, z), which is thus the minimum. The mapping p — z(p) is &*
because of the implicit function theorem, and the same is true for p — ¢(p)
= G(z(p). O

In the next section we shall compute the asymptotics of the exit probability
for the Brownian bridge starting at a regular point. We see now that every
x € D “in general position” is regular.

Let I'; and I', be two smooth hypersurfaces mutually tangent at a point ¢,
and let us denote by T, the tangent hyperplane at the two surfaces at ¢. If
w € Ty, let y; and y, be two paths on I'; and T, respectively, such that

71(0) = 72(0) = d), 71(0) = '}’2(0) =w.
Then

171(8) = 72(2)| < fotlms) ~ ¥a(s)|ds = O(¢2).

We say that at ¢ there is a contact of order greater than 1 between I'; and T,
if for some w € T one has

|71(2) — v2(2)| = o(£?)
ast — 0.
As we shall see in Section 5, I'; and I', have a contact of order greater than
1 if and only if the Weingarten maps L, and L, at ¢ of I} and T,
respectively, are such that L, — L, is not invertible.

PROPOSITION 3.6. Let ¥ be a smooth function whose gradient never van-
ishes on 3D, and let ¢, be a local minimum of ¥ on dD. Then ¢, is not a
nondegenerate minimum of ¥ on 9D if and only if at ¢, the two surfaces 9D
and (¥ = ¥(¢,)} have order of contact greater than 1.

Proor. Let (U,G) be a local system of coordinates at ¢, If H =
Hess ¥(¢,) was not invertible, there would be a vector v € R*~! such that
2

a
0=<(Hv,v) = WWC’G(G—I((ﬁO)).
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Let dG/dv € T, be the corresponding tangent vector, and let y, and vy, be
the paths on dD and ¥ = ¥(¢,), respectively, such that

G

¥1(0) = 72(0) = ¢y, ¥1(0) = ¥5(0) = FrR

Let us assume that there exists a neighborhood U, of 0 such that y,(¢) # y,(¢)
for ¢t € U,; otherwise there is nothing to prove. Then, for some 0 < 7 < 1,

W(y1(2)) = ¥(ra(2))
(3.10) =<grad‘l’(y1(t) + T(Vz(t) - Vl(t)))’71(t) - 72(t)>
=(grad ¥(¢,),v:(t) — Yz(t» +o(t?%).
Moreover,
d d
E(‘I’(’h(t)) - ‘I'(Vz(t)))’tzo = ?d‘zq’(')’l(t))'tzo =0
since ¢, is a minimum of ¥ on D; but also

={(Hv,v) =0,
t=0

d? d?
22 (Y () = ¥(%(D))| =7z ¥(n(®)
so that W(y,(¢)) — W(y,(#)) = o(¢2). Putting this together with (8.10) we have

o(t?) = W(y:(t)) — ¥(v5(2))
. _ a v1(£) = va(2)
_lyl(t) 'y2(t)|<gr d¥(¢,), |71(t) — Vz(t”

=|71(t) - y2(t)|<grad\1’(¢0),n> + 0(t2),

where n denotes the normal at both surfaces at ¢,. Since grad ¥(¢,) does not
vanish and points in the same direction as n, this implies that |y,(¢) — y,(¢)|
=o0(t?). O

> + o(t?)

REMARK 3.7. Because of (3.8), D, I(x, ¢) is a vector which is orthogonal to
dD at ¢ = ¢(x). If we denote by n(¢p) the inner normal to 9D at ¢,
computing the derivative D,I(x, ¢) implies

x— ¢ y—¢
+
lx — ¢l |ly—¢

for some A € R. It is easy to see that

y— ¢
-2l 2t o)

| = An(d’):

¢!’
from which we derive

x—¢ _2<|y—¢

Tl y—¢|’”("’)>”("’) e

ly — ol

(3.11)
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In particular, (3.11) implies that if x is a regular point and v, , is the
solution of (2.2), then v, ; reaches the boundary nontangentially. Indeed in
the time interval [s, #(x, s)] the path Y, s follows the line segment from x to
¢(x) at uniform speed. From (3.11) if (x — ¢, n(¢)) =0, then also (y —
¢, n(@)) = 0, and this implies that ¢ lies on the line segment joining x to y,
which is not possible since x is a regular point and the line segment joining x
to y must lie entirely in D.

4. The asymptotics for the Brownian bridge. In this section we
compute the Laplacian of u at a point (x,s), where x is assumed to be
regular, and solve the differential system of Theorem 2.1 by computing w by
(2.3).

We start with the first derivatives of u (We can assume s = 0). From (3.9),

u 0
o"xi(x’ ) =

(x ¢(x))-—(x)

However, it is easy to recognize that in the previous formula the last term is
equal to 0, because [dp/dx;l(x) is a tangent vector to D at ¢ = ¢(x) for
i=1,...,n, whereas D, I(x ¢) is orthogonal to éD. Thus

(4.1) Du(x,0) =D, I(x,d(x)) = lx_¢|(|x—¢|+ly—¢>l)—(x—y)

and
d%u d ly — ¢l
Ez—(x’o)=ﬁli ¢z+yz+(x _d)z)lx d’l]
_ 9 ¢ ly — ¢l
- Jx; lx — ¢l
X, — |x—¢|
+|x-¢|2[ e PO

_'liiiléxxf—%)(@f af)]

In the calculus of the Laplacian we make use of the following lemma, which
implies that, after summation on i, the contribution of the term in the last
two lines is equal to

ly = ¢l
lx — @I’
giving
1 1 ly — oI\ & ¢, ly — ¢l
(4.2) §Au(x,s)———2(1_8){—(1+———|x_¢|)i§1—xi+(n—l)lx_¢|}.
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LEMMA 4.1. If x is a regular point,

n ob.
(4.3) Y (% — ¢ "d)_J
i=1

i

=0,
for every j =1,...,n.

Proor. It is easy to see that if g is any point in the segment joining x to
¢, then also g € D and ¢(q) = ¢(x). It suffices now to remark that the
quantity in (4.3) is just, up to a multiplicative constant, the derivative of ¢ at
x in the direction of ¢(x). O

In order to conclude the computation of Au, we want to obtain an expres-
sion for the quantity
i ¢,

i=1 9%;

This will be done by the implicit function theorem, as hinted in the proof of
Proposition 3.6. The fact that x is regular justifies all the differentiation we
are going to do. Our notation is as before, with (G,U) a local system of
coordinates of dD at ¢(x). Let z € U be the point such that ¢#(x) = G(z).
Thus z = z(x) is defined as
z=argmin(|x - G(w)|+|y — G(w)]) = argminF(x,w).
welU welU

Since z(x) is in the interior of U, it is necessary that all derivatives of H
vanish at z(x):

oF x-G(z)  y-G(2) G
(44) - (x,2) 1=Hk(x’z)=_<|x—G(z)l ' Iy—G(z)l’é’_zk>= ’

for e =1,...,n — 1. Relation (4.4) allows us to state that the function x —
z(x) is defined implicitly by

H(x,z) =0,
where H(x,z) = (H(x,z),...,H,_(x,2)). The derivatives of z are thus
given by the implicit function theorem
9z (aH )“1 oH

9% 9z )  ox’
where
0z 9z,
ox ax; ),
oH [ JH,
dz | dz, i
oH oH;
x| dx, i
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Thus we have

o e
oH\ "' 0H 4G
el

LeEMMA 4.2. Let x be a point in ﬁ, and let us define the matrices A = (a; j)i ;
and B = (b;)),; by
<aG aG> <y—G(z) aG>< y — G(2) aG>
9z; ly — G(2)| 9z, |y—G(z)|’(9zj ’

1
ai' T -, <
7|y = G(2)]
y — G(2) %G
b.o—o 2% 27
& 2< ly — G(2)] ,n><n, 9z, 0z;
Then

oH 1 oH oG 1-1¢,
9x dz ty

A.

0z ty

2

Proor. By a plain computation,
0H; 0G/dz x—G(z G
i | _ / k + ( )3<x_ (Z),"'—‘>
9z, | = G(2)|  |x - G(2)]
0G/dz, y— G(2) iG\ 4G
BRI Py - G(2),
Yy () |y - G(2)| (92

[ x-6(2) , Y-6() 92G >
lx—G(2)| |y —G(2)| 92, 92

and, collecting the terms together,

oH; G G 1 1
oz <5’zk '92j>{|x_G(z)| " Iy—G(z)I}
1 G G
_———Ix—G(z)I3 <x—G(z),a—Zk><x—G(z),a—zj>

1 oG oG
e o -5
_< x— G(z) %G >+< y — G(z) I*°G >

|x — G(2)|’ 9z, 9z; ly = G(2)| 9z, 9z;
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Now we replace everywhere the quantity x — G(z) with a function of y — G(z)
and ¢,. More precisely, we replace |x — ¢| by the left-hand side of (3.7), and
(x — ¢)/|lx — ¢| by the left-hand side of (3.11). Using the fact that, for all
k=1,...,n — 1, nis orthogonal to dG/dz,, forall k = 1,...,n — 1 one gets,
finally,

oH; 1

J —
Jdz, ty

ly—G(2) Ty -G=)|\ly - G(=)] oz,

(0G/dz,, 3G/ dz;) 1 < y—G(z) 4G >

><< y - G(2) §>
|y—G(z)| ’ Jz;

y—G(2) 392G
- 2<|y - G(2)] ,n> " 9z, 9z;

1
- A-B.
Similarly,
F { 8y (%= Gi(2)(x _Gi(z))}aGl
dx; lx — G(2)] lx — G(2)|° 3z,
1 9G; (x;—Gy(z)) | x—G(z) G
) ‘|x—G(z>|{azk T2 G(2)] <|x—G(z)|’?9z_k>}‘
Thus
oH 0G 1
(55)1k=_|x—G(z)|
G 4G x—G(z) 9G x—G(z) 9G
<79z7’a_zj>_<lx—G(z)l’Tzk><|x—G(z>|’a—zj>}
1-¢, 1
- to |y —G(2)|
G 0G y—G(z) 9G y—G(z) G
<a_zk’a—zj>“<|y—G(z>|’a_zk><|y—G(z>|’a—zj>
1-1¢,
- A i

Let x be a regular point and let ¢ be a point in the line segment joining x
to ¢(x). It is easy to check that q is regular.
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As we already remarked, ¢ € D and ¢(g) = ¢(x); moreover, the minimiz-
ing path of the action functional I, starting at g is the polygonal path formed
by the line segments joining g to ¢(q) = #(x) and #(q) to y. This is a
consequence of the fact that for the points in D the minimizer joining x to
dD is unique. Moreover, by Lemma 4.2 the Hessian of F(q,z) at z =
G 1(¢(q)) = G (¢(x)) is given by

1 A—-B-= 1 A—B+( ! — ! )A
to(q) " to(x) to(q)  to(x)

= Hess F(x,G_l(d’(x))) + (

I )A
to(q)  to(%)

Now A is a positive definite matrix and ¢,(x) > ¢,(g), because of (3.6). This
implies that also the Hessian of F(q, z) at z = G~ 1(4(q)) is positive definite,
so that, by Remark 3.7, ¢ is also regular.

If x is regular, it is now easy to show a set N ¢ D X [0,T] containing x
and satisfying Assumption (A): if % is the neighborhood of x given by
Proposition 3.5 and V € D is the set formed by the union of all line segments
joining p to ¢(p) for p e %, then set N=V X[0,T'[, where T' =
Suppe% tO(p)'

Lemma 4.2 implies that

no 9o,
Elbi:’—z = tr[(A —t,B) (1 - to)A]

and, substituting in (4.2),

1 1 ly — ¢l -1
EAu=m{—(l+m)tr[(A—toB) (l—to)A]
ly — ¢l
+(n—1)|x_¢|},
so that, by (3.7),
1 1 1 » 1-1¢,
§Au=§(—1——~—87{—gtr[(A—tOB) (1-t)A] +(n-1) o }

From (3.3) we have ¢,(1 — s) = (¢(x, s) — s), so that, expressing ¢, in terms of
t and s,

1
3 Au(x,s) =

1{(n-1) (n-1)
E[ t—s  1l-s

1 -1
= str[((l —s)A—(t-s)B) (1- t)A]],
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From now on we shall write ¢ instead of #(x, s). It is convenient to simplify
the expression above by remarking that

n—1 1 1
(t_s) _ t_str[((l—S)A—(t—s)B)_ (1—t)A]

= —tu[I-(1-9A-(t-9)B) (1 -1)4]

- L[ -A- (- DB (-9 (- 9B - (1-0)4]

= tr[((L-s)A~ (¢t —s)B) (A - B)]
= tr[((1 - 5)I - (¢ - 5)A'B) (I - A"'B)],

so that, finally,

1
—Au(x,s) =

2 —s

1 n—1 1

5[—(1—) +tr(((1—s)I - (¢ —s)A™'B) (I —A-IB))]
1
2

[—% +tr(((1 - tA"'B) — s(I - A7'B)) "

x (I - A‘lB))].
We recall that our goal is to compute

exp[—w(x,s)] = exp(—j: % Au(y,, (r),r) dr).

This is now easy since

1
= B, (r), 7)

- % - %l—;-rll +tr(((I—tA"'B) — r(I - A"'B)) (1 —A‘lB))]

[as remarked before, t(y, (r),r) = t(x,s) for s <r < t(x, s)].

REMARK 4.3. The matrix (1/¢,)A — B is positive definite, being the Hes-
sian of the function F(x, z) = |x — G(2)| + |y — G(2)|at z = G~ }($(x)), since
x is regular. However, A is also positive definite so that for s <r <t the
same is true for (1 — tA"'B) — r(I — A™1B), which can be written

(1—r)I—(t—r)A"'B=(1-r)A"'(A - t,B).

This justifies the existence of the inverse of this matrix and the raising to the
power 1 in the proof of the following theorem, which is our main result.
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THEOREM 4.4. Let x be a regular point (Definition 3.4). Then

exp ~w(x,s)] = (1 — )" 2 det((1 - s)I — (t(x,s) —s)A'B) "%,
so that, for s = 0,
x,0)

-1/2

u

PrROOF. Let us set
1 -1
r(A) = exp(— 5 [s*(((z —tA"B) —r(I-A7'B)) (I - A"'B)) dr).
Then
T(A) = ((I - tA"'B) — NI - A"'B))"*((I - tA"'B) — s(I - A"'B)) "/*.

Indeed, the two left-hand sides agree for A = s, and both satisfy the differen-
tial equation

1/2

T'()) = —%((1 —tA"'B) - NI -A"'B)) (I ~AT'B)T(2)

[in the computations we make use of the fact that all the matrices ((1 —
tA"'B) — r(I — A7'B))"! and (I — A"'B) commute as r varies being, up to
scalar multiplicative constants, the resolvents of A~'B]. Thus, recalling that
det(exp A) = exp(tr A),

exp[ —w(x, s)]

1—3s (n—-1)/2
=(1—t)

X exp(—%j:tr((l —tA"'B) —r(I —A“IB))AI(I -A"'B) dr)

1 .4 -1
X detexp(— Zfs ((I-tA"'B) —r(I-A"'B)) (I-A"'B) dr)

= ( 1 :j)(n_l)/z det((((l —tA'B) — (I - A‘lB))_l)l/Q

x((1—tAB) — s(I —A‘IB))_1/2)

—

|
|

-

~

— g\ 12 \/det((l — tA-1B) — t(I - A"1B))
) det((I - tA'B) — s(1 — A 'B))

—s\(n-Lr2 det((1 —¢)I)
—t) det((1 —s)I — (¢t —s)A™'B)

[u—y

—
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-1/2
2, 0

=(1-s)"""?det((1 ~s) - (t — s)A"'B)
One should remark that, as x approaches the boundary and y remains

fixed, £,(x) — 0, because of (3.5), so that for x near 9D the quantity det(I —
toA"'B)"1/% is approximately 1.

ExaMpPLE 4.5 (The case of the half-space). If D is a half-space, then it is
easy to see that all its points are regular: indeed an ellipsoid of revolution
cannot have order of contact greater than 1 with a hyperplane. The computa-
tion of the first coefficient exp[ —w(x, s)] is immediate in this case, because G
can be chosen linear, which gives B = 0; thus, from Theorem 4.4,

exp[—w(x,0)] =1,

or, equivalently, w = 0. It is immediate to see that in this case also all the
other coefficients ¢, in Theorem 2.1 vanish. Thus

u(x,s)

&

Pl <1} =q°(x,s) =exp(~ (1+o0(e™)),

for every m > 0. Indeed it is not difficult to check that the above equality
holds exactly, since the function (x, s) - exp[ —u(x, s)/e] solves the equa-
tion for ¢°, namely,

aq® Ve .
+ —Aq°*=0 in D X [0,1],
ds 2

q°=1 ondD x[0,1],
q°(x,1) =0 ifxeD.
It suffices to remark that u satisfies the Hamilton—-Jacobi equation and that,
from (4.5), Au = 0.

In this situation it is also easy to compute u explicitly: if D is the
hyperplane given by the equation

D={x,a —{x,v) > 0},
where v is a vector of length 1, then

2
—(a~ (y,0)(a~(x,0))

u(x,s) 1
(such a function satisfies the Hamilton—-Jacobi equation and its boundary
condition). For this computation and the following, it is sometimes useful to
use Lemma 6.1 in order to compute the quasipotential u.

For the sake of completeness we write here the asymptotics for the exit
probability of a one-dimensional Brownian bridge. If D =]a, b[ and y € D,
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then (3.4) easily gives

_.____1 2 2 .
2(1_3)(((x—a)+(y—a)) —(x—y)), fx<a+b-y,
u(x,s) =

m(((b—x)+(b—y))2—(x—y)2), ifx>a+b-y,

or, after simplification,

(x—a)(y —a), ifx<a+b-—y,

_2
(1-5)

m(b—x)(b—y), ifx>a+b—y.

Every point except x = a + b — y is regular, and at each regular point u is
linear, which gives w = 0 and

u(x,s) =

P f{r<1} = exp(ﬁ(—?:—s))(l +o(e™)),

for every m > 0. By repeating the arguments of the previous example if
x =a + b — y, then from x there are two minimizers leading to the boundary
and, summing the contribution of each, we have

Pz {r<1} = 2exp(3£x€’—s))(1 +o(e™)),

for every m > 0.

It is fair to remark that the asymptotics for the situation considered in this
example should be considered already known. Indeed the multidimensional
case can be easily reduced to one dimension by projecting the process in the
direction of v and the one-dimensional case is easily treated directly, since
for a Brownian motion B the joint distribution of sup,_, B, and By is
known.

In the following example we are able to handle situations in which the
assumption of uniqueness of the minimizing path for the action functional is
not satisfied (but there is still a finite number of such minimizers).

ExXAMPLE 4.6. Suppose D is the square in Figure 1 with y located at the
center. We suppose that y = 0 and that the sides of the square have length
equal to 2.

Suppose that x lies in the upper triangle (excluding the diagonals). Then
by an elementary computation the minimizer of the action functional is the
line segment joining x = (x,, x,) to (x,/(2 — x,), 1). Since the asymptotics of
the exit time in (1.2) is the same as for the tube in (1.5) and the latter is
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Fic. 1.

unchanged if we replace D with the half-plane {x, < 1}, Example 4.5 gives

2(1 —xz))
e(l—-s) )

Conversely, if x = (¢,¢) lies on the upper right diagonal (but not in the
center), then there are two paths minimizing the action functional, one, v,,
given by the line segment joining x to (¢/(2 — ¢),1) and a second one
symmetric to the first, y,, reaching the boundary at (1, ¢/(2 — ¢)). Again large
deviations theory states that the asymptotics for the exit time is the same as
the asymptotics of the sum of the two probabilities

Prre <1, X2 € By(v)} + P7{7° < 1, X* € By(72)}-

The first probability has the same asymptotics as the exit probability from
{x,x, < 1}, whereas the second one has the same asymptotics as the exit
probabilities from {x, x; < 1}. These were calculated in the previous example
and are both equal to

Pr{r<1} ~ exp(—

2(1-1)
e(l-3s) )
This argument obviously holds whenever x lies on the diagonals (except the

point at the center), so that if x = (¢,¢), ¢t # 0, the asymptotic expression for
the exit probability is

exp( -

Pff{r<1} ~ 2exp(—~2—£—1——_-k—|)~).

e(l—5)

Finally, if x = 0, there are four minimizers and the exit probability can be
estimated by summing the contribution of the four tubes, which gives

2
P;’S{TS 1} ~ 4exp(—m).
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ExaMPLE 4.7. Let D be the ball of radius R in R”, with the conditioning
point y at the origin; D can be written locally as the graph of a function
defined on the ball of radius R of R*~'. For instance, the upper half of S"~!
is the graph of

— 2 2 2
(p(zl,..',zn_l)_\/R _zl_”' —Zn_l,

z=(zy,...,2,_1) being a point in the ball of radius R of R"~ ", so that a local
system of coordinates is

G(2) =G(zy,...,2,_1) = (zl,...,zn_l,\/R2 —22 - —2,2,_1).

Since y = 0, then of course |y — ¢(x)l = R and [y — ¢(x)]/ly — ¢(x)| is the
inner normal of 4D at ¢(x). In particular, {(y — ¢)/ly — ¢(x)l,n) = 1 and
(y — ¢,0G/dz;) =0 forevery j=1,....,n — 1 A straightforward computa-
tion then gives

[y

_ 2 2 _ ... __2
n——(—zl,...,—zn_l,—\/R —zy — zn_l),

1 0G G\ 1 242, SRNPLTe
- (ZZ ) s, + —(n,—— ).
ly — &(x)|\ 9z, " 9z; R( ki T RZ - 22— =22 9z, 9z;

Thus

=)

B=2A,
so that

1/2

exp[ —w(x,0)] = det(I — t,AT'B) T = (1- 2t0)—(n—1)/2'

It is now easy to compute ¢,(x): the minimizing path is the one which goes
first from x to the boundary following the radius at point x/|x| and then
back to y = 0 (again Lemma 6.1 is useful). Thus

R — |x|

tO(x) = 2R_|x|’

| x|

_ (n—-1)/2
exp[ —w(x,0)] = (M) :

For a general domain D it might be impossible to do exact computations,
the difficulty being the computation of ¢(x). However, the formulas are
explicit enough to be used in simulations: the program should find numeri-
cally ¢(x) by local search, which enables a subsequent analytic computation
of A and B.

5. Geometric interpretation. We are now going to interpret the mean-
ing of the coefficient det(I — £, A~'B)~'/? which was derived in the previous
section.

It is clear from the discussion of the previous sections that if x € D is
regular, then the point ¢(x) € 9D of Definition 3.4 is also the point of JD at
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which the smallest ellipsoid E of the form {z;|x — z| + |y — z| = const} and
dD are mutually tangent. We shall see that det(I — ;A 'B)"'/? is a mea-
sure of the contact between 4D and such an ellipsoid at ¢(x).

It is always possible by a rotation and a translation to assume that ¢ = 0
and that the common normal to both surfaces points upward in the direction
of, say, the nth axis. Thus both the surfaces £ and JD can be described
locally as the graph of two functions, f and g, respectively, of the variables

21,..., 2,_1- By the previous assumptions the differentials of f and g vanish
at z = 0.
A system of coordinates on dD at z = 0 is given by
(5.1) G(Zl,'.' s Zn_l) = (Zl, ceey Zn_l, g(zl, ceey Zn—l))7
so that
G d
— = (0,...,0,1,0,...,0, _g) ,
dz; dz;
ith coordinate
G
(5.2) —(0) = (0,...,0,1,0,...,0),
dz;
ith coordinate
%G o dg
dz;dz; 7 9z 02|

Moreover (remember that ¢ = 0),

=)
ly — ol’ Lyl

and the matrices A and B of Lemma 4.2 take the form

1 .
|yl |yl ij

y. 9%g

lyl 9z, dz;

(5.3)

B =

ij
A natural way to compare the contact between E and 4D is to compare the
Hessians of f and g at 0. More precisely, we have the following lemma.

LEMMA 5.1. We have

I —t,A"'B =1 — Hess f(0) " Hess g(0)
= Hess f(O)_l(Hess f(0) — Hess g(0)).
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PrOOF. We only need to compute the Hessian of f at 0. Now f is defined
implicitly by
F(zy,...,2,_1,f(2y,...,2,_1)) = const,

where F(z) = |x — z| + |y — z|. We already know that

x—z y—z
PR = ~( = =)
and
(5.4) DF(0) = —An,
where
A= 2<i,n>= 2ﬁ.
|yl Iyl

By the implicit function theorem,

af dF/dz;

oz, 9F/oz,’
so that

9*%f  (9F/0z,)(9°F/dz; 9z;) — (9F/2;)(9°F/ oz, 9z;)
dz; 9z; T (ﬂF/&zn)2 ‘

At z = O one has 9F/dz; = 0for i = 1,...,n — 1, because of (5.4) (recall that
the normal n lies along the nth axis) and JdF/dz, = —A. Thus, for i,j =
1,...,n—1,

If 1 9%F

(0)

dz; dz; Y dz; dz;

d*F 1 X, %; 1 V¥
ivj iJj
(0):...;'.(5“ )_|.____.(5ij_ )

dz, dz; | x|? Lyl | x|

1 YiYj
= 4~ T2 |
tolyl x|

(0).

Moreover,

so that, finally,

a*f . 1 ( Vi )
dz; dz;  Molyl\'"Y  |x? )
and from (5.3) the statement follows. O
We are now going to give a more intrinsic version of the previous lemma.

Let M be a hypersurface of R", let ¢ be a point on M and let M, be the
tangent space to M at ¢. Let n(x) be a € unit normal field around ¢. If
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X =Y} ,a,d/dx; is a vector in M, consider the transformation
(5.5) X - Xn,

where Xn is the vector whose jth component is X?_;a;,(dn;/dx;X¢). Then
Xn is still a vector in M, so that (5.5) defines a transformation of M » into
itself which is called the Weingarten map [see Hicks (1965), page 21, e.g.].
This map is closely related to the curvature of M at ¢ [Hicks (1965), page
24].

In our situation the two hypersurfaces £ and D have the same tangent
hyperplane at ¢ on which the Weingarten maps L, of E and L, of 4D both
operate. Thus a measure of the contact between E and dD can be obtained by
looking at the difference L, — L,. The following statement gives an intrinsic
expression for the quantity det(I — ¢, A~*B)"'/2

PRrOPOSITION 5.2. We have
I—-tyA'B=L;"(L, - L,) =I—-L{'L,.
ProOF. Let us choose the system of coordinates introduced before Lemma
5.1, and let n(z) be the & unit normal field pointing in the direction of the

positive nth axis. It is then an elementary exercise in differential geometry to
check that, in these coordinates,

L, = —Hess f(0), L, = —Hess g(0).

Indeed it suffices to remark that

IG ~
<a_zi(z)’n(z)> =0,

for i =1,...,n — 1, since dG/Jz; is always a tangent vector. Thus, if j =
1,...,n — 1, by derivation

9 oG 92G G in
0=—<0—2i(z),n(2)>= (2),n(2) =<a_zi(z)’ﬁ—zj(z) :

9z; dz; dz;

However, at z = 0, n(z) = (0,...,0, 1) so that, by (5.2), at z = 0 the previous
identity becomes

d%g o an,; o =0
+ =
(0) + 5-(0) =0,

dz; 9z;

which expresses the fact that —(d9%g/(dz; dz;)0) is the ijth entry of the
representative matrix of the Weingarten map in the given coordinate system.
O

One should remark that whereas the Weingarten map depends on the
choice of the normal field (outer or inner), which makes it defined up to a
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multiplicative factor of —1, the quantity L; (L, — L,) is intrinsic and does
not depend on the choice of the normal field.

6. Computing the mean exit time by simulation. We have performed
a set of simulations in order to obtain numerically the mean exit time from a
ball D c R? of radius 1 of a Brownian motion starting at the origin. The
well-known exact value is 3.

As explained in the Introduction, a raw simulation scheme is biased by a
systematic error. In order to get a correction of this error, we compute the
asymptotics in & for the probability that a Brownian motion B goes out of D
in the time interval [k&,(k + D¢], given W, = x and W, ,,, =y, x,y € D.
The conditioned Brownian motion, up to a translation in the time scale, has
the same law as

o S S
W,=x+—(y—-x)+B,——-B,, 0<s<e.
£ £

Performing the time change ¢ = s /¢,
Y,=W, =x+t(y—x)+B, — B,
=x+t(y —x) +Ve(B,—tB;) inlaw
for 0 < ¢ < 1. Thus the process Y has the same law as the solution of
Xe(¢) —y

dX*(t) =~

dt + Ve dB,,

X°(s) = x.

Since the probability that W exits from D before time ¢ is the same as the
probability that X¢ exits D before time 1, its asymptotics are given by
Theorem 4.4.

Table 1 reports the results of three sets of numerical simulations, each
based on 10,000 simulated paths. In the first set (crude 1) the paths were
obtained by simple simulation with a step £ = 0.01. In the second (corrected)
the paths, still with step £ = 0.01, were killed with the procedure described
in the Introduction, using the asymptotics derived in the previous sections.
The third set was again obtained by crude simulation but with the step
reduced to 0.002, to increase precision.

It can be remarked that the enhancement of the performances provided by
the correction procedure is considerable. The increase in CPU time might be

TABLE 1
Type Step Estimated mean time Error CPU time
Crude 1 0.01 0.557 11.4% 1.00
Corrected 0.01 0.502 0.4% 2.90

Crude 2 0.002 0.527 5.4% 4.85
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taken into account, but is considerably less than that observed in the third
simulation, which denotes a less dramatic improvement in the results. It
should be added that the second set of simulations, in which the correction
procedure described in the Introduction was applied, is the only one for which
the true value (3) was in a confidence interval, at any reasonable level. For
instance, at level 95% the confidence interval is [0.495, 0.509].

The increase of the CPU time required by the correction procedure is less
considerable than might be expected because one may ask the program to
compute the killing probability p (a demanding task in terms of computation
time) only when the process is near the boundary. Otherwise p is too small to
influence the simulation significantly.

It is fair, however, to point out that by far the most time-consuming part in
the computation of the killing probability is the determination of ¢(x), which
depends on the form of the boundary dD. One may expect that if D is more
complicated than a ball, the increase in CPU time might be heavier.

The point ¢(x) can be obtained by local search on the boundary; a different
procedure to the same goal can be derived easily from the following lemma.

LEmMMA 6.1. Let y(¢) =x + t(y — x) be the uniform motion on the line
segment joining x to y. Then

2 ) eyl
x—zl+ly—z|) —lx — = min mn-————.
(I |+ y ) | vl ost<1l¢eop t(1—1)

Moreover, if x is regular and t and ¢ are, respectively, the time and the point
of dD at which the minimum above is attained, then t = t, and ¢ = ¢(x).

The lemma says that the cost function is also given by the minimum of

d(y(t),oD)
- — <t<l,
t(1-1t)
which might be easier to obtain numerically if the boundary 4D is such that
the distance d(y(¢), D) is easy to compute (e.g., if D is a ball).

Lemma 6.1 may be restated in terms of elementary geometry by saying
that if for each 0 < ¢ < 1 we consider a ball of radius const - \/¢(1 — ¢) and
centered at y(¢), then the union of all such balls is an ellipsoid of revolution
having its foci in x and y.

Proor orF LEMMA 6.1. If

|z = (x+t(y —x))|°

H(?) = t(1—t) ’

then

1
H'(t) = m[—zt(l —t)Xz = (x+t(y —x)),y — %)

—(1-2t)z—(x+¢t(y —x))|2]
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Developing the quantity between brackets, the critical points of ¢ are the
solutions of

t2[|y —xP -2z —x,y — x)] + 2tz — x> =z —x* = 0.

This second-order equation is easily solved and, having discarded the nega-
tive solution and after some simplifications, one finds that the critical point is

lz — x|

t= ,
lz — x|+ |z — yl

which is of course also a minimizer. Substituting back in order to compute the
minimum and performing some more tedious simplifications one gets, finally,

|z = (x + 8y — )
#(1-1)

=2(lz —xllz —yl+ <z —x,2 —y))
=(|x—z|+|y—z|)2—|x—y|2‘ O
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